
• r.· HUMAN-COMPUTER INTERACTION, 1985, Volume 1, pp. 1-47
Copyright IC> 1985, Lawrence Erlbaum Associates, Inc.

A Principled Design for an Integrated

Computational Environment

Andrea A. diSessa
Massachusetts Institute of Technology

ABSTRACT

This paper aims at the principled design of a computational environment; it
aims at being as explicit as possible about the space of possibilities and about
the assumptions made in choosing from among them in the design process.
The point is to develop a more systematic, if not yet scientific, basis for the de
sign of complex but understandable art ifacts . The particular object of design
here is a simple but multifunctional system for naive and inexperienced users.

W e begin theoretically by elaborating the notion of understandability, the
key characteristic for which we must design. We present various models people
can make of computational systems, each with its own learning curve, advan
tages, and disadvantages. Then we propose a pragmatic framework for a par
ticular system. The framework includes the principle of naive realism: that
users should be able to pretend that they see the system itself in the display. It
also includes the pervasive use of a spatial metaphor whereby users' common
sense spatial knowledge is used to make the system easy to understand. The
theoretical and pragmatic levels are linked, in that a number of important de
cisions about issues (such as reference, scoping and the meaning of evaluation)
are based on the theoretical modeling considerations.

Author's present address: Andrea A. diSessa, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139.

2 DISESSA

CONTENTS

1. INTRODUCTION
2. PRINCIPLES OF DESIGN

2 .1. Structure and Function
2.2. Mental Models and Surrogates
2.3. Functional Models
2.4. Distributed Models

3. A PROPOSED FRAME FOR INTEGRATION
3.1. Static Structures and Functions

The Box
Boxes as Procedures
Boxes as Data Objects
Boxes as Environments
Kinds of Boxes
Summary

3.2. Dynamic Structures and Functions
Reference
Reference in Boxer
A Surrogate Model for Boxer
Inputs
Two Proposals for Non~Lisp Structures

3.3. Scoping
4. THE USER INTERFACE
5. BOXER SCENARIOS

5 .1. The Morning Mail- Getting Around the System
5.2. A Simple Program
5.3. AJournal

6. SUMMARY

1. INTRODUCTION

It is certain that in the future most computer users will be people who are
not computer specialists, people for whom the computer must be a useful tool
for their own interests without requiring inordinate computational sophistica
tion or effort. Secretaries, financial analysts, scientists of all kinds, teachers,
students and trainees, hobbyists and homemakers will be among these users.
We are convinced that most of these people will be best served by providing an
integrated environment that has broad functionality, not via a great number of
special subsystems, but via common facilities accomplishing basic tasks such
as the following with a uniform, easily understood computational scheme:

Text-editing, including structured filing and retrieving
Using and modifying prewritten programs
Writing programs, including text-editing macros

• A PRINCIPLED DESIGN 3

Searching and manipulating databases
Producing graphics with a flexible, programmable graphics facility

Although we shall not pursue the argument for integrated computational en
vironments in detail here, the dominant point is that even if novices need not
deal with several of the above functional categories, it is still clear they could
often benefit from doing so. Given that, there is an advantage to any system in
which learning any one function automatically carries competence into other
areas. In our view, it is so obvious that such synergistic effects can be accom
plished that the only surprising thing is how little work has been done on inte
grated computational environments suitable for naive and inexperienced
users. The Xerox Star and Apple Lisa begin to approach the goals stated here
but fall short of the generality and flexibility we intend, most notably in user
programmability. We refer the reader to the Smalltalk, Lisp machine, PIE
and Interlisp projects (Goldberg, 1983; Goldstein & Bobrow, 1984; Green
blatt, Knight, Holloway, Moon, & Weinreb, 1984; Teitelman & Masinter,
1984) for other work on integrated environments, work which, with the excep
tion of Smalltalk, has had little concern for unsophisticated users.

What issues arise in the design of an integrated computational environment
for novices? One stands out above all others. That is the understandability of such
a system as perceived by its user. We must therefore try to understand the men
tal models people form of a complex system, such as a computational environ
ment, in order to design an effective one.

Unfortunately, cognitive science and,psychology have not yet provided the
well-elaborated theory and empirical studies of understandability one would
like to have before beginning a design exercise. There do exist some promising
theoretical beginnings (Gentner & Stevens, 1983; Rumelhart & Norman,
1981; Young, 1981), a small but growing empirical base (Ehrlich & Soloway,
1983; Mayer, 1981), and a few designs with an articulated set of principles
(Eisenstadt, 1983; Ingalls, 1981; Smith, Irby, Kimball, & Verplank, 1982).
Still, designing for understandability is more art than science. This paper de
rives from the conviction that trying to articulate principles in the process of
design can advance the state of the art by developing explicit and testable gen
eral ideas in a context where the actual impact of those ideas in selecting and
generating design alternatives is visible.

The first part of this paper sets out some understandability principles for in
tegrated computational environments, largely by identifying paradigmatic
models that users make of complex systems. Each model has its own strengths
and weaknesses. The view of understanding provided by this typology high
lights some important tradeoffs one makes in designing a system to be under
standable in one way or another. In particular, it suggests the possibility, e;ven
the necessity, of using different models for different purposes and of a gradual
shift in the kind of model employed as a user becomes more experienced.

4 DISESSA

The second half of the paper applies these principles to the design of a
computational environment called Boxer, which is being developed by the Ed
ucational Computing Group in MIT's Laboratory for Computer Science. 1 Be
sides combining many capabilities for nonexperts, Boxer has several other
novel features. Foremost, it integrates the user interface much more tightly
than usual into the meaning of the system. This allows the user to take the
stance of a naive realist- that what he sees and manipulates on the display screen
is the system itself rather than simply an interface to actions which manipulate
the for-the-most-part invisible system. Such a strong form of "what you see is
what you have" enhances the communication of a model of the system. Boxer
also makes use of a pervasive spatial metaphor in which language structures
and relations are expressed by the spatial relations one sees on the screen. The
intent is to tap the well-developed pool of knowledge about space that humans
already possess in order to facilitate their making a model of the computational
environment.

Readers who wish a preview of Boxer may look ahead to Section 5 which
gives some scenarios of its use.

2. PRINCIPLES OF DESIGN

In Subsection 2.1. we lay out an important distinction- that between struc
ture and function; and, as a basis for further discussion, we use that distinction
to take the first few common-sensical steps toward principles of designing an
integrated computational environment. Later subsections refine this initial
distinction by presenting various mental models.

2.1. Structure and Function

The distinction between structure and function, long considered funda
mental to the process of design, is particularly central to the design of an inte
grated computational environment. The distinction focuses on either (1) char
acteristics of an object or action which are defining and independent of specific
use (structure) or (2) characteristics which have to do with specific use, conse
quences, or intent (function). The point is to separate descriptions according to
whether the implied descriptive frame applies universally (structure) or not
(function).

For example, the structural aspects of a variable in a computer language are
given primarily by setting and accessing protocols, and they apply in all con
texts. In contrast, a variable's functions might sometimes be described as a flag

1 Boxer has been partially implemented, but to simplify exposition and more clearly
highlight the modeling issues, what is described here is neither the same as imple
mented, nor precisely what we intend to implement. The differences are, however,
mostly cosmetic.

A PRINCIPLED DESIGN 5

or, more generally, as a communications device. In other cases, a variable
might function as a counter, data, or input. In the last case, input, there is only
partial structural overlap with the generic variable; the function known as in
put requires local seeping and flow-of-control organization to allow the proce
dure to have its inputs bound when it executes.

The most naive attempt at integration, that is, simply arranging for sepa
rately designed functions, such as system monitor, editor, programming lan
guage interpreter, and so forth, to be accessible from each other, leads to diffi
culties that are understandable in terms of function and structure. Structural
elements in each area may differ because they are tuned to the functions of that
particular area. Or worse, the structural elements may differ for no principled
reason at all. Thus the syntax for typing a command may be different in the
system monitor than in the prograrhming language. Commands in a text
editor, for example, single keystroke activated commands, may have no writ
ten representation in the sense that there is no way to write and later reactivate
useful combinations of commands. Only slightly better, a separate macro lan
guage may be provided for the editor. Such practices result in more to learn for
the novice and confusion between similar but not identical structures. Worse
case scenarios involve the modality of such systems where identical actions
serve radically different functions: a "d" keystroke may delete a file rather than
begin the insertion of"dog" because the user was in the file handler rather than
the insert-mode editor. More seriously, one is deprived of the power of struc
tures considered important in one area but not salient enough in another to
warrant implementation: Should one be deprived of the power to write a new
program built out of a few primitives in the text-editor simply because it is not
a part of the usual functional specification of an editor? Is instant action on
keystroke command useless for a programming environment?

We identify a basic design heuristic for integrating different function areas
so as to avoid the above difficulties. Detuning means having general structures
underlying the computational environment that are broadly applicable, less
highly tuned to any specific function, and always available for use. The de
signer must seek to abstract the essence of several contexts into common struc
tures available in all contexts and must expect any highly tuned application to
be built out of provided structures rather than directly provided. In Boxer this
will mean such things as the existence of exactly one kind of data object; there
will be no essential difference visible to the user between strings, numbers,
lists, records, and so forth, except the way in which the data object is used.
Even variables and files will be essentially the same structure. Furthermore,
text-editing commands will be a part of the programming language and hence
usable in the same way other primitives of the language are. Any user-defined
procedure can be given function key status in the same way editor commands
are.

Detuning often entails and can be aided by diffusing functionality across sev
eral structures. That is, instead of having any one construct serve a particular

6 DISESSA

goal, several constructs can be involved. Comments document code, but so do
mnemonic names. In Boxer, things may be named just for documentation pur
poses, not only for the usual purpose of defining an object for future
computational reference. In addition to aiming at a simple syntax, Boxer will
have interactive parsing and prompting to help novices avoid the need to re
member parsing conventions.

Detuning and diffusing functionality aim at structural parsimony, reducing
the number of structures to a small, common core. They are directed against
what we call the hacker bug of implementing a structure for each identified func
tion. By nature, integrated computatio~al environments are systems in which
we cannot afford a one-to-one connection between structures and function.
Needless to say, this applies within as well as across large-scale functional do
mains. Reducing the number of structures within programming itself is an im
portant goal.

Detuning, of course, can be carried to an extreme. Assembly language is
both excessively detuned and useless to the novice. The topic of knowing and
negotiating the limits of detuning will occupy a good deal of attention later in
the paper. At this stage, we begin dealing with the problems by proposing the
heuristic method of shallow structur£ng; anything the novice is likely to need to
use or modify must be near the surface of the environment, that is, it must not
require inordinate skills or knowledge to access. The problem with assembly
language is that it is too far from ordinary functionality; large numbers of in
structions are needed to implement simple functional units such as saving a
file.

That a system composed of a large number of similar but subtly different
structures is hard to learn and prompts mistakes is an assessment that motiv
ates detuning. Counting structures is a plausible method of assessing complex
ity, but it has clear limits. Shallow structuring reminds us that the way struc
tures need to be combined to achieve common goals must also be included in
assessing complexity. But counting structures or even combinations of struc
tures fails to recognize the fundamental fact that some individual ideas or com
binations of ideas are much easier to learn or apply than others. To deal with
this, we must have a more elaborate definition of learning than acquiring an
idea. We must look more carefully at a hypothetical user's mental models of a
system, that is, how a user comes to understand in order to control the behavior
of a system. In this way we w.ill get a clearer picture of the limits of detuning
and structural simplicity in general as a way of achieving an understandable
system.

2.2. Mental Models and Surrogates

The words mental model often conjure up the image of a sort of replacement
machine located in the mind on which one can run experiments and envision
res":llts without touching the actual machine. Young (1983) calls coherent,

A PRINCIPLED DESIGN 7

runnable conceptions surrogate models. For example, one typically models a
"push-down" list as a physical stack on which objects may be piled and re
moved. A push-down list, of course, does not behave identically to a pile of ob
jects, for example, overflow versus gravitational instability; but the image of a
pile manipulated with put and remove operations does allow one to simulate
its important behavior.

A surrogate model is intended to capture the computational mechanism in
such a way as to offer explanation and correct predictions in uniform terms. It
establishes the bottom line for the user for saying what will happen, given the
present state, and for saying what state must have existed, given a particular
behavior. Surrogate models are almost always explicit and taught, and one
typically sees them invoked by a tutor when a novice's expectations have gone
awry. Two of the most elaborate surrogate models, which attempt to encom
pass a large part of the operation of a computer language, are the actor model of
Smalltalk (Tesler, 1981) and the versions ofPapert's little-man model of Logo
done by the Edinburgh Logo Project (du Boulay, O'Shea, & Monk, 1981). One
possible surrogate model of a language is a specification of its implementation,
though this is hopelessly inadequate pedagogically for technically unsophisti
cated users.

Surrogate models are close to what many people think it means really to un
derstand a system. Surrogate models are archetypically detuned, dealing with
a system independently of how it is used; they are prone, however, though not
inherently, to certain problems as a way of giving users effective control of a
system. Problems arise in the following areas:

1. Leamability: Since surrogate models aim at being uniform views of rather
complex systems, they themselves tend to be complex. When pushed to cover
all behaviors of a system, they can lose their simplicity because of ad hoc ele
ments for dealing with loose ends. For example, though Smalltalk's actor
model demands an object destination for each message, there are occasions
when, for good reasons, a message must be assumed to be sent to the inter
preter, a nonstandard Small talk object.

More particularly, because oftheir compact, tightly interconnected nature,
surrogate models require a good deal of learning before they can be applied to
even simple, everyday events. Many of the little-man model's behaviors are
not precisely what one would expect, without a fair amount of coaching, of a
little man. For example, a little man (procedure invocation) must "sleep" and
call another little man for a subprocedure call. A simpler interpretation which
is good enough for most purposes is that the subprocedure just gets done.
Thinking in terms of the model actually complicates understanding early ele
ments of the language. Incremental learnability is sacrificed for the sake of
uniformity and completeness.

2. Styles of use: Surrogate models are typically slow a~d time-consuming to
run. They are good for debugging, that is, for tracing an unexpected behavior
step-by-step; but routine, relatively fluid interaction with the system cannot be

8 DISESSA

expected as a direct result of acquiring a surrogate model. At the very least, de
grees of automation, compiling frequently used operations and the like, occur.

More fundamentally, the very kind of knowledge available with surrogate
models makes them unsuited to certain tasks. Consider: A surrogate model is
almost always unfortunately far from the task of inventing a way to effect some
intended result. For example, in planning a program the specification of the
goal out of which the plan must arise is typically made only in rough outline,
and it is almost always functional. In contrast, the perspective of a surrogate
model with its aim of comprehensive prediction is structural. Indeed, de Kleer
and Brown (1981) argue convincingly that a model aimed at unfailing and
comprehensive explanation must be structural and not functional. Hence, a
fundamental gap exists between the functional level of description needed for
planning and the structural level of the surrogate. Some examples of this gap
follow.

Suppose one wants to communicate some information from one procedure
to another. One thinks of using a variable not because one knows how a varia
ble works but because one knows a variable can be and often is intended to have
the effect of information transmission. In Pascal one often uses the PRI NTLN com
mand because one wants the side effect of moving to the next line, not because
one wants to print a null line. Not surprisingly, novices must usually be taught
this "hack"; it is a potential function not easily seen in the meaning of the com
mand. An example more germane to later discussion is that either a variable or
a function might perform precisely the same role in an expression, to provide a
needed value. The considerations which dictate whether one chooses to imple
ment that role with one or the other structure may be totally invisible to the
functional semantics the programmer attributes to the symbol. For this reason
it is troublesome, at the least an unnecessary burden on the programmer, if the
syntax of the language requires distinctive visual form for structures that can
have the same function. We generalize this argument later to argue for syntax
in which structure is minimally intrusive.

Learning a command or construct entails learning important side effects of
that command which can be exploited to attain particular ends as well as learn
ing a context-free specification of the meaning of the command. It involves
learning typical uses of the construct, what one might call teleology. It involves
learning plan fragments, that is, sketches of ways to accomplish things using
the construct, such as the counter paradigm for the use of a variable, possibly
in paradigmatic combinations with other constructs. All of this functional
knowledge is not germane to a surrogate model but is clearly part of under
standing a system. See Ehrlich and Soloway (1983) and Waters (1984) for work
on determining this functional vocabulary and for references to related work.
Although we have concentrated on planning and related activities, it should be
evident that a functional vocabulary is important to other aspects of program
ming as well, for example, understanding already written programs.

Overall, then, there are two fundamental problems with surrogate models.

A PRINCIPLED DESIGN 9

The first involves their complexity, which leads to a related problem, that is,
that they are slow to run and hard to learn. A design heuristic which concen
trates on the problem of their complexity is to construct a language deliber
ately to have a simple surrogate model by selecting the outline of the model
and building structure and syntax around it in such a way as not to lose any
necessary functionalities. Small talk has followed this line, beginning with the
root actor and message-passing model. We shall use this heuristic method, al
beit carefully, since the second fundamental problem remains even if we
achieve the basic goal of a simple surrogate. Specifically, the construction of a
broad class of functions out of a tiny set of structural elements almost neces
sarily involves great cleverness. While systems designers may be very fond of
these hacks, the novice is generally less appreciative. More generally, func
tional understanding is not well supported by a surrogate model. This side of a
system will require specific tutoring; thus, the advantage of a small number of
universal structures over a larger set more specifically -tuned to important
functions is not clear. The simpler surrogate may overall be at a distinct
disadvantage.

Earlier we warned against the obviously problematic hacker bug of provid
ing a structure for every function. In this section we have seen how considera
tions of understandability demand caution against the opposite extreme, the
formalist bug of providing a sparse set of primitives out of which to build all func
tions. Since even a simple surrogate cannot ensure a learnable, understanda
ble system, we turn now to complementary methods.

2.3. Functional Models

The fact that surrogate models are removed from application, that is,
detuned, makes them attractive as universal, mechanistic ways to understand
a system, but such a perspective slights functional understanding. This section
briefly explores an alternative to surrogate models. It is a modified hacker

strategy- not providing a structure for each function, but at least making some
of the basic structures emerge directly from functions that are already under
stood or are easy to learn. As we remarked earlier, in making suchfunctz'onal
models we must take care not to (1) have too many; (2) tune them tightly to tra
ditional functional areas; (3) forfeit the possibility of using an effective surro
gate when that is likely to be needed, like debugging. The pattern oflearning,
then, would facilitate acquiring a few important and generally useful aspects
of the language as solutions to specific problems.

To consider the advantages and disadvantages of this possibility, we turn to
a case study. Young (1981) details an archetypical functional model. It hap
pens to be a model of algebraic calculators and works as follows. By typing in a
problem, say 3 + 5, in a way which maps trivially to doing the same thing
with paper and pencil, one has set up a context where what should happen is
obvious: one Wants the answer. Pressing = does precisely what one wants in

10 DISESSA

that context, namely, gives the answer. "Doing what one wants" in a prototypi
cal situation is a sufficient model of the system for many purposes. The general
schematic of functional models is that one has a descriptive frame, in this case
doing arithmetic, that includes recognizable objects and actions such as 4'writ
ing the problem" and "getting the answer." Then the user can understand
computational constructs and actions as they function in this frame. + is part
of writing the problem and = means "give me the answer." Functional models
might be described simply as rules, for example, "to get the answer, press = ."
But to do so ignores the fact that such a rule is memorable precisely because it
fits into a previously understood schema of goals and means, a descriptive
frame like written arithmetic.

Functional models obviously have some defects. Unlike surrogate models,
one cannot expect the general behavior of the system to be evident in a specific
context. For example, the state of the system if one were to type 1 + + is not
constrained by the prototypical writing-the-problem model of +. If one ex
pected novices to need to interpret situations equivalent to 1 + + , such as
understanding some prewritten code, or if the functionality achieved through
1 + + were important and not conveniently achieved through other means,
one would certainly beware relying on this functional method of giving users a
model of the keystroke + . Functional models provide restricted understand
ing. The descriptive frame will typically be weak with respect to structural as
pects of the situation, for example, the internal state of the calculator after
pressing 1 + . This knowledge is important for debugging and similar tasks,
such as knowing what to do to correct a mistaken + when - was intended.
More generally, certain combinations of structures (1 + + is an example)
will be entirely meaningless in the functional frame, even though such a se
quence of keystrokes might be not only legal, but useful. With some calcula
tors 1 + + defines a constant calculation. If a structure is to serve several
functions, therefore, a single functional projection often will not be sufficient
to allow the user to understand or generate the other functional descriptions.

Functional models. provide a view only of part of the system and that only
with respect to a specific frame of analysis. Obviously, one needs a repertoire
of models; the notion of a single one is tenable structurally (surrogate) but not
functionally. With respect to the strengths of a surrogate, this fragmenting of
understanding shows weaknesses. On the other hand, from the point of view of
incremental learnability, teleology, and other important aspects of under
standing, functional models can be superior precisely because of their contex
tual specificity.

2.4. Distributed Models

In this section we describe a kind of learning similar in some ways to that
described for a calculator in the previous section. But in this case, the model is

A PRINCIPLED DESIGN 11

accumulated through a spectrum of partial understandings, not by virtue of a
single functional frame. We think such learning and the models derived from
it are vital to understanding complex systems, even if they appear at first to be
even less tractable as a basis for design.

The following example comes from an early stage in learning Logo. It is
striking because it shows a quite successful learning sequence that cannot be
accounted for in terms of either simple surrogates or functional models.

Logo beginners almost always start by driving the Logo turtle (a graphics
cursor) around with commands like FORWARD 100. It seems certain that ele
mentary school students interpret FORWARD 100 essentially as an abbrevia
tion for an English sentence like "go forward 100 units." The need for input to
the command FORWARD is not, therefore, understood structurally but ac
cording to the semantic need to complete the sentence FORWARD <how
far?>. Linguistic and semantic function here come first and provide a prelim
inary model of the structure command plus input.

When students are taught to define their own procedures, the metaphor of
teaching the computer how to do a new thing is invoked. One types TO
SQUARE :SIDELENGTH followed by the list of commands defining square,
as in the following recursive program:

TO SQUARE :SIDELENGTH
FORWARD :SIDELENGTH
RIGHT90
SQUARE :SIDELENGTH
END

In structural terms, TO SQUARE :SIDELENGTH is part of the syntax for
defining a procedure, but it is easy to see that the syntax is intended to continue
the interpretation of a procedure as a verb. The English infinitive is frequently
used definitionally, a function that the Logo procedure-definition syntax aims
at inheriting. Furthermore, input specification follows the same form as the
FORWARD 100 sentence, which is also acceptable English, something like "to
go far.'' Abstractly, one sees a problem (teaching a new verb) and a solution
(TO SQUARE ...), all of which relies heavily on a knowledge frame, English,
that is rather systematically used to help Logo beginners. 2

Not all aspects of the syntax for definition are meaningful within the linguis
tic perspective or within the functional frame of "teaching a new word." In par-

2 Some indication of the importance of these linguistic considerations comes from
teaching Logo to non-English speaking students. In Portuguese where it is much less
natural to use a word like square as a verb, difficulties are encountered (personal commu
nication, Jose Valente, April, 1983). In Japanese, verbs usually come at the end of a
sentence, and the FORWARD 100 command form seems harder to appropriate (personal
communication, Leigh Klotz, April, 1983).

12 DISESSA

ticular, the use of: deserves attention. In Logo the: (pronounced 4'dots") denote
the value of a variable and are included in the definition syntax to parallel and
reinforce the pattern of invocation of procedures with variables as inputs, for
example, FORWARD :SIDELENGTH, or, more particularly, to parallel
recursive-call format, such as, SQUARE :SIDELENGTH in the final line of the
above procedure. Another visual metaphor is provided by the pattern of com
mands making up the definition of SQUARE, which is the same line format one
would see on the screen if one just typed them in for direct execution. These
consonances are subtle but contribute to learnability without interfering with
the linguistic frame.

It is important to note that the : marker as part of definition syntax has sup
port other than from visually matching the pattern of typical invocation;
namely, it has a simple rationalization- to distinguish variable inputs from
the procedure's name. Note also that variables are distinguished by the form
most characteristic of them, getting a value. Novices will often respond di
rectly to queries about the definition synta__x with such rationalizations:
"SIDELENGTH is a variable," or "It's just like when you write SQUARE
:SIDELENGTH" (recursive call). Implementations of Logo that changed the
syntax to TO SQUARE SIDELENGTH have prompted complaints from novices
whose rationalizations were violated.

The learn ability of the procedure-definition process in Logo is due to its nat
uralness as a solution to a particular problem when interpreted in a number of
frames, each of which partially explains the solution. We refer to models accu
mulated from multiple, partial explanations as distributed models. The notion of
a distributed model is derived from ideas we have developed about under
standing complex systems in other domains (See diSessa, 1982; diSessa, 1983).
The list of frames for procedure-definition syntax includes:

a clear functional frame (the problem involves making a new procedure;
the solution is TO ...),

English,
visual pattern matching, and
rationalizations.

It is easy to emphasize how far distributed models depart from what one
would expect if a simple surrogate accounted for all of learnability and if co
herence were measured only in structural terins. Logo is a descendant of Lisp,
and, as a consequence, function application is the standard control organiza
tion for procedures with inputs. Assimilation to that standard would require
TO to be a function and SQUARE andSIDELENGTH to be inputs. But then one
would have to quote SQUARE and SIDELENGTH to denote the fact that they
should not be evaluated as part of executing TO SQUARE SIDELENGTH. Thus
one should write something like TO "SQUARE "SIDELENGTH followed by the

A PRINCIPLED DESIGN 13

body of the procedure as a list of lists (the lines of the procedure definition).
Not only is there loss of template matching to a typical use of the defined ob
ject, but there is no problem-specific rationalization for the syntactic markers.
The different functions of SQUARE and SIDELENGTH are not marked, and TO
is separated by syntactic marks from its close "English" partner, SQUARE. Be
ginners would need to memorize the syntax with essentially no semantic or ex
periential support. Of course, for the computer experienced, the syntax would
have a great deal of meaning having to do mainly with the advantages of uni
form, context-independent structures. But that doesn't help the unsophistica
ted user. For comparison, we note the functionally opaque, but structurally
unexceptional, form that is actually provided by many Logos as an advanced
version of procedure definition.

DEFINE "SQUARE [[SIDELENGTH] [FD :SIDELENGTH]
[RT 90] [SQUARE]]

Distributed models involve learning by prototype in the sense that users
learn a construct primarily by example. An instructor often simply shows the
student how to do something, much like a parent teaches a word like dog to a
young child by pointing to one. One does not, at least initially, expect to pro~
vide the user with elaborate explanations of the details of functional context,
why each symbol appears, and so forth. Instead, rationalizations and other
partial understandings provide a backbone of reasonableness that allows the
user to remember the form of the construct and understand some of the varia
tion possible.

These are aspects of procedure definition that make it particularly apt for
use with a distributed model. The problem context for defining a procedure is
easily understood in naive terms. As important, the problem solution is fre
quently enough used that the model will not be dangerously undermined by
other experiences. For example, once one understands the fundamental struc
tures of Logo, procedure definition is clearly exceptional. Yet because it is
used so often, the syntax never comes to feel unnatural.

One must consider long~ term effects of particular functional and distributed
models. Some will remain and be integrated as special cases. Visual pattern
matching is an example. Some will fade away naturally and be replaced where
appropriate by surrogate models. No learner believes Logo is English for very
long. But we must be aware that globally destructive misconceptions may be
fostered as well as misconceptions which, ironically, are profitable.

In summary, a structurally simple language (one with a simple surrogate
model) is in principle ideal for post hoc explanation, debugging, and predic
tion, but can fail to be generally useful by not being incrementally learnable
and sufficiently close to the functional terms in which problems are phrased.
Our discussion has not only mapped out these typical failure modes but also

14 DISESSA

proposed building, at least at early stages, less coherent, but still effective,
models based on function or on compatibility with a collection of partially ex
planatory frames. The hoped for pattern is that the few initial structures which
a beginner encounters have the follow.ing properties: (1) They provide suffi
ciently broad functionality through simple variation on the prototype to sup
port many activities. (2) Those structures will be understandable on the basis
of naive functional and distributed models. (3) The initial models lead
unproblematically, through teaching and experience, to the appreciation of a
moderately simple, relatively complete surrogate model.

Having sketched in general terms a set of issues that we see as important to
understandability, we turn now to more detailed assessments based on particu
lar knowledge-model-building material, which users may or may not pos
sess. Given the general strategic decisions made for Boxer, we shall find that
static organization of the system lends itself to a good deal of structural col
lapse to a small core. But for dynamic aspects of computation, other strategies
are necessary, including proliferating structures to allow tighter functional
match.

3. A PROPOSED FRAME FOR INTEGRATION

The visual medium has served a more and more important role at the inter
face between man and machine, particularly since the advent of bitmap
displays. But surprisingly little use has been made of the medium to develop
and support user models rather than simply to expand the bandwidth of the in
terface in the amount of data available at any given time or to facilitate the op
eration of the system for already comprehending users. We would like to use
the video screen, in contrast to pop-up menus and iconic mnemonics, to attack
the fundamental problem of understandability of the basic organization and
operation of the computational environment.

The means we intend to use are twofold. First, all computational objects
will be created, represented, and manipulated in essentially the same way, and
the user will be able to pretend that the objects themselves are their visual rep
resentation. This useful fiction we call naive realism. What we want the user to
think he sees on. the screen is !he computational system itself rather than a
multiply-filtered view or one dominated by side effects, for example, having a
window occur in some place and size because of what was available on the
screen when the window was created. Not only does it provide a high
bandwidth communications channel to the system, generally enhancing ra
tionalizations, visual metaphors, and so forth, but the means of modifying the
visual representation assumes the role of a universal language of constructing
or changing, the equivalent of manipulating the physical world through the
universal interface oftouching, pushing, and pulling. This characteristic pro
vides a strong structural base for understanding the system. Taking naive real-

A PRINCIPLED DESIGN 15

ism this seriously, in fact, separates this proposal most strongly from previous
computer-language designs. Even those designers who are willing to divert re
sources like the display screen from highly tuned functionality to under
standability have almost universally opted for user interfaces which act as buff
ers or fa~ades to hide system complexities from the user rather than to search
for a simplicity which could be shown. See, for example, Innocent (1982) or
Goldberg and Robson (1979), who propose producing understandable systems
by filtering genuine complexity into simplified visual forms:

Our second general means of using the video screen to enhance under
standability is a comprehensive spatial metaphor. Spatial organization will have
strong semantic content: Elements of the environment will have or be places,
and their visible spatial relationships will have structural meaning. Humans
have a great deal of knowledge and a broad collection of skills for dealing with
space. We happen to live in a world that is profoundly geometric in the sense
that objects and places are salient and fundamentally important. The domi
nant mode of interaction with the world is to rearrange objects, including one
self as an extremely important special case, into different configuratioris rather
than, for example, to pass messages between abstract, placeless entities. It is
not that we are not impressed with the power of actor-based languages, but the
amount of work that the actor metaphor does in promoting understandability,
besides providing a uniform syntax, is problematic. Things might be different
if our primary sense were not vision but hearing, where messages are more sa
lient. As things stand, spatially carried meaning is much richer as a way of
making a system understandable to unsophisticated users.

Use of the spatial metaphor is dependent on the fact that spatial structure
can be extremely compatible with essential computational structures. In par
ticular, it will become apparent how two-dimensional configurations with
containment representing hierarchy can subsume an important core structure
to things like program and calling structure, hierarchical data, and file
systems.

3 .1. Static Structures and Functions

The Box

Essentially all static objects and configurations will be derived from a single
object called a box. A box appears on the screen as a rectangular region with the
interior containing the box's contents, predominantly text. The choice of text
as the main surface stems from the idea of explicitly importing some natural
language familiarity into computation and from the fact that text manipula
tion is itself a goal of an integrated environment. Boxer is "editor-top-level."
One always talks to the system through the editor; it is the universal interface
to the system. As details emerge, it will become apparent how text manipula
tion and program writing are intended to be mutually supportive activities;

16 DISESSA

and, from the point of view of learning, either can serve as a good introduction
to the other. Our editor is Emacs-like (Stallman, 1984).

Boxes may contain subboxes, either named or not (Figure 1). Boxes are log
ically, as well as visually, two-dimensional arrays in the sense that they are a
sequence of text lines, each of which is a sequence of words or boxes. The ab
stract structure of a box, a hierarchical two-dimensional array, is what allows
us to build almost everything needed in Boxer without violating shallow
structuring. Names of boxes must be words. This: meaning name of, should not
be confused with Logo's :, meaning variable value.

We intend one of a beginning user's first activities to be wandering around
in the system itself, inspecting it. This can be accomplished simply by moving
a cursor around (our prototype system, built on a Symbolics 3600 Lisp Ma
chine, uses a mouse), expanding and shrinking boxes. Boxes have three
display sizes: (1) fully shrunk so that no detail shows, (2) normal (as big as nec
essary to show all its contents), and (3) full screen. A fully shrunk box, ex
panded twice, fills the full screen so that no part of its containing box can be
seen. Two buttons on the mouse specify 44expand" and 4'contract." Creating,
deleting, and moving boxes are simple functions of the editor. The easiest way
to create a box is with a "make box" key. Boxes behave as large characters; for
example, the delete key erases a box as if it were a character. Typing on the left
side of a box causes it to move to the right, as any character accommodates to an
insertion in screen-oriented editors. Section 5 .1. gives an exte~ded example of
some basic functions of the editor and boxes.

Boxes as Procedures

Procedures appear as boxes. Subprocedures like SIDE in Figure 2 may be
written directly into procedures as sub boxes, giving the functionality of visible
block structuring. These subprocedures may be named for .mnemonic pur
poses, as can any box. This is especially useful when one wishes to leave a box
shrunken, suppressing detail for clarity. In many of the examples to follow we
use turtle graphics and essentially the syntax of Logo. We have not settled the
issue of syntax, but Logo is a reasonable approximation to our current best
guess. In particular, Logo is line oriented rather than expression oriented, as is
Lisp; and we have appropriated line orientation for Boxer.

To make all aspects of a procedure concrete and spatially accessible, in par
ticular local data such as inputs, we need an additional structuring of a box. In
fact, having data local to a box, but other than its contents, is so generally use
ful we declare that every box has a local library located in its upper right hand
corner. This contains definitions of any local symbols, which may be used
within the box and in any box contained (recursively) in that box. Contain
ment implies inheritance. That is essentially all there is to seeping in Boxer,
but details will be treated in Section 3.2. The procedure in Figure 3 has an in
put, NUMBER, and draws a polygon of NUMBER sides and sidelength
LENGTH.

A PRINCIPLED DESIGN 17

Figure 1. A box with contained boxes.

BOX1: r--::::-~---:----:--------:---------,
This is a box whose contents is the text
you a\e readins.
Here IS an unnamed box -->

This box is the
last item on its line.

Here is a named
been suppressed

subbox whose internal
--> BOX2:r;:;;J

~

detai 1 has

Figure 2. A box representing a procedure.

SQUARE:,-------------------------,
REPEAT 1 SIDE .·I I · FORWARD 100

RIGHT '30

Figure 3. The local library appears in the upper-right corner of a box and
contains definitions generally useful in the box.

POLY:,-----------,---------------------,

I LENGTH: [DATA]
100

INPUT NUMBER
REPEAT NUMBER

NUMBER: [DATA]

I FORWARD LENGTH I
RIGHT 360/NUMBER

The value of inputs and local variables will be available for inspection in the
library during debugging. It is important that since the local state of a proce
dure represented in its library may contain procedures and data as well as in
puts, one may place such items at more appropriate levels in the hierarchy of a
procedure-subprocedure system than at the highest, "global" level. This makes
systems of procedures easier to inspect and understand than the unorganized
piles of Lisp. Section 5.2. gives an extended example of using box-and-library
organization to structure programs for intelligibility and modifiability.

Although the local library is special in that it is not part of the contents of the
box in the ordinary sense (for example, it is not executed as part of the proce
dure), it is structured, inspectable, and editable exactly as all other boxes are.
Detail may be suppressed by shrinking the library or parts of it. One is free to
arrange the contents of a local library spatially so that the most important pro
cedures occur near the top and so that related procedures appear together. The
library's meaning as container of generally useful information about the box
makes it a natural place for annotation, documentation, and other help.

It is worth remarking that naive realism means we could entirely do away

18 DISESSA

with a separate procedure-definition mode, or special form. Instead, users can
choose from various concrete methods of construction and modification. One
may type a procedure directly into the local library. One may assemble a pro
cedure out of previously written text, for example, out of commands typed in
the course of experimentation, then try it out and later move it to the local li
brary. Such fluid interaction between trying out pieces of a procedure and
defining it is especially important for beginners. Of course one can also have
some procedure (TO) do the procedure-defining work by side effect. But it is
not wise to identify the process of constructing a procedure with its static repre
sentation, as with Logo's TO or Lisp's DE FUN. That identification is a remnant
of teletype interaction, where object creation by side effect as opposed to piece
by-piece assembly, is a necessity. Especially for environments and large data
objects, we conjecture that the concrete access provided by our spatial/naive re
alist approach will prove natural and fupctionally quite adequate for most
purposes.

Boxes as Data Objects

The boxes NUMBER and LENGTH in Figure 3 function as variables, and
generally boxes will serve to define data as well as procedural objects. Data
boxes are a distinct type of box and are marked as such. In contrast to tradi
tional languages which have a number of different structures for handling
compound data (strings, arrays, lists, records, and so forth), Boxer's text and
box structure is intended to be universal. This structural universality, as with
lists in Lisp, should be a source of great power and simplicity. Any arbitrarily
large box can be named or passed as an input or output of a procedure.

Lisp's universal compound data structure suffers some of the same problems
as a simple surrogate, namely, that list structure is too far from important clas
ses of functionality to be easily appropriated and used. We think the two
dimensional, line-oriented form of a box is better adapted to a broad range of
functions than a simple ordered sequence. For example, a box can contain
some text laid out in the usual way-words organized into lines. We will not
tamper with the box structure per se in tuning even more to specific data func
tions. Instead, we will add a number of different access routes to parts of the
structure that are aimed toward particularly important classes of functionality
(described below). We expect these to be learned largely functionally, as solu
tions to particular problems encountered as the user advances.

One of the most important of compound-data functions is the ability to deal
with named subparts easily. Most Lisps have property lists that are often used
for this purpose. Pascal has records. Boxes have the capability implicit in the
fact that any box or subbox may be tagged with a name (Figure 4). All one
needs is an appropriate syntax for selection. We shall use an index notation
here; V.X specifies the X subpart ofV, and for assignment MAKE V.X 1 means
set V.X to 1 in the same way any variable is set; MAKE NUMBER 5 sets NUM-

'

A PRINCIPLED DESIGN 19

Figure 4. A vector with labeled subparts.

V' DATA-----------,
X' [DfiRJ Y '[D~TRJ 2, [D~TRJ

BER's contents to 5. One can specify any number of levels, for example,
VECTORS.V.X. One can access variables _contained in a local library as
POLY.LIBRARY.LENGTH (Figure 3).

It is important to have address names for elements of compound data objects
in cases where individual names are inconvenient or require too much over
head. Correspondingly, we will have an alternate vocabulary for specifying
parts of a box based on location. It is extremely natural to use array indices into
the two-dimensional structure (~ows and columns) of a box; for example, RC 1
2 JOE retrieves the item at Row 1 Column 2 of JOE. One would also like to ref
erence rows because of their important meaning (visually, in procedures, and
so forth), and to reference elements by their sequence number (reading, as text,
left to right, top to bottom), for example, ROW 1 ABOX or ITEM N BBOX.

Boxes as Environments

Boxes and local libraries provide a function that has been much neglected in
computer languages, providing an environment. The point is to make avail
able to the user a particular set of actions and objects, but in other ways to min
imize the constraints on what to do with them and how to combine them. An
environment must provide the ability to select and execute easily any of a set of
built-in operations or to define a new operation. Logo's turtle graphics provide
an archetypical example where the turtle's behaviors define the territory, but
the full power of the programming language is available to combine those ba
sic actions, adding to the environment to satisfy a broad range of student and
teacher goals. A contrasting view is that programming is an activity for a pro
grammer (usually a professional), who constructs a program and then gives it
to users to run. Whether one views programming in this way or as an opportu
nity for users also to tinker and create determines whether environments are an
expedient or a fundamental. In our view, environments are fundamental.

A box used as an environment-a place to go where a specific set of com
mands and data are defined- has some advantages over programs or even
workspaces which might otherwise serve the same purposes. (A workspace is a
cluster of related procedures and data usually saved as a single file and loaded
together into an interpretive environment.) In contrast to a program with spe
cific I/0, boxes/environments save the programmer from cre.ating (and the
user from needing to learn) a special interface. (Section 5.1. shows a mail facil
ity with this property.) Environments allow flexibility in terms of program-

20 DISESSA

mining on top of what's given, easily accepting a very general class of user
initiated modifications.

Like a workspace, a box/environment simplifies the construction of what
might otherwise be a complex, monolithic program by allowing one to build
and try out smaller pieces. But an environment in Boxer is both more general
(for example, one can nest environments) and better integrated (for example,
constructable and editable in the same way data and procedures are). In Boxer
one can even try out a subprocedure in context by moving to the place that it
appears and executing it (after possibly assigning typical values to the inputs of
the superprocedure, which defines the context of the to-be-tested subproce
dure).

Considering that nested boxes offer a choice of where in the hierarchy to
place needed objects, Boxer environments are also more controllable and self
annotating. Lisp and Logo workspaces often get so cluttered with utility proce
dures that the ones intended to be used at top level are not at all apparent. In
Boxer, the local library of an. environment may contain exactly those proce
dures intended for users' direct consumption, with all lower-level procedures
appropriately hidden in the interior of the visible procedures. Again, see Sec
tion 5.2. for an example.

Time modularity, how one creates natural and stable boundaries in time be
tween sets of activities in a project, is one function of the file-workspace organi
zation that is not taken over by box structure. An example of state-of-the-art
thinking in this area is Goldstein's PIE system (Goldstein & Bobrow, 1984),
which provides sophisticated control of versions and alterations in software de
sign. We project a minimal capability for Boxer of saving and restoring named
versions of any box. Note that this gives much finer control over time
modularity than workspace files. One can save versions of a procedure within
an environment.

At still larger scales than environments, boxes can serve to organize an en
tire personal computational environment. One needs nothing more for a hier
archical file system. At the most global level, a box we might label UNIVERSE
(Figure 5), the local library can contain documentation on all the system prim
itives. The contents of UNIVERSE would be the top-level view ofthe organiza
tion which the user chooses for his entire environment.

This use of box structure duplicates much of the functionality of one of the
most successful aspects of the Smalltalk programming environment, the
Browser, allowing leisurely perusal of the system. However, naive realism
means no separate and special subsystem is needed. Browsing amounts to
moving the cursor around on the screen, expanding and shrinking boxes, that
is, only the most elementary editorial functions. There are no dedicated struc
tures or procedures to do the browsing or to link a new object or change into the
Browser. In contrast the Smalltalk Browser, as well as all others that we know
of, is a distinct part of the system. Much of the visible structure of Browser is

A PRINCIPLED DESIGN 21

Figure 5. Box structure can organize the whole computational environment.

UNIVERSE: DATAl------------------,

PAPERS: FJi;ti~iJ SCHOOLWORK: DATA:cc:-----,

MATH: Wz~<Wii

PHYSICS : R~~;;1~iJ

special to the Browser, not easily modifiable by users, and the parts that are
must be modified through the use of specially learned procedures. It is also
true that part of the system organization seen in the Small talk Browser exists
only for the Browser and does not reflect system semantics in a fundamental
way.

Kinds of Boxes

We have been discussing a very wide class of functions deriving from a
single structure, the generic box. Although this simplification is appealing,
our implementation and other considerations have convinced us that boxes
need to be labeled as to type and have slightly different behavior accordingly.
We have already mentioned that a data box is a type of box distinct from proce
dure (doit) boxes. (Doit type is the default and is unmarked in this paper.) We
have graphics boxes in which users can draw and save arbitrary pictures with
out pretense that these boxes are either as concretely accessible or as uniformly
structured as an ordinary box. Currently we use data boxes for environments,
but it is plausible that this distinct function is important enough to deserve a
separate label to guide users concerning the intended use of such boxes. For
several reasons, boxes that contain only text deserve a label and special behav
ior. One would almost certainly want slightly different behavior for the text
editing facilities, such as sentence and paragraph orientation and automatic
justification. Special status for text allows one to use it in the midst of a proce
dure as annotation without danger of executing it.

It should be clear how much of the structural backbone of a computational
environment can be supplied in concrete form by a two-dimensional hierarch
ical array-the box. We are convinced that the strong identification of "things"
with "places" and "organization" with "spatial relationship" (in particular, con
tainment implies inheritance) provides a firm foundation for easy 1 incremen
tallearning of the system through inspection and through a uniform method of
interpreting, modifying 1 and expanding what one sees. Nonetheless, identifi
cation of this sort is a very strong constraint on system organization and possi-

22 DISESSA

ble interpretations of"running a program" (to be discussed below). In particu
lar, boxes are strictly hierarchical, and each box exists in precisely one place.
This hierarchical structure means it is impossible to share in Boxer, as in Lisp
(via multiple pointers to the shared object); a Boxer object is part of only one
other object. It also means one has only a single view of any object in the
system-that provided by the spatial context where the object exists. In con
trast, one may sometimes want to see· things on the screen that are related in
some way other than with respect to their system organization. While running
a program in some environment, one might wish to view the changing contents
of some distant data box. Or one might want to be looking at some part of the
system while constructing another part, say constructing a program in analogy
with another from a different context. Window systems were invented par
tially to serve this kind of function (Kay & Goldberg, 1977).

We do not consider sharing or multiple views of highest importance to nov
ices; still, they are important enough that, for more advanced users, we would
like to incorporate them. To meet this need we propose a single structure that
provides many of these functions, but which we consider minimally subversive
of box semantics. This structure is called aport("view port") and has most of the
properties of a box. It appears as a rectangular region that can be named and is
constructed and erased in essentially the same way that a box is. But its mean
ing is a p&ssageway to another part of the system. What one sees in a port is a
part of the system located in another place. Thus one can inspect and even
change remote objects. The operational semantics of a port are the same as the
viewed object. If some mutation is performed on the port, for example, setting
a variable viewed through a port, then the object (variable) is changed. In gen
eral, one can pretend that another part of the system is in the place of viewing
without changing the "real" organization of the system. The primary difference
between a port and a window is that a port is a legitimate object in the pro
gramming language and iS spatially located in the system hierarchy, not at
tached to the screen. A port appearing in a data structure indicates that the con
tents of the port are shared; the same data occur in some other object. Section
5.3. gives an extended example showing how portS can be used to provide mul
tiple views, cross referencing, and so forth.

In the context of sharing, one can see a subtle but important shift in the
meaning of variables from Lisp and Small talk to Boxer. The meaning of set
ting a variable in Boxer is to change the contents of a box, so that any port to
that box sees the change. In Lisp or Smalltalk one cannot share in this way. A
second object can indeed point to the value of a variable, but changing the set
ting of that variable creates a new pointer from the name to the new value,
leaving the object that shared the old value still pointing to that old value. This
all means an extra layer of indirection in implementing Boxer variables. But
that layer corresponds to a key idea- it represents place: If a variable is to have

A PRINCIPLED DESIGN 23

a place, that place must remain invariant in the process of setting the variable,
and that fact, in turn, must be represented in the implementation.

Summary

In terms of understandability, we believe Boxer's static organization fares
well. There is a small structural core of spatially organized textual objects, and
the main associated functions do not radically change, either semantically or
visually, that core. Even the variations needed to provide specific functionality
are accomplished by means of a weak sort of typing, based on what we expect
users to find natural functional categories: procedures (things that do some
thing), data, text, and graphics. There are other ways of achieving functional
variation of the core structures, for example, by adding syntax to specify use
instead of types or using modular, special-duty parts of a box (such as do it or
data parts); but types appear simplest. (The following section amplifies on the
simplicity of types.) To be sure, the ties between initially perceived
functionality and these types will be loosened as the behaviors of these different
boxes come to be better understood in context-invariant terms, but this free
dom is precisely the right thing to hope for when functional models are used.
The real test, naturally, is empirical in terms of effective, long-term use of the
system.

3 .2. Dynamic Structures and Functions

Now we turn to dynamic structure and function, issues of control and
change in the system. When one thinks of control in a computer language, typ
ically what comes to mind is iteration and conditional structures like REPEAT
<number of times> <things to repeat>, and IF <condition> THEN <ac·
tion >. Our choices in this area neither reflect inajor innovation, nor do they
deeply reflect our design heuristics. So we shall not discuss them here. Instead,
we turn to more fundamental issues having to do with what a procedure does
when executed and how names are made to refer to objects.

Reference

Reference in the context of computer languages is usually restricted to
discussions about distinctions like "call by name" versus "call by value." Read
ers assuming that context should be aware that the discussion here involves a
much broader construction of the issues involved.

A useful noncomputer context for introducing these issues is reference in
natural language. Humans have an elaborate set of mechanisms for deter
mining and verifying the reference of any utterance. The striking fact about
this is that these mechanisms are almost totally invisible. In retelling a simple
story the expression "the man who ... "is apt to be replaced by ''Joe" or who-

24 DISESSA

ever is understood on the basis of con textual information to be the man referred
to. If there was an ambiguity of reference, the usual case is that, unless it was
noticed at the time, that ambiguity will be unretrievable- how one established
Joe to be the referent is not long stored, if it is ever recognized. In a similar
way, elementary school students will respond to the joke: 1'Antidisestab
lishmentarianism. Bet you can't spell that." 'T' 'H' 'A' 'T'! But they are very un
likely to be able to describe or productively use the shift in reference of"that."
The cues that prompt type/token or use/mention distinctions in reference are
not well understood by linguists, let alone by ''common folk." Even the fact of
such distinctions is not available to most people. In short, establishing refer
ence, though a complex process, is perceived as though it involved totally
transparent pointers to referents.

The problem for computer languages is clear. Efficient reference mecha
nisms (to date) have been extremely simple, some version of lookup based on
large-scale syntactic rules and/or type indexing. Lisp, as an extreme case, does
a lookup on the basis of a universal syntactic form. Such schemes have
understandability problems. They are not sensitive to the contexts that users
will spontaneously apply, nor will a naive user be able to educe the cleverness
needed to make the context-free mechanisms find the appropriate reference.

To elaborate the issues, we make another short case study of Logo. The de
signers of Logo took an apparently schizophrenic approach to the problems of
reference. On the one hand they granted special status to functions like ERASE
(clear a procedure from workspace), PRINTOUT, and even TO, so that one
writes TO SQUARE and ERASE SQUARE rather than TO "SQUARE, and so
forth, simplifying this semantically clear reference. As mentioned earlier, lit
eral reference mode, specified by quote, would be necessary if these commands
followed usual function evaluation rules for its input. On the other hand Logo
chose to leave the distinction between function and variable lookup to the user,
specifying variable lookup with: as in :X. Apparently the rationale was that the
functional classes variable and procedure are sufficiently distinct on naive cri
teria to "allow" (read 11require") users to be responsible for the distinction. In
fact, experience has shown this to be relatively unproblematic. 1'Kinds-of
things" distinctions of this sort seem to be rather natural. Their naturalness can
even occasionally be a source of minor problems: Some beginners seeing in
puts in procedure definitions for the first time evidently rationalize the : to
mean input in a kind-of-thing sense. Then they type SQUARE :100.

What has proved more seriously problematic is that : in Logo truly denote a
structural reference mechanism and not a kind-of-thing as the functional dis
tinction procedure/variable might imply. The difficulty is that assigning a
variable a value involves two kinds of reference, a named object type (like ERASE
<named object>) to specify which object is being set, and a value type to spec
ify the new value. To simulate these out of its structures (which, recall, are

A PRINCIPLED DESIGN 25

largely inherited from Lisp's function application standard) Logo writes
MAKE "X :Y (X gets Y's value), even though X andY are both variables.

Experience suggests that learnability is complicated; the variable assign
ment syntax is not as susceptible to learning based on germane rationalizations
as one might have hoped. Thus it is a burden without significant advantage for
beginning users who cannot be expected to see the structural significance to the
markers and must rationalize on purely functional grounds-: denote a varia
ble, except in MAKE, the latter part of which is without any generalizable
import. Another problematic rationalization of the same functional-kind-of
thing type is to think that the two character string 1'X is the name of the variable
and that :X is its value. A more profitable rationalization is that : denote a
value-of operation, which would lead one to expect that ::X should give the
value of the variable-name accessed by :X. Some instances of implementing
Logo have supported this.

In fairness, there are things to be said for the syntax: (1) MAKE is then a func
tion in the ordinary sense, which uses value reference for each of its inputs. (2)
Because of this, variations of standard usage are relatively easy to achieve as in
MAKE PROCEDURE.WHICH.COMPUTES.A.NAME or MAKE :VARIABLE.
SET.TO.A.NAME. (3) A judgment was made that it is not only possible to
teach the name/thing distinction, but that this could be a valuable gain from
learning the language. We have already argued that (1) is a consideration for
advanced users, not beginners, and (2) is as well: Computed names are almost
never useful for novices. Moreover, novices find them strange and remarkable
when they do encounter them. Even if the flexibility is there, it may not be seen
or spontaneously used (formalist bug). One can have more sympathy for (3) ex
cept that it makes little sense to complicate very early use of a language with is
sues that will eventually arise in other contexts anyway. If one can choose the
learning sequence in a language, it makes little sense to have some of the most
difficult issues encountered at the earliest stages.

Finally, one could argue that a syntax which hides the difference between
kinds of references is bound to be confusing. But first note that if our earlier
claim is true- that reference mechanisms are generally invisible- the user
will experience both references in MAKE X Y as simple references. In addition,
while the literal marker might be rationalized to represent named-object refer
ence, in fact it represents only a mechanism of achieving that reference. (Even
this rationalization is not likely to be made by beginners.) Although it is typi
cal of that kind of reference, quotes are used for other purposes as well. If preci
sion were the issue, one might better use some more specific marker. More di
rectly to the point, there is an important semantic component of the reference
associated with MAKE not captured by the literal reference; by MAKE "X
<whatever>, one does not mean to replace the literal symbol X by some
value. X must be understood to be a variable which happens in this instance to

26 DISESSA

be exhibiting the setable half of its set-and-get protocol, independent of what
mechanisms and syntax cause that to happen. If a user understands that, there
seems little point in a nonspecific syntactic reminder, that is, quote. Indeed,
later we shall propose a semantic reminder in the form of a prompt, which has
more attractive features.

Reference in Boxer

What, then, is Boxer's approach to reference? In general, the assumption is
that a structural understanding of reference should not be the goal in early
stages of learning the language. Early models must approximate the simplest
functional model of reference possible- that a word refers to whatever the user
intends it to refer to.

More specifically, we propose the following threefold strategy. (1) We gen
erally favor reference mechanisms that are strongly linked to kinds of objects,
rather than weakly linked (like : and variables) or unlinked (pure reference
mechanisms, like quote). (2) We broaden the context sensitivities of the Ian~
guage, accepting the assumption that most commands in the language carry an
almost unique semantically determined "natural" reference mechanism for
their input, which we simulate with appropriate but syntactically invisible
variations in lookup. (More detail on this assumption comes later.) So we
would write MAKE X .Y, even though the structural reference mechanisms for
the symbols X and Y are different. The rest of our strategy follows from the ob
servation that the first two parts only postpone many issues which will cer
tainly arise as naive users stray farther from patterned imitation of prototypes
and wish to program more complex operations, such as setting variables with
computed names, and so forth. Thus, (3) we would like to ease the transition to
structural understanding of reference. To do this we propose (a) to improve the
understandability of the underlying reference mechanisms by developing bet
ter surrogate models for them and (b) to improve debugging aids to the point
where even if a surrogate model fails (most likely by not being used!), the error
is easy to locate. In particular, we wish to implement a method of watching a
program in action to spot the error. Debugging, of course, is important in its
own right. But perhaps most importantly, the visual method we've chosen to
implement will aid the acquisition of intended models, as well as simply the
catching of bugs. We expect episodes of watching the behavior of the system to
lead to a rich set of rationalizations and other partial understandings impor~
tant to incrementallearnability. We elaborate these points starting with (a),
an underlying surrogate model, on which the others depend.

A Surrogate Model for Boxer

The key idea in producing a surrogate for Boxer is to produce visualizable,
hence, depictable, intermediate states in the execution process. Here we are

building on a number of previous efforts. Baeker (1975) has an early reference

A PRINCIPLED DESIGN 27

to program visualization, and Lieberman (1982) represents a more modern
context. Smith's Pygmalion (1975) is especially notable in that it not only
shows program execution, but attempts to make programming be the manipu
lation of that visual representation- a form of naive realism. In what follows,
recall our goal is not only to produce a relatively clean surrogate model, but
provide handles for functional and distributed models as well.

We mentioned that the distinction between variable and procedure, obvi
ously natural to computer languages, is clear enough in naive terms to be
adopted as a fundamental. Hence, Boxer has data and procedure boxes. A data
box's function is to contain data in literal form. A data box appearing in place,
for example, in a procedure, marks the contents as literally referenced (Figure
6). A named data box in a library is a variable, data waiting to be referenced.
Thus, we have collapsed the two structures of literal reference and variable
into one.

In contrast to Lisp's quote, which is an active function returning an un
quoted object, evaluating a data box results in a data box. More precisely, it
results in the same object- evaluation is trivial on data. This result reflects the
shift from using a pure reference mechanism, quote, to a kind-of-object mecha
nism, with reference built in. It allows the user to begin with a more func
tional, less structural model of literals. As far as a novice user is concerned,
evaluation simply doesn't happen at all on data. Data are inactive stuff.

The surrogate model for evaluating an expression involving a variable- a
data box referenced by name- entails retrieving a copy of the data box from
the most immediate superior box whose local library contains a box by that
name. Then, execution proceeds as if the data had been written in place.
Lookup and copy for a procedure are identical, but the execution stage is
recursive, that is, it will in general involve copying and executing elements of
the contents of the procedure. In short, this copy-and-execute model consists of
optional copy (in case of reference by name) followed by execution, which is
recursive in the case of a procedure, terminating at the action of language
primitives. One difference between a surrogate and what really happens is
clear here; no respectable implementation would literally do such copying. It
is only important that the user be able to pretend that that is what is happening.

Perhaps the strongest argument for this surrogate model of the dynamics of
Boxer is its visualizability. Copying a procedure or data box in some location
is concretely realizable in the overall Boxer spatial frame. We are imple
menting a stepper as part of Boxer's debugging facilities in which one sees this
copying of procedures on the screen, building the dynamic stack, and sees the
replacement of a name reference to a variable by its value.

Such a stepper would reinforce, if not teach, the underlying surrogate
model. One would expect watching simple programs executing to be a part of
naive users' early introduction to the system. The user could pause to inspect
the calling hierarchy and the state of local variables, including inputs, at ~y

28 DISESSA

Figure 6. A data box marks literal reference.

PRINT [DAT!DJ HELLO

stage. The Logo little-man-model becomes concrete. In addition to stepping,
such inspection would be extremely useful after an error occurs. We imagine
that in addition to an error message, one could enter and inspect the stack via a
port down to the level of the error.

These are not new functions to programming systems. Smalltalk, various
Lisp implementations, and demonstration systems for other languages allow
one to inspect the stack. However, the advance in Boxer is that the mode of in
spection is identical to the concrete mode even beginners use to inspect any
part of the system, and the meaning of what one sees is a direct embodiment of
the fundamental dynamic surrogate of the system.

It is not hard to extend this surrogate to ports. For this we use the functional
characterization of a port as imitating the presence of a box that exists in some
distant part of the system. A port to a data box behaves just like the data box in
accessing that data. Mutating data in a port, say, MAKE X Y, where X is a
named port to some target databox, changes the target. A port to a procedure
behaves precisely as if that procedure were in the place of the port, with the ex
ception that the lookup environment for free variables in the procedure is es
tablished by the procedure, not by the location of the port. This scoping rule,
while not strictly entailed by the meaning of ports, is consistent with it and pro
vides a useful function, that of lexical seeping. (Scoping per se is the topic of
Section 3.3.) In the example in Figure 7, executing PORT1 will set the varia
ble A in PLACE2, which contains the target of the port. Dynamically, as well
as statically, ports give a mechanism for breaking the strict hierarchy of box
structure, and we consider it a minimal and natural extension. The power of
ports is demonstrated by the fact that one can program without names, in that
every reference is wired in with port connectors. This characteristic provides a
very strong form of referential transparency, removing issues of scoping
through the technique of reference by pointing.

The meaning of using a port by name is completely defined by what it means
to copy a port in the copy and execute model. We propose that a copy of a port
be equivalent to the original port, that is, the copy is a port linking directly to
the target of the copied port. This maintains all the functionality of a port when
it is referenced by name.

Inputs

We return to the issue of varied and unobtrusive reference mechanisms. The
idea is to let the procedure establish context, how the text which constitutes an
input is to be treated. We propose three types of i~put which parallel each of

A PRINCIPLED DESIGN 29

Figure 7. Ports provide access to other environments for dynamic purposes
such as setting a variable. Here the expression MAKE A 5 resides in PLACE2
but is visible (and could be executed from)PLACE1.

PLACEl: ENUIRONMENT--;==:;l
PDRTl , rPDRT I

LMAKEAS.

PLACE2: ENUIRONMENT----;]~;=====:l
TARGETOFPORTl :I I

. MAKE A 5 .

the three ways- procedure, data, and port- in which execution treats the con
tents of a box. Procedure evaluates the input text according to the standard
Boxer rules and installs the result in the input's data box in the inputing proce
dure's local library. This matches Logo's input structure. The second kind of
input treats the input text as data and transfers it unevaluated into the input's
box in the local library. It is appropriate for messages and other textual data.
One need not bother with literal markings.

The final kind of input uses port semantics and therefore will probably be
used only by advanced users. For this reason we can use this structure for
expert-appropriate functionality. We propose that the port version of input
create a port (in the inputingprocedure's local library) to the box used as input,
or to the box named in Case a word rather than a box appears as input. This has
an important implication: Suppose procedure CALLER has port type input
parameter IN and is called with another procedure FU NARG as input. Then
FUNARG will not be executed on invocation of CALLER but only where IN
appears in the body of CALLER. Thus, the port type of input allows proce
dures to be passed as inputs. Furthermore, the environment available to
FUNARG when it is executed will be its actual location, rather than the inte
rior of CALLER. This seeping is the most appropriate for function arguments
according to Steele and Sussman (1978a).

As far as learning sequence goes, one expects that users will use the proce
dural (value makes a better mriemonic) version for their own definitions for
quite a while. Value inputs are the default when no type is specified. During
that early time, the other types serve to relieve the need to understand the sub
tleties of referencing in using system primitives or any procedures added to the
system, presumably by more experienced programmers, for the user.

Difficulty with Versions of inputs will occur if the procedure's perceived do
main of applicability overlaps into situations where another reference mecha
nism is appropriate. For example, a misunderstanding may result if a proce
dure's semantics allows either name or number as an input. A data-input

30 DISESSA

structure will work in typical situations; however, if the user expects to use a
variable set to a number in place of the number, an error will result. Advanced
users, of course, should be able to change the input-reference mechanism with
explicit markers at the place of invocation. Eval and quote are used this way in
Lisp, though ideally one would prefer. a cleaner relationship between control
and reference mechanisms. Section 4. provides a suggestion for a transparent
way to accomplish such a relationship.

Two Proposals for Non-Lisp Structures

In this section we treat two functions not well served by stuctures in Lisp and
Logo; accordingly, we make propoals for Boxer. The first of these functions is
message passmg.

Consider the concretely realizable process of moving to a distant environ
ment, executing a procedure, and returning with the result. This is the basis of
message passing in Boxer. In particular, we have special syntax tuned to this
function, TELL <environment> <whatever>. Since Boxer's structure has
fully developed environments, we believe syntax is all the dedicated structure
message passing needs. Instances and subclasses can be made by copying and
nesting environments. Figure 8 shows how to make an instance. The environ
ment TURTLE has a state variable, POS (position), which is manipulated func
tionally, by FD. A turtle instance, JOE, is created by making a suben
vironment containing its own state variable. But JOE can use TURTLE's
manipulator code, FD, on its own POS.

The second neglected function is the construction of compound objects out
of evaluated parts. Lisp and Logo use constructor functions for this purpose,
functions which evaluate their arguments and output a compound structure
constructed of the values. We consider this an overextension of the control
structure of function to an area in which it is not well adapted, at least in the
perception of beginning programmers. The reason is simple. Even in Logo,
spatial organization is part of a typical user's model of a compound object. A
list is a series of elements in a row. Why then can one not use such an organiza
tion to specify the shape of a compound object to be constructed? In Logo if the
value of :X is "A, LPUT :X[B C] produces the counter-visual result [B C A]. In
stead, one would like to write something like [8 C :X]. Boxer's intent to make
spatial organization pay dividends suggests we should try to do better than
Logo. Many Lisps now have a "back-quote" structure to serve this function,
and what we want for Boxer is a cleaner, better integrated implementation of
the motivating concerns.

One of the designs we have implemented collects pieces of data using a
single constructor function which operates on a template data box. It is natural
to have a number of versions which specify whether or not to unbox the data in
collecting it and whether or not the default treatment of items inside the tem
plate box is to evaluate them. Additional markers would be useful to alter de-

A PRINCIPLED DESIGN 31

Figure 8. Sending a message to JOE by executing a TELL within the TURTLE
environment. JOE behaves as an instance of TURTLE, using TURTLE's FD on
its own state variable, POS.

TURTLE : ENVORONMENT
POS: [DAJAJ FD: 'I INPUT X I MAKE PDS POS + X

JOE: ENVIRONMENT
POS: [DATA]

23

TELL JOE FD 100

fault treatment. Figure 9 gives the gist. Here we have nonevaluation as a de
fault, prefix ! flags items to be evaluated, and @.marks "unbox."

3.3. Scoping

Boxer's basic seeping rule is that variables and procedures are accessible by
name within the box in which they are defined or in any sub box, recursively.
This accessibility, along with the copy-and-execute model, implies dynamic
seeping-a procedure invocation alters the name-space available to subpro
cedures. There are cogent reasons to be wary of this seeping. Most promi
nently, it can lead to a dangerous nonmodularity where what a procedure does
depends on where and when it is called. For example, a local variable in a pro
cedure call may shield a variable reference in a subprocedure from a global
value that would be available if that subprocedure were used at top level. The
alternative advocated by many is to use lexical seeping, where a free variable
refers to the environment in which the procedure is defined rather than where it
is called. Since Boxer has a static environment structure above and beyond the
dynamic one (procedure calls), the issue is doubly important. So it is particu
larly appropriate to look at the considerations of functionality and learnability
which led to the choice of dynamic scoping.

1. Sometimes one really wants dynamic scoping. Consider environments in
the sense ofworkspaces discussed earlier. One may take a procedure to another
environment or create an intermediate environment between the procedure's
environment and UNIVERSE explicitly for the purpose of altering the meaning
of the terms making up the procedure definition. The method of creating actor-

32 DISESSA

Figure 9. A BUILD function assembles data spatially out of pieces. ! means
evaluate, @ means unbox.

RBOX: [DATA)
R B

BBOX: [DATA) c 0

BUILD DATA--------,
! ~RBDX ! BBDX

rDrAJ [DATAOXI
!CBOX

CBOX:rDrAJ

evaluates to DATAl-------,
R B [DATA]

0

rn;~~-;;-]

~
style instances shown in Figure 8 depends on dynamic seeping. With lexical
scoping the POS manipulated by FD would always be the one available in the
environment of the definition of FD, TURTLE, not the one available in the
subenvironment, JOE. Other arguments for the usefulness of dynamic seeping
based on dynamic environment (procedure call) considerations only are con
tained in Steele and Sussman (1978b).

2. Boxer will have most of the functionality of lexical seeping available for
advanced users. Sam~ of this functionality can be carried by the local library,
which is copied with the procedure body to the environment of execution. By
putting subprocedures and local data in the procedure's library, that part of the
procedure's environment will always be available on invocation.

·Ports can take over more of the functionality of lexical seeping. This can
happen in two ways. If one uses a port to a procedure instead of its name to ref
erence it, one gets lexical seeping for that procedure, according to the declared
rules for seeping ports. Also, a port-type input creates a port to the input,
which gives lexical seeping for procedures that are taken as parameters to other
procedures in this way.

3. Dynamic seeping is more natural to Boxer than to any non spatially or
ganized language. This is a judgment on how the experience of using a system
supports one or another model of its actions. _The overt experience of a Boxer
user is performing operations in environments that define the meaning of those
operations. In a Lisp or Logo experience, environments are transitory- set up
for function calls and destroyed on exit. Lexically seeped languages have envi
ronments as a basic fact of life; however, these environments are hardly con
crete and manipulable in the transparent way they are in Boxer, that is, picked
up and moved around with the editor. Without such concreteness it is a more
appropriate aesthetic to avoid dependence on environments as they are nearly
invisible and hard to manipulate things; functions really ought to do the same
thing on each invocation. In Boxer, that procedures operate in environments is

A PRINCIPLED DESIGN 33

the fundamental, concretely represented metaphor of the system. We need to
worry less about potential false expectations of modularity and problems in
debugging them if problems occur. To some extent the problem is also amelio~
rated by the fact that novices will not be constructing the deep and complex
programs that experts do, which poses stricter modularity problems.

4. What may be the most important criticism is that lexical seeping simply
does not have as simple a surrogate model as dynamic seeping, at least -in spa
tial terms. The overt signs of this are that one must distinguish the text of a pro
cedure from the procedure itself(Steele & Sussman, 1978a). This runs directly
counter to the principle of naive realism we have adopted for Boxer. Proce
dures and containing environments are separately represented in Boxer and
need not- probably should not- be strongly linked in the way lexical scoping
does.

Continuing the last point, consider the changes needed to the copy-and
execute surrogate of Boxer for lexical seeping. When a procedure is called, one
cannot set up an environment at that place in which to observe the actions of
the procedure since the free variables in the procedure refer to nonlocal enti
ties, entities that exist in the environment in which the procedure was defined.
So after binding inputs (which do, in fact, come from the procedure invocation
location), one must shift geographical focus to the defining environment for
the execution phase. After execution, one must return control and any re
sulting value to the calling environment. (The alternative to these shifts in lo
cus is to give up the identification of containment with "environmentness" ba
sic to our spatial metaphor.) Imagining or actually watching a procedure
execute would be considerably complicated by constantly switching environ
ments. The topology of the calling structure of a procedure stopped in mid
stream could wind tortuously through the spatial hierarchy. Although the sur
rogate per se is not immensely more complex for lexical seeping, more of it is
invisible and not amendable to learning by episodes of interpreting what one
sees happen. How should one represent, for example, return pointers? In the
dynamic copy-and-execute model retu·rn pointers are unnecessary; procedures
return in place.

Of course, one may argue that it is the spatial copy-and-execute model that
one should abandon, not lexical seeping. But with lexical seeping, it seems one
will always be faced with representing two hierarchies- the calling hierarchy,
which should not be ignored, and the lexical one. Simple models embodying
both hierarchies seem hard to come by:

We have a priori excluded from discussion possibilities such as using strictly
local (no inheritance) seeping in the special case of input parameters or using
dynamic seeping for static environment structure at the same time as lexical
scoping for dynamic environments. The judgment is that, from the point of
view of understandability, one seeping rule is quite enough for inexperienced
users.

34 DISESSA

4. THE USER INTERFACE

The user interface of a system is important since it is the part that the user
directly perceives (mainly on the video screen) and operates (keyboard,
mouse, and so forth). One must decide what parts of the system are shown,
when and how they are portrayed, and how one selects and enacts actions. For
our primary purpose- understandability- the important interface issue is
how the interface relates to the abstract objects in the computational environ
ment and to the actions that can be performed with or on them. For Boxer and,
indeed, for any naive realist system, there should not be much to say about this
relationship; it ought to be very simple. The objects of the system (boxes, text)
should be directly visible and manipulable in their own terms (the Boxer text
editor). Thus, the descriptions we have made of Boxer's computational seman
tics are also, to a large extent, descriptions of the user interface.

Because of the close connection between interface and programming lan
guage, each can serve to augment the other. For example, some of the func
tionality that one usually needs to have as part of the programming language
can be taken over by the interface. One can construct procedures, and even the
global organization of the system itself, concretely with the editor rather than
needing all procedure- and structure-creating commands to be a part of the
language. Conversely, language constructs can often be used directly to sup
port the user interface. Making a region of the screen that responds in some
special way to typed characters is a trivial operation, making a box and bind
ing local procedures to keys. Making a part of an interface that continuously
shows the values of certain variables amounts to no more than making those
variables visible on the screen, say, via a port. Overall, then, naive realism
implies a high degree of diffusing functionality both ways across the user
interface/programming language boundary.

In more detail, however, our learnability principles were not designed to
deal with convenience or with the fine structure of keystroke-by-keystroke in
teraction. Nonetheless, we will discuss two issues usually associated with the
user interface as they relate to Boxer. As far as perception is concerned, we focus
on screen organization. As far as operation is concerned, we shall focus on
facilitating recall and rapid-command enaction.

Screen Organization. Boxes may appear at first to be very inefficient in
terms of the use of screen space. For example, our use of box structure to iden
tify objects and inheritance in the system means we are not free to have
overlapping boxes as one can overlap windows. But Boxer has a number of
compensating capabilities.

In the first instance, by moving around in the system, one can choose what
part of the system to see. Recall that any box can be chosen to fill the screen. To
save clutter, any or all sub boxes can be shrunk to basically one character space.

A PRINCIPLED DESIGN 35

Indeed, one can use boxes purely for this detail suppression mechanism, and
we expect users to build their own worlds with viewability of the world as a ma
jor consideration. The display presentation of a box is remembered so that
when one returns to that box, subboxes are shrunk or not and in general every
thing is displayed according to the form in which it was left. For more ad
vanced users, boxes can be frozen in any size between shrunk and full screen.
The frozen size can be overriden by expand or shrink commands, but it is the
size in which one will always see the box when it first comes into view. In order
to handle boxes whose contents are bigger than the frozen size (or bigger than
full screen), boxes can scroll vertically and horizontally.

Facilitating Recall and Rapid-Command Enaction. Menus relieve users of
the need always to remember available commands, and they also facilitate
rapid use of the system. Luckily Boxer has much of the usual menu func
tionality built in. Anything the user types is a usable artifact that may be se
lected and executed. We have a line-oriented default for selection, compatible
with the line-oriented substructuring of boxes. So all a user has to do to use
some text as a menu is to point at a line and press the DOlT key. Users will un
doubtedly gradually build their own menus in various environments out of
what they type to try things out. Some might wish to put frequently used com
mands in a box labeled MENU, and anyone who makes a subenvironment for
others' use should leave such artifacts around (Figure 10). The important thing
is that essentially all the functionality of a menu is available without the over
head of learning to construct or change special structures.

Rapid command activation may also be accomplished by attaching com
mands to keypresses. In Boxer, as previously noted, one can add instant
keystroke activation of any command, including user-defined commands, to
any key. Naturally, this power can be abused, for example, by having keys
whose definition changes frequently in moving- from one environment to an
other. But our judgement was that the ability to define and redefine keystrokes
is important to assure adaptability of the interface, for example adding or
changing text-editor commands. St::e Section 5.1. for an example.

As another memory aid, Boxer will have an interactive prompter. We have
implemented the following: If a user wants help with a function, he types the
name just as if preparing to execute the function, or he can move to a menu line
where the name already exists. Pressing HELP causes input prompts to appear
following the command as boxes labeled by the names chosen as input parame
ters for the program. After the user fills in the inputs, the DOlT key executes as
usual. It is important that these prompts are in every way ordinary screen ob
jects: They can be typed by the user instead of by the prompter, and they may
be deleted as may any Boxer objects. In addition, there is no special prompt
mode. When the prompts appear, the user is not obligated to follow up in any
particular way.

36 DISESSA

Figure 10. A page from an interactive workbook includes a set of menus al
lowing readers to activate available procedures.

OPTICS :
GRAPHICS

Welcome to the wonderful world of optics! In this
environment you can move the turtle around and create
lenses or mirrors whenever you wish. You can also shoot a
single hay or spray 6f light rays. Just point to the item
you wis to execute in the menus below (using the mouse)
and ~ush the doit button. The result will appear in the
srap ics box above.

TURTLE-MENU:
FORWARD 30
RIGHT 30
CLEARSCREEN

OBJECT-MENU: SHOOTING-MENU:~ "I MAKE -A-LENS _j RAY
MAKE-R-MIRROR SPRAY

The prompt boxes have a type marker which displays the type of input they
represent: value (labelled simply INPUT), literal (labelled DATAINPUT), or
port (PORTINPUT). (Recall that these are the three types of input reference
mechanisms.) Aside from documenting the define-time choice at call time, a
user can change the type for any particular call by editing the type shown by
the prompt. Prompt boxes also serve to parse expressions to an arbitrary depth
based on the same box hierarchy used generally in the system.

5. BOXER SCENARIOS

What does it feel like to use Boxer? This section attempts to give that sense
while at the same time illustrating more concretely some of the main points al
ready made about the system.

5.1. The Morning Mail-Getting Around the System

This example shows how to use basic cursor motion and text-editing com
mands to move around the system and accomplish an everyday task without
the need for any special program devoted to the task. Secondarily, it demon
strates the kind of simple tuning one can do to adapt the environment to ease
such tasks.

A PRINCIPLED DESIGN 37

On entering his personal Boxer universe, a user would see whatever he con
structed to be the top level of his world, say, something like Figure 5. Using the
mouse to move the cursor into the MAlL box, one then presses the expand but
ton on the mouse to cause the box gradually to expand, revealing what is in
side, Figure 11. At this size, as opposed to the shrunken- or full-screen sizes, a
box automatically expands and shrinks to accommodate whatever is inserted
or removed. A second press of the same button expands the box to full-screen
size, effectively entering the mail subenvironment (Figure 12). Note that are
minder to return mail to John, which the user simply typed in this appropriate
place, appears at the top of the environment. Ignoring the reminder for the mo
ment, the user can enter the NEWMAIL box by moving the cursor with the
mouse again and pressing the mouse expand button.

Here (Figure 13) a new message has arrived from Leigh. Ordinarily the user
might simply read the mail and delete it. Deleting the box containing the
message can be accomplished by moving the cursor to the position just to the
right of the box and pressing the rubout key, as if the box were just a large char
acter. Another option would be to move the message to OLDMAIL with editing
functions or to have some built-in function do that.

Part of the newly arrived message is a program defining an instant-action
keystroke command, CNTRL-M-KEY. In our present Boxer, the suffix KEY in
the name of a box denotes that this program should be executed on pressing the
named key. CNTRL-M-KEY itself uses the BUILD operator to construct a
databox out of some literal data and an evaluated function. (! means evaluate
this to BUILD). SYSTEMDATE is evaluated, providing the obvious informa
tion. The intended net effect is that when CNTRL-M is pressed, the command
CNTRL-M-KEY is executed, returning the built template for a mail item at the
position of the cursor. 3 The actual sending of mail could happen by typing
SEND in front of the message and then pressing the DOlT key. In general, the
DOlT key causes the current line to be executed. SEND might be the only
primitive supplied with the mail system.

In order to install this CNTRL-M feature in the MAIL environment, the
user must move the CNTRL-M-KEY program to an appropriate place of defini
tion, probably the library of the MAlL box. Moving the program involves sim
ple editing: (1) moving the cursor with the mouse to the CNTRL-M-KEY pro
gram, (2) picking the program up (one could use an editor command to "cut"
the line), (3) moving to the place of definition using the mouse and its expand
and shrink buttons and depositing the command (for example, with a 11paste"
editor command). In order to change the template at any future time, one has
only to move back to the library and type in the changes.

3 Returning values is done through a variation of Lisp's "last subform supplies
value." In Boxer, procedures return a value only if the last subexpressionprovides it. A
subexpression, of course, may simply be a data box.

38 DISESSA

Figure 11. MAIL has been expanded so that one might see its contents.

UNIVERSE: DAT~--,

PAPERS: g&~1J:il SCHOOLWORK: DATf1=:-------,
MATH : w£J;~J

PHYSICS: fi~0~~~J

MAIL: DATAI-------------------------r-,
10&1

Don;t forget to ans~er John's note.

NEWMAIL: fDATAij
:~ww;::~

Figure 12. MAIL is expanded to full s~reen.

DATA--~

Don~t forget to answer John's note.

NEWMR!L:pp%~~ OLDMR!L: p~f,);~;J

5.2. A Simple Program

Defining a program can be another task accomplished quite concretely
with the always~available text-editing commands. One could, for example,
push the make-box key, type the text of a procedure in the box, then attach a
name, and, finally, move the program to an appropriate library. Typically, an
appropriate library means the library of the environment you are currently
working in. In the following example, we have chosen to illustrate the express
ive possibilities of typing subprocedures directly into place or of putting
subprocedures in the library of their main procedure rather than in some envi
ronment box library.

GRAM (Figure 14) assembles a randomly generated sentence from a simple
grammar that specifies: A sentence consists of a noun phrase followed by a verb

A PRINCIPLED DESIGN 39

Figure 13. A message from Leigh. Suppressing detail by shrinking the
CNTRL-M-KEY box would make the message more readable.

DATA~==========~--------------------------------------~

rDATB
FROM: Leish 1
DATE : 11-10-83

DATA--0
Here is that control key program you asked me to send you:

CNTRL-M-KEY: ,-------------,
BUILD DATA----------,

DATAl------------,
TO:
FRDI1:
DATE: !SYSTEMDATE

MESSAGE: [DATA]

phrase; a noun phrase consists of an article followed by ... ; and so forth. Each of
these rules is a program, and each occurs in the place in which it needs to be
used in GRAM. The names of the programs are only to document their func
tion. The library of GRAM contains the utilities SELECT-ONE and SELECT
SOME, which pick random elements from a box (RANDOM returns a random
number between 1 and its input). The library also contains the lists of terminal
nodes of the grammar, that is, the words, which one may wish to find near the
surface of the program for easy inspection or modification. Of course, for
various purposes, one might choose to write the GRAM program burying the
terminal nodes and showing the rules at the top level. Figure 15 shows how
NOUN PHRASE, VERBPHRASE, and a couple of their subordinates would ap
pear if the shrunken boxes in Figure 14 were expanded, though we do not show
the context for each.

5.3. AJournal

Keeping a personal database in Boxer is a trivial matter. Here, we have
tuned the basic box structure by using ports to make available a second organi
zation of entries in a journal. The top box in Figure 16, BY-CHRONOLOGY,
contains all entries in chronological order. The bottom box, which is shown
expanded in Figure 17, contains the same entries reorganized via ports accord
ing to topic. The intent is to allow the journal keeper to access an entry accord
ing to preference or how he remembers it: "I seem to remember writing
somthing about that a week or so ago;" versus "Let me see what I have on the
topic of ports." Because ports are views on objects which appear in another
place, any change made in a port is instantly reflected in the original entry. If

~

GRAM :

Figure 14. The top level of a procedure to generate a random sentence.
BUILD is the general constructor which recognizes!@ to mean evaluate and un
box, described in Section 3. 2. 4.

SELECT ONE:
·~NPUT X I ITEM (RANDOM (COUNT Xll X

SELECT-SOME:
INPUT X
IF (RANDOM 3) = 0 [DATA) STOP

BUILD [DATA
-!@(SELECT-ONE Xl !@(SELECT-SOME Xl I

NOUNS: [DATA ·
- cow HORSE DONKEY ROCK AX I

VERBS: [DATA
_SLEPT LURCHED ATE FELL I

ADJECTIVES: [DATA I
BIG CLUMSY RED

ADVERBS ...
SENTENCE:

BUILD \DATA
- !@NOUNPHRASE:~ !@VERBPHRASE:~ I

' '

A PRINCIPLED DESIGN 41

Figure 15. Some of the component subprocedures from GRAM, not in
context.

NOUNPHRRSE: [BisulJiriLLDD-;[:;;D!;;;A~;;;~:::RT:::I:::C=LE=:=Ii2t]=;;,~=, =! @=A=O=Js=,=E0iJ=f!fc=1 =! @=N=O=U=N =, li2t]=!,t;=~ ::;-]1

VERBPHRASE: lsffiuniLLDD -;[~nr;.;~:;;GE=R=B=: =li2t]=y=!=@=RD=V=E=R=B =, li2t]=n=:; ::;-]1

NOUN: I SELECT -ONE NOUNS I
RDJS: I SELECT -SOME ADJECTIVES I

both the port and the target of the port are on the screen, typing into either re
sults in having the characters appear in both.

We imagine the protocol for using such a journal to be something like the
following. One can make an entry by copying the form of a previous entry or
using a template as described for mail above. Actually putting the entry in
place could be handled with a Fl LE function, which would make sure to insert
a port to the new entry under the appropriate topic in the BY-TOPIC listing. Of
course, one could also have an UPDATE function, which, when executed, could
place a port to any new, unported entries in the BY-TOPIC listing. These utili
ties, FILE and UPDATE, are actually not very complex Boxer procedures,
though one would not expect novices to write them. They could be augmented
with procedures, for example, to search the journal and return a box con
taining ports to entries that have specified key words- constructing another
view at need, rather than incrementally as the BY-TOPIC view is constructed.
One could even write a procedure to reorganize the journal completely.

6. SUMMARY

In designing an integrated computational environment the most basic heu
ristic demand is to try to generate a small set of structures out of which all nec
essary functionality can be built. An immediate caveat to that is shallow
structuring, that common functions must not be difficult to express in the fun
damental structural vocabulary. But deeper and more complex' revisions to
this aim are appropriate in view of a limiting resource in understanding and
controlling a complex system. This limiting resource is the materials (knowl-

...
"'

JOURNAL

Figure 16. A journal contains two views of its entries, BY-CHRONOLOGY
and BY-TOPIC.

DATA
BY-CHRONOLOGY:~~T

NTRY: DATA
TOPIC: (DATAW

Ports
KEYWORDS : (DATA

Cross Referenc i nsl
DATE: [DATA I

11-10-83
Ports are also good for cross
referencing. Here~ for example~
is a port to a related box --> ~~~1j

ENTRY: DATA
TOPIC: (DATA

Someth ins Elsel
. KEYWORDS: (DATA=-s;J

Faa, Bar
DATE: [DATA I

11-11-83
Text ... Text ... Text ...

ENTRY: DATA
TOPIC: [DATA;;;;J

Stepper

DATE '[DATA I
11-12-83

~~e have the option of lay ins out copies
horizontally little man style, as opposed
to copy- i n-piace·. But this camp! i cates lookup.

BY-TOPIC: \%~j~f~

'

A PRINCIPLED DESIGN 43

Figure 17. The first box in the PORTS section of BY-TOPIC is a port to the
first entry shown in Figure J6. The other ports in that section are to other
entries in BY-CHRONOLOGY.

JOURNAL: DATAI--------------------

BY-CHRONOLOGY:p~~~ill

BY-TOPIC: DATAl-----------------~
PORTS: DATAl--------------~

PORT;~~~~:;======================~~ ------1----1---ITBPtE: lot:~;-:-] -11----

KEYWOR~
1 Cross Referenc i nsl

DATE, rDATA I
Lll-10-83.

Ports are also good for cross
referencing. Here, for example,
is a port to a related box --> ~

EPORTTI .

edge) and capabilty to construct mental models of such a system on the part of
the user.

We have found it important to consider a few paradigms to get proper pur
chase on the issues of understandability and learnability. Surrogate models are
replacement machines which one can "run" in one's imagination to understand
the actual machine. These are good for prediction and debugging but are not
typically learnable in small increments and lack the kind of ties to
functionality necessary to fluid interaction and to the invention of techniques
to solve problems posed in solution-independent terms. Functional models in
which, typically, a structure is learned as a solution to a particular
problem-"it does the right thing''- create functional ties but are weak in
terms of completeness and context-invariant application. We think it ex
tremely important to consider a third paradigm, distributed models, in which
not only is there no global mechanistic frame, but one may not even be able to
identify a single functional frame that accounts for understanding and rem em-

44 DISESSA

bering in terms of a simple mapping to previously understood situations. In
stead, a number of situation-specific rationalizations, including visual meta
phors and the inheritance of reasonableness from frames like natural
language, altogether produce an account of some behavior of the system which
makes that behavior generalizable, hence useful, as a model.

As an elaboration of these ideas we have sketched the design of Boxer. Box
er's key ideas are as follows:

In order to minimize the need for invisible structures mediating between
what one sees and how one understands it, and in order to promote mod
eling on the basis of visual rationalization, we have proposed naive real
ism as a guiding principle: All screen objects are real and manipulable in
a uniform way. In this way most of what is usually thought of as user in
terface is integral to the system.

In order to take advantage of the character of the video display and in or
der to link into an important class of pre-existing knowledge users have,
Boxer employs a systematic spatial metaphor, using spatial relationships
to express language semantics.

Because of the strengths of the spatial metaphor and its appropriateness
to computational systems, we have collapsed static structures to a small
core, introducing functional multiplicity through variation of the basic
object, the box, based on nearly naive functional categories such as pro
cedures and data. All of the functional hierarchies in Boxer- procedure/
subprocedure, hierarchical data, environment (file structure), and
scoping-are organized with boxes.

Because of the weakness of naive understanding of reference mecha
nisms, we have introduced an expanded set of functionally motivated dy
namic structures (types of input, syntax for message passing, spatial con
struction of compound data objects). In particular, multiple types of
input allow the simulation of a broader range of naive reference mecha
nisms without intrusion into the surface appearance of the language.
Moreover, care has been taken to maintain a visualizable surrogate
model to aid understanding dynamic aspects of the system.

What has been left out of this account of the design process? In order to focus
clearly on issues of mental modeling we have discussed neither the consistency
nor the completeness of Boxer as a computational scheme. Nor have we dis
cussed the issue of efficient implementation or the heuristics we used to trade
off implementation against functionality and user understandability. Natu
rally, we have proposed a system we think is consistent and efficiently
implementable, but this has not been demonstrated.

A PRINCIPLED DESIGN 45

Finally, our judgments about understandability are based on our assess
ment of both the difficulties and, occasionally, the surprising successes of stu
dents in understanding computational systems (and, to be fair, on our own ex
periences and introspection as well). Even granted our general modeling
considerations, we have had to make decisions about specifically what knowl
edge we can count on users having and applying, for example, what rationali
zations will be made. Obviously we need a great deal more study in this area,
but we do not apologize for trying to use and systematize what we think we
know already. There is no dispute that innovation, in terms of both compu
tational structures and functions, is important to making progress in con
structing powerful and usable computational environments. But we think it
both possible and proper to begin to regard such innovations in the context of
more systematic theories of design based on principles of learnability and
understandability.

Acknowledgments. The design and construction of an extraordinarily complex
piece of software like Boxer requires the dedicated efforts of many people. I herewith ac
knowledge the contributions and express my great appreciation to a wonderful group of
MIT students and staff who have played this role. Among those who have shown the
greatest dedication and influence are Ed Lay, Gregor Kiczales, Mike Eisenberg and
Leigh Klotz. I must especially note the contributions of Hal Abelson, co-founder of the
Boxer project, for guiding the implementation and assuring the computational integ
rity of the system with a constant supply of criticism and good ideas.

This paper has benefited immensely from incredibly extensive and thoughtful com
ments by Richard Young, Tom Moran, and an anonymous referee, for which I am also
indebted.

Support. This work was supported by the Advanced Research Projects Agency of
the Department of Defense, monitored by the Office of Naval Research under contract
N0001475-C0661.

REFERENCES

Baeker, R. (1975). Two systems which produce animated representations of the execu
tion of computer programs. ACM SIGCSE Bulletin, 7(1), 158-167.

de Kleer, J ., & Brown, J. S. (1981). Mental models of physical mechanisms and their
acquisition. InJ. R. Anderson (Ed.), Cognitive skills and their acquisition. Hillsdale, NJ:
Lawrence Erlbaum Associates.

diSessa, A. A. (1982). Unlearning Aristotelian physics: A study of knowledge~ based
learning. Cognitive Science, 6, 37-75.

diSessa, A. A. (1983). Phenomenology and the evolution of intuition. In D. Gentner &
A. Stevens (Eds.), Mental models. Hillsdale, NJ: Lawrence Erlbaum Associates.

du Boulay, B., O'Shea, T., & Monk,J. (1981). The black box inside the glass box: Pres
enting computing concepts to novices. International journal of Man-Machine Studies, 14,
237-250.

46 DISESSA

Erlich, K., & Soloway, E. (1983). An empirical investigation of the tacit plan knowl
edge in programming. InJ. Thomas & M. L. Schneider (Eds.), Human factors in com
puter systems. Norwood, NJ: Ablex.

Eisenstadt, M. (1983). A user-friendly software environment for the novice program
mer. Communications of the A CM, 26, 1058-1 064.

Gentner, D., & Stevens, A. (Eds.). (1983). Mental models. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Goldberg, A. (1983). Smalltalk-80: The interactive programming environment. Reading, MA:
Addison-Wesley.

Goldberg, A., & Robson, D. A. (1979, January). A metaphor for user interface design. Pro
ceedings of the University of Hawaii Twelfth Annual Symposium on System Sci
ences, Honolulu.

Goldstein, I. P ., & Bobrow, D. G. (1984). A layered approach to software design. In D.
R. Barstow, H. E. Shrobe, & E. Sandewall (Eds.), Interactive programming environments.
New York: McGraw-Hill.

Greenblatt, R. D., Knight, T. F., Holloway, J., Moon, D. A., & Weinreb, D. L.
(1984). The LISP machine. In D. R. Barstow, H. E. Shrobe, & E. Sandewall (Eds.).
Interactive programming environments. New York: McGraw-Hill.

Ingalls, D. H. (1981, August). Design principles behind smalltalk. Byte, pp. 286-298.
Innocent, P.R. (1982). Towards self-adaptive interface systems. International journal of

Man-Machine Studies, 16, 287-299.
Kay, A., & Goldberg, A. (1977, March). Personal dynamic media. Computer, pp.

31-41.
Lieberman, H. (1982). Watching what your Programs are doing (Tech. Rep. No. 656).

Massachusetts Institute of Technology, Artificial Intelligence Laboratory.
Mayer, R. E. (1981). The psychology of how novices learn computer programming.

ACM Computing Surveys, 13(1), 121-141.
Rumelhart, D. E., & Norman, D. A. (1981). Analogical processes in learning. InJ. R.

Anderson (Ed.), Cognitive skills and their acquisition. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Smith, D. C. (1975). Pygmalion. Boston: Birkhauser.
Smith, D. C., lrby, C., Kimball, R., & Verplank, B. (1982, April). Designing the star

user interface. Byte, pp. 242-282.
Stallman, R. M. (1984). Emacs: The extensible, customizable, self-docu

menting display editor. In D. R. Barstow, H. E. Shrobe, & E. Sandewall (Eds.), In
teractive programming environments. New York: McGraw-Hill.

Steele, G. L., & Sussman, G. J. (1978a, January). The revised report on Scheme: A dialect of
Lisp (Tech. Rep. No. 452). Massachusetts Institute of Technology, Artificial Intelli
gence Laboratory.

Steele, G. L., & Sussman, G. J, (1978b, May). The art of the interpreter (Tech. Rep. No.
453). Massachusetts Institute of Technology, Artificial Intelligence Laboratory.

Teitelman, W., & Masinter, L. (1984). The interlisp programming environment. In
D. R. Bastrow, H. E. Shrobe, & E. Sandewall (Eds.), Interactive programming environ
ments. New York: McGraw-Hill.

Tesler, L. (1981, August). The Smalltalk environment. Byte, pp. 90-147.
Waters, R. C. (1984). The programmer's apprentice: Knowledge based program

editing. In D. R. Barstow, H. E. Shrobe, & E. Sandewall (Eds.), Interactive program
ming environments. New York: McGraw-Hill.

,,

1•

A PRINCIPLED DESIGN 47

Young, R. M. (1981). The machine inside the machine: Users' models of pocket
calculators. Internationaljoumal of Man~Machine Studies, 15, 51-85.

Young, R. M. (1983). Surrogates and mappings: Two kinds of conceptual models for
interactive devices. In D. Gentner & A. Stevens (Eds.), Mental models. Hillsdale, Nj:
Lawrence Erlbaum Associates.

HCI Editorial Record. First manuscript received January 7, 1983. Revision re
ceived] anuary 12, 1984. Accepted by Richard Young and Thomas Moran. Final man
uscript received August 27, 1984. -Editor

1':

.I
-i 1:1

'~{:

