
Automatic Programming and Education
Clayton Lewis

clayton.lewis@colorado.edu
University of Colorado Boulder

Boulder, Colorado, USA

ABSTRACT
Automatic programming, as supported by recent language-model
based AI systems, potentially allows a new approach to making
computation a useful tool for learning, a goal of the Boxer project.
This paper shows that the Codex system can be used to support
some of the explorations in mathematics for which Boxer has been
used. Virtually no knowledge of programming is required. Reflect-
ing on the lessons from this exploration may sharpen the goals we
bring to educational computing. What knowledge about comput-
ing, as distinct from the ability to creatively use computing, should
learners gain?

CCS CONCEPTS
• Social and professional topics→ K-12 education; • Comput-
ing methodologies→ Machine learning approaches; • Software
and its engineering→ Automatic programming.

KEYWORDS
automatic programming, computational literacy, education, Boxer
ACM Reference Format:
Clayton Lewis. 2022. Automatic Programming and Education. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
As Charles Rich and Richard Waters noted in a 1988 review ([6]),
“automatic programming” is a goal as old as programming itself,
for which expectations have changed radically as technology has
advanced. Once, programming without needing to know assem-
bly language would have been taken to be automatic, relative to
the alternatives available, but higher level languages have long
since pushed ambitions upwards. What Rich and Waters called the
“cocktail party” version of the ambitions in 1988 was this:

There will be no more programming. The end user,
who only needs to know about the application domain,
will write a brief requirement for what is wanted. The
automatic programming system, which only needs to
know about programming, will produce an efficient
program satisfying the requirement.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

This was the “cocktail party” version, for Rich and Waters, because
they felt it was uninformed, and unattainable. A key challenge
was creating systems that could manage the extensive and very
diverse knowledge that would be needed for this performance.
Rich and Waters saw no prospect of this: “A further look into the
future reveals no sign of the cocktail party version of automatic
programming.”

Knowledge representation in 1988 used symbolic structures and
rules, constructed by hand. Recently, a very different approach
has emerged in which large neural networks extract knowledge
from enormous corpora, and structure it themselves, in ways that
defy simple description. Because they create models of the use of
language in their corpora, they are called language-model based
systems. Their success has been remarkable. In particular, language-
model based systems, trained on enormous bodies of program code,
have made great strides towards realizing Rich andWaters’ cocktail
party vision. Can such systems contribute to the uses of program-
ming that are envisioned in the Boxer project?

2 CODEX IS A LANGUAGE-MODEL BASED
SYSTEM THAT GENERATES PROGRAM
CODE.

Codex [2] is a neural net transformer system that is trained to
predict the next token in sequences of tokens drawn from an enor-
mous corpus of program code. The magnitude of the prediction
task forces the system to develop very complex encodings of the
input tokens, further complex codings of those codings, and so on,
for several nested layers of encoders. Structures called attention
heads, in each layer, enable the encoding of any entity to depend
on other entities at the same level, so that dependencies between
even widely separated entities can be detected.

The resulting encodings are very abstract, and not easily charac-
terized. But they permit the system to predict the continuation of
sequences of tokens that appear nowhere in the training corpus. It
can do this because, when processing a novel sequence of tokens,
it can respond to resemblances, in a very general sense, between
the novel sequence and sequences that have been seen.

During training, a very large number of connection weights,
about 12 billion, within Codex, are set to values that optimize pre-
diction performance on its corpus. Once training is complete, these
connection weights are never changed. In operation, Codex is given
a new sequence, called a conditioner, or prompt, and its task always
is to find a sequence of further tokens that is a probable continua-
tion of the presented prompt. A probable sequence is output when
a termination criterion is met.

The only information Codex receives about what it should do
is the prompt, the sequence of tokens that it is asked to continue.
In the explorations presented below, the prompts crucially include
HTML comments, in English, that might appear at the start of a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Clayton Lewis

Web page. Remarkably, Codex’s corpus includes enough of this kind
of text, associated with code, to enable it to follow the comments
with appropriate code, in many cases. As will be illustrated below,
this means that Codex can be used to create complete, working
programs, with very little or no knowledge of programming needed
by the user.

3 USING CODEX FOR EXPLORATORY
PROGRAMMING IN A MATH TOPIC

Roschelle and Mason ([7]) and Mason ([5] report on a microworld,
created using the Boxer system [4], that can be used to explore
a family of problems that illustrate applications of group theory.
The problems generalize the Three Cups problem, in which one is
shown three inverted cups, and challenged to turn them all right
side up, under the constraint that one must always turn over two
cups on any move (the task is impossible). Roschelle and Mason
explore much more complex situations, in which there is an array
of objects, each of which can have a number of states, but legal
moves have to change the state of groups of objects at once. For
example, their system can represent a 3 x 3 array of stylized clocks,
with hands able to point to noon, three o’clock, six o’clock, or nine
o’clock, for which controls are offered that advance the hand of all
the “clocks” in a row or column (see Figure 1 , from Roschelle and
Mason, 1995, Figure 1.)

Figure 1: Boxer example from Roschelle and Mason, 1995.

Their system is intended to permit students not only to explore
that form of the puzzle, but also to modify the puzzle, so as to have
a different number of “clocks”, or a different number of allowed
positions for the hands.

Can this kind of program be created using Codex? The answer
is yes, with some limitations. Figure 2 shows a screenshot of a
Web application coded entirely by Codex. This program manages a
grid of objects with two states, H and T, thought of as coins. This
program allows one to flip the coins on the diagonals, as well as
the rows and columns (as provided in Mason, 1995).

Figure 2: Screenshot of Coin Flips Program

Listing 1: Prompt for Coin Flip
<!−− Create a web page with the title "Coin Flips "
show a 4 by 4 grid of letters
make all the letters H
write a function flip that take H and returns T, and takes

T and returns H
when a letter is clicked , flip it
write a function flipRow that takes a number and flips the

letters in that row
provide a button for each row
when this button is clicked , apply flipRow to that row
write a function flipCol that takes a number and flips the

letters in that col
provide a button for each col
when this button is clicked , apply flipCol to that col
add another button that flips the letters on the diagonal
add another button that flips the letters on the other

diagonal
−−>
<!DOCTYPE html>

The listing in Appendix A shows the code for this program,
which is about 80 lines of CSS, HTML, and Javascript. Listing 1
shows the English language description provided to Codex, from
which it generated the code.

The text shown in Listing 1 is not adequate, in that form, as a
prompt for Codex. Rather, the text has to be provided incrementally,
with the code produced at each stage being given back to Codex at
the next stage.

To describe this process, let’s continue to use “prompt” to refer
to material that is given to Codex when asking it for code. We’ll use
the word “request” to refer to an English language description that
is included in a prompt. A prompt may simply be a request, but
more often, as we’ll see, a prompt includes more than one request,
together with code that Codex produced in response to one or more
earlier prompts. We’ll call the programs Codex produced at each
stage “results”.

Listings 2-6 describe the sequence of prompts that were used to
obtain the code shown in the Appendix for the Coin Flip program.
As seen in Listing 2,Prompt 0 consists of just a request, that we’ll
call Request 0. Codex produced the program shown as Result 0.
The next prompt, Prompt 1, consists of Request 0, submitted again,
followed by the code in Result 0, followed by Request 1, that asks

Automatic Programming and Education Conference’17, July 2017, Washington, DC, USA

Codex to do a little more than Request 0. Prompt 2 is then formed
from Request 1, the code in Result 1, and a slightly augmented
Request 2. This pattern is repeated, until the result for the final,
complete request has been obtained.

As can be seen, each request is presented in the form of an HTML
comment, and followed by a tag that signals the start of a Web page.
That framing implicitly lets Codex know that the desired result
should be material that might follow the text in the request, that is,
that the result should complete a Web page that might start with
that comment.

Let’s consider some positive features of the example. First, a look
at the code shows that a great deal of coding knowledge is implicit
in this program, that is not present at all in the prompts. As user, I
simply did not have to know any of it. What I say in the prompts
is concerned almost entirely with what I wanted the program to
do, and not with how my wishes have to be translated into code in
some framework.(For clarity and concreteness, I will present my
experience with Codex in the first person.)

Second, notice the buttons, and code, for operating on the diago-
nals of the grid. Knowing that Mason had included these operations,
I wanted to include them too, but I was very uncertain that I could
describe what I wanted, without getting into details about grid
coordinates, and the like, that I feared might confuse the situation,
as well as adding to what a user would need to know to create
the program. I was surprised, and pleased, that the request shown
in Prompt 3 was adequate for Codex to handle the main diagonal
correctly.

Approaching the challenge of getting an operation on the other
diagonal to work, I was actually quite sure that I would not be able
to get Codex to accomplish this. Indeed, I would have to do some
thinking myself to work out how to specify the other diagonal. For
the main diagonal, row and column indices are equal, but what’s
going on on the other diagonal? Fortunately, as can be seen, Codex
spared me the need to worry about the matter.

On the less positive side, a little bit of computerese does show
up in the prompts: the word function. While I can’t be sure that
it would not be possible to get Codex to write a program like this
without using that term, I can say that I did not succeed before
introducing it. I believe the word function serves as a kind of a
bridge between the operation associated with a button, and the
button. That is, it may be easier for Codex to connect the code
needed for a requested operation to a button if it is told to use the
function construct, than if it has to work out the connection on its
own. Here, anthropomorphic language stands in for real insight into
how Codex’s behavior is organized, that we lack. I have collected
some speculative thoughts on this in Appendix B

4 CLOCKS?
Now, what about a program like this that has clocks, perhaps like
those in Figure 1, instead of just two-state coins (H vs T), as in the
first example? I was able to create a program with n-state objects,
as shown in the screenshot in Figure 3. Here the numbers represent
the positions of hands on a grid of "clocks"; they advance from 0 to 3,
and then return to 0. The final request for generating this program
in in Listing 7. The sequential process by which the final request
was realized was much like that for the Coin Flips example, save

Listing 2: Prompt 0 for Coin Flip, with Result 0
Prompt 0 consists only of Request 0 :
<!−− Create a web page with the title "Coin Flips "
show a 3 by 3 grid of letters
make all the letters H
write a function flip that take H and returns T, and takes

T and returns H
when a letter is clicked , flip it
−−>
<!DOCTYPE html>

Result 0 is :
<!DOCTYPE html>
<html>
<head>
< title >Coin Flips</ title >
<style>
table , th , td {

border : 1px solid black ;
}
</ style >
</head>
<body>
<h1>Coin Flips</h1>
<table>
<tr>
<td onclick=" flip (this)">H</td>
<td onclick=" flip (this)">H</td>
<td onclick=" flip (this)">H</td>
</ tr>
<tr>
<td onclick=" flip (this)">H</td>
<td onclick=" flip (this)">H</td>
<td onclick=" flip (this)">H</td>
</ tr>
<tr>
<td onclick=" flip (this)">H</td>
<td onclick=" flip (this)">H</td>
<td onclick=" flip (this)">H</td>
</ tr>
</ table>
< script >
function flip (element) {

if (element.innerHTML == "H") {
element.innerHTML = "T";

} else {
element.innerHTML = "H";

}
}
</ script >
</body>
</html>

Conference’17, July 2017, Washington, DC, USA Clayton Lewis

Listing 3: Prompt 1 for Coin Flip
Prompt 1 consists of Request 0 , Result 0 ,
and Request 1 , which is :
<!−− Create a web page with the title "Coin Flips "
show a 3 by 3 grid of letters
make all the letters H
write a function flip that take H and returns T, and takes

T and returns H
when a letter is clicked , flip it
write a function flipRow that takes a number and flips the

letters in that row
provide a button for each row
when this button is clicked , apply flipRow to that row
−−>
<!DOCTYPE html>

Result 1 consists of the same code as Result 0 , with the
following code added at the end of the body:

function flipRow(row) {
var table = document.getElementsByTagName("table")[0];
var tds = table . rows[row].getElementsByTagName("td");
for (var i = 0; i < tds . length ; i++) {

flip (tds [i]) ;
}

}
</ script >
<button onclick="flipRow(0) ">Flip Row 0</button>
<button onclick="flipRow(1) ">Flip Row 1</button>
<button onclick="flipRow(2) ">Flip Row 2</button>

that Request 0 asked only for the grid of numbers to be displayed,
before asking for any operations on the numbers to be implemented.
As shown, this program uses just numbers to represent the states

Figure 3: Numeric "Clocks".

of the objects, and not the more or less stylized clocks used in the
Roschelle and Mason papers. That’s because, despite a lot of effort,
I was unable to get any form of graphical representation of the
objects to work.

It’s not that Codex can’t “do graphics”. It certainly can. I was able
to get it to draw a single clock, and arrange for it to advance the
hand of that clock, and I was able to get it to draw a grid of clocks,
but not to advance the hands of groups of clocks in the necessary
way. I believe the issue is the complexity of doing graphics on Web
pages, as discussed further in Appendix B.

Layout is also a challenge. My efforts to get a 2D grid of clocks
failed completely until I injected the word “table” into the prompts.

Listing 4: Prompt 2 for Coin Flip
Prompt 2 consists of Request 1 , Result 1 ,
and Request 2 , which is the same as
Request 1 , with the addition of these lines :

write a function flipCol that takes a number and flips the
letters in that col

provide a button for each col
when this button is clicked , apply flipCol to that col

Result 2 includes the code in Result 1 , with the addition
of following code, inserted in appropriate places , as
seen in the final code listing in the Appendix.

function flipCol (col) {
var table = document.getElementsByTagName("table")[0];
var tds = table .getElementsByTagName("td");
for (var i = 0; i < tds . length ; i++) {

if (i % 3 == col) {
flip (tds [i]) ;

}
}

}
and
<button onclick=" flipCol (0) ">Flip Col 0</button>
<button onclick=" flipCol (1) ">Flip Col 1</button>
<button onclick=" flipCol (2) ">Flip Col 2</button>

Listing 5: Prompt 3 for Coin Flip
Prompt 3 consists of Request 2 , Result 2 ,
and Request 3 , which added this line to Request 2 :

add another button that flips the letters on the diagonal

Result 3 added the following code to Result 2 ,
together with a button to activate it :

function flipDiag () {
var table = document.getElementsByTagName("table")[0];
var tds = table .getElementsByTagName("td");
for (var i = 0; i < tds . length ; i++) {

if (Math.floor (i / 3) == i % 3) {
flip (tds [i]) ;

}
}

}

Without “table” as a hint, the code would draw the requisite number
of clocks, but all in a horizontal or vertical line. Coordinating its
“knowledge” of tables and graphics I conjecture is another part of
the challenge for Codex.

While the example in Figure 3 falls short of replicating some
of the desirable features of the Roschelle and Mason programs,

Automatic Programming and Education Conference’17, July 2017, Washington, DC, USA

Listing 6: Prompt 4 for Coin Flip
Prompt 4 was constructed in the same way from Request 3,
and Result 3 , adding this additional line to Request 3
to form Request 4 :

add another button that flips the letters on the other
diagonal

Result 4 is the code for the finished program, as shown in
the Appendix.

Listing 7: Final Request for Clock
<!−− Create a web page with the title "numbers"
show a 4 by 4 grid of numbers
write a function advance that takes a number and returns

the number plus 1, modulo 3
write a function advanceRow that takes a number and

advances the numbers in that row
provide a button for each row
when this button is clicked , apply advanceRow to that row
write a function advanceColumn that takes a number and

advances the numbers in that column
provide a button for each column
when this button is clicked , apply advanceColumn to that

column
−−>
<!DOCTYPE html>

there are some bright spots. The program does support much of the
exploration functionality Roschelle and Mason want. In fact, the
version shown here was created from a version in which the grid
was 3 x 3, by using the prompt shown in Listing 8. Similarly, using
a prompt in which "modulo 4" is changed to (say) "modulo 5", in
the second request, gives a program in which the "clocks" have five
possible states. The grid size for the Coin Flip program can also be
changed, in the same way.

Changing the grid illustrates the peculiar character of working
with Codex. Having been surprised by the ease with which Codex
handled the diagonals, in the first example, I was not surprised that
it could cope with a change from 3 x 3 to 4 x 4. However, it proved
unable to make the change from 3 x 3 to 3 x 2! It generated code
that draws only a 2 x 2 grid, whether I asked for 3 x 2 or 2 x 3.

That last point, the unexpected failure to handle certain grid
sizes, illustrates a larger, pervasive issue. It isn’t possible to know,
in advance, what Codex will do correctly, and not. Further, code can
look correct, but not work correctly. This is a practical irritation
even for simple problems, and would be a huge drawback for larger
problems, for which extensive testing would be needed to know
that one had really gotten what one asked for.

Relatedly, sequences of prompts described for the example pro-
grams mask the fact that a good deal of trial and error was needed
to find prompts that actually gave the desired effect. The use of

Listing 8: Prompt to Change Grid for Clock Program
<!−− Create a web page with the title "numbers"
show a 3 by 3 grid of numbers
write a function advance that takes a number and returns

the number plus 1, modulo 3
write a function advanceRow that takes a number and

advances the numbers in that row
provide a button for each row
when this button is clicked , apply advanceRow to that row
write a function advanceColumn that takes a number and

advances the numbers in that column
provide a button for each column
when this button is clicked , apply advanceColumn to that

column
−−>
<!DOCTYPE html>
...
−−code for the request above included here−−
...
</html>
<!−− Create a web page with the title "numbers"
show a 4 by 4 grid of numbers
write a function advance that takes a number and returns

the number plus 1, modulo 3
write a function advanceRow that takes a number and

advances the numbers in that row
provide a button for each row
when this button is clicked , apply advanceRow to that row
write a function advanceColumn that takes a number and

advances the numbers in that column
provide a button for each column
when this button is clicked , apply advanceColumn to that

column
−−>
<!DOCTYPE html>

“function”, mentioned earlier, is an example; it took some time to
find that using that term was important to Codex’s success.

Further, because Codex is stochastic in some of its operations,
repeating the same prompt will usually give different results. This
means that if a prompt does not produce working code, it can be
worthwhile submitting the same prompt again, hoping for better
luck.

This random behavior gives rise to the worry that one might
get bad code in response to pieces of prompt for which one had
received good code earlier. But an effect of giving code back to
Codex in a later prompt seems to be to freeze a correct response
into the later code.

5 ROTATING CUBES
To further evaluate Codex’s potential as a tool for exploratory
computing, I used it to investigate a problem that is posed in [5],
but not pursued in the paper:

Conference’17, July 2017, Washington, DC, USA Clayton Lewis

A cube is placed on each square of a chessboard. The
faces of the cubes are congruent to the squares of the
board. Each of the cubes has at least one black face.
We are allowed to rotate a row or column of cubes
about its axis. Prove that by using these operations,
we can always arrange the cubes so that the entire
top side is black.

As described above, I found that any Web graphics, let alone 3D,
would be hopeless with Codex, so I didn’t attempt to draw the
cubes. Instead I contented myself with a numerical representa-
tion, as shown in Figure 4, a screenshot of the finished Web pro-
gram. The program can be used online as a Web page at https:

Figure 4: Numerical Presentation of Rotating Cubes.

//claytonhalllewis.github.io/cubes/, where the code can be viewed
with an appropriate selection in a browser. The final request in
the prompt sequence for the program is shown in Listing 9. The
triples of numbers on the page represent the orientation of 9 dice.
The first number shows the number on the left face, the second
is the number facing us, and the third is the number on the face
towards the bottom of the screen. When you flip a row, all the
dice in that row are rotated 90 degrees around the horizontal axis
running across the row. When you flip a column, all the dice in that
column are rotated around the vertical axis running up and down
the row.

The development of this program had some unexpected twists. I
planned to use just two numbers to represent a die, the number on
the left face, and the one showing on the top. The column rotation
is pretty straightforward in that representation: the configuration
(m, n) goes to (n,7-m), given the way dice are numbered, in which
opposite faces add to 7. But the row rotations seemed pretty murky,
so I made up a partial table of inputs and outputs for that rotation,
and set to work to get Codex to do what I wanted.

Providing it with the code I had from the coins, that is quite
similar in structure, it wasn’t too hard to get it to do the basic
layout, but the rotation operation was a problem I thought Codex
would just write a bunch of tests (basically a switch on the input),
but it wanted to be cleverer, and produced a mess. Once I tumbled
to that, I gave it heavier hints, things like "look up the input pair in
this list of inputs, and return the corresponding element in this list

Listing 9: Final Request for Rotating Cubes Program
<!−− Create a web page with the title "nums with legend"
put this text on the page: "The triples of numbers on the

Web page represent the orientation of 9 dice . The
first number ... REMAINDER OF LEGEND TEXT HERE...
example, can you make the middle die show 6, while all the
others still show 2?"

make a 3 by 3 grid of triples of numbers with [1,2,3] in
each triple

write a function rotH that takes a triple [a ,b ,c]
and computes d = 7−c, then returns a new triple [a ,d,b]
when a triple is clicked , apply rotH to it
write a function rotHRow that takes a number and applies

rotH to the triples in that row
provide a button for each row
when this button is clicked , apply rotHRow to that row
write a function rotV that takes a triple [a ,b ,c]
and computes d = 7−b, then returns a new triple [d,a , c]
write a function rotVColumn that takes a number and applies

rotV to the triples in that column
provide a button for each column
when this button is clicked , apply rotHRow to that column
−−>
<!DOCTYPE html>

of outputs", but, though it "tried hard", it couldn’t get it. One issue is
that the Javascript indexOf method uses a comparison under which
arrays with the same values don’t show as equal. It certainly looked
as if the code, using that method, was fine; it just didn’t actually
work, because the array elements were themselves arrays.

That forced me to think harder about representation. I realized
that by using 3 numbers, rather than 2, both rotations are made
easy. That is, if the triple p,q,r represents a die with face p to the
left, face q on top, and face r pointing down the page,

Row rotation of p,q, r gives p,(7− r) ,q
Column rotation of p,q, r gives (7−q) ,p, r

The reason it’s so much easier is interesting: two numbers suffice to
specify the position of a die, if and only if you know its handedness.
There are two distinct ways to number a die, given the constraint
that opposite sides add to 7. With a standard die, if you look at the
corner where faces 1,2, and 3, meet, the numbers increase clock-
wise. On a die with the opposite handedness, the numbers increase
counterclockwise. The results of rotating the two kinds of dice are
different, and the rotation code has to reflect this.

The three number representation uniquely specifies not only the
orientation of the die, but also what handedness it is. For example, a
standard die can be in position (1,2,3), but a nonstandard one can’t.

This example raises a distinction about representations, to which
I will return below. In the earlier examples, Codex allowed me to
ignore nearly all questions of representation. Arguably, representa-
tion is an essential aspect of computation, one that provides much
of its value (see http://comprep.blogspot.com/). So an educational
practice in which representation can be ignored can’t be good.
But the rotating cubes example shows that the situation is more

https://claytonhalllewis.github.io/cubes/
https://claytonhalllewis.github.io/cubes/
http://comprep.blogspot.com/

Automatic Programming and Education Conference’17, July 2017, Washington, DC, USA

complex. Working with Codex allowed me to ignore a great many
aspects of representation, such as how triples are represented as
arrays; how these are laid out the screen, in HTML; how click han-
dlers are specified, and much else. But it enabled me to focus on
other, arguably more important questions of representation, in par-
ticular, how to represent the orientation of a cube, and rotations of
it. That is, the example suggests that Codex allowed me to ignore
intellectually uninteresting representational issues, while attending
to interesting ones.

The example raises another point that is relevant to a comparison
with Boxer, in particular, as a computational tool. I wanted to add a
description of the triples representation, and an example problem,
to the Web page. Initially I failed completely to get Codex to add
such content. In Boxer this sort of thing is utterly trivial: you just
type what you want, where you want it, so annotations, hints,
explanations, and suggestions for things to try are very simple to
add. One could say that Codex is the polar opposite of a direct
manipulation system. one can never work directly on the results of
a program to adjust what the program does.

Eventually I returned to the task, and succeeded. The key was
to get Codex to create code for a page titled "legend", with just
the legend text, and then give a prompt that combined the prompt
and code for that, with the prompt and code for the "nums" page,
that contained the program without the legend, and a request that
combined the two.

An interesting wrinkle was that I needed to change the title for
the combined page from just "nums" to "nums with legend". Earlier
attempts, just like this, only without the change of title, had failed.
One might think that things like page titles could not matter “to a
computer”, but with Codex, they do matter.

6 DISCUSSION
With these experiments as background, how would working with
Codex measure up to Andy diSessa’s goals for Boxer, creating a
computational literacy? Here is a statement from diSessa [3]:

To oversimplify, there are two contrasting concep-
tions of a computationally enhanced literacy. The
dominant one today I would describe as a trivial lit-
eracy. In this view, experts and software designers
will supply the general populace with highly tuned
and elegant tools and other pieces of software that
we will learn to use in the niches for which they were
intended-symbol manipulators, graphers, simulations
and simulation tool kits, and the like.
In contrast, a deep computational literacy offers one
crucial additional resource- in-principle access for
everyone to the creation and modification of the dy-
namic and interactive characteristics of the medium,
the very characteristics that define the medium as an
extension and improvement of text in the first place. In
metaphorical terms, reading without writing is only
half a literacy. Deep computational literacy means
"writing" in addition to "reading," creating as well as
using.

Would working with Codex provide a literacy, in this sense? In
discussing this question, we’ll often take Boxer as kind of foil, to

highlight the potential strengths and weaknesses of Codex in this
role. Let us approach this by reviewing lessons from the experi-
ments.

6.1 Codex allows someone to create programs
of the sort suggested for intellectual
explorations in math class, as illustrated by
the examples from Roschelle and Mason,
with very little knowledge of programming.

This has been demonstrated in the examples above. Note that the
claim is limited to this kind of program, where behavior is simple
and easy to check, and efficiency and strong confidence in correct-
ness aren’t important. For other kinds of programs knowledge of
programming would be needed.

6.2 Codex allows one to modify these programs,
in ways Roschelle and Mason suggest, still
with very little knowledge of programming.

This has also been demonstrated, with limitations. It is possible
to change grid size for programs, and the number of states of the
objects being manipulated, as Roschelle and Mason ask. But not all
changes were successful.

As noted, changing the shape of the grid did not work, on the
initial attempt. It is possible that a more concerted effort, involving
getting Codex to change the grid out of context, and then merg-
ing that solution in with the earlier program, would work. This
approach did work for the legend problem for Rotating Cubes.

That success remains uncertain brings out a difference between
Codex, as a tool for exploration, and Boxer. With Codex, one has
no way to know whether a given way of asking for something will
work, other than by trying it. With Boxer, once one has made the
investment of learning the relevant concepts, one can feel fairly con-
fident about one’s results. If one’s understanding of Boxer suggests
that something should work, then it likely will work.

6.3 Using Codex requires understanding
problem decomposition.

Getting Codex to work depends on breaking a problem into parts,
that are individually easy enough for Codex to handle, and that
can be combined into a complete solution. Arguably, the ability to
decompose problems is one of the skills one would like to see, in
the budget of intellectual benefits that a computational medium
would provide. Learning mathematics can also develop this skill,
but perhaps not as concretely as computing does.

It seems that Codex actually relies more on this skill than con-
ventional programming, including programming in Boxer. While
teachers of programming stress the importance of modular design,
and Boxer provides good support for it, modularity is not required
to make things work. Students very often neglect it, even after they
begin working on problems large enough to really punish them for
their neglect. With Codex, you can’t really get anywhere without
breaking even a simple problem into parts.

Conference’17, July 2017, Washington, DC, USA Clayton Lewis

A little more than just breaking a problem into parts seems to be
needed. As discussed, without the hint provided by the program-
ming term “function”, Codex seemed to have difficulty organizing
solutions to the sample problems.

As usual, it is uncertain how firm the requirement is for the use
of this term, or whether other terms might also work. But even
supposing that this word is needed, one can suggest that having to
get a sense of what kinds of operations can be described as functions
is a valuable part of the skill of problem decomposition.

6.4 In working with Codex, a great many
uninteresting representational details can
be ignored, while more fundamental ones
can be focused on.

This point was illustrated most clearly in the Rotating Cubes ex-
ample. As a Codex user I did not have to think at all about how to
lay out the number triples on the screen, or the difference between
an array and a list, or how to refer to a particular element of the
grid of triples, or much else. I did have to think about how to use
numbers to represent the orientations of cubes, and the interesting
issues there had to be, and could be, explored.

In evaluating programming languages, one can use a notion
of payload ratio. Starting with a computational idea, one writes
a program that implements it, and then goes through the code,
noting what statements, or parts of statements, express parts of the
computational idea, that is, the payload, and howmuch of the code is
needed just to make the program work, that is, overhead. For many
programming languages, declarations fall in the latter category, for
example. The payload ratio is just the rough proportion: how much
of the code expresses the computational idea, and how much does
not, but has to be written anyway?

From this standpoint, Codex looks very good. There’s very little
in the prompts that isn’t in the computational idea. Had I written
the code for the Web page myself, a great deal of what I wrote
would have been overhead, overhead that Codex spared me.

Tedious though it was to work with Codex, I nevertheless felt
that it provided me with a good computational scratch pad for
Rotating Cubes. I was free to wrestle with the key challenge of
representing the rotations, and really did not have to worry about
all the other things that went into the working program.

6.5 Codex allows one to create programs that
are integrated into external computational
ecosystems; in the examples, the Web.

A persistent issue in programming reform is what is sometimes
called the walled garden problem. One creates an attractive com-
putational world, in which one feels that one can do things in a
way that one really likes, elegantly clear and intelligible. Then one
faces the need to connect one’s creations to the big outside world,
producing results in a form that other systems can consume, and
consuming results from them. Often the simplicity and niceness of
life inside the garden is shattered, as outside considerations can’t
be kept out.

Codex is interesting in this respect, in that it consumes expres-
sions framed in the walled garden of the user’s conception, but

creates code that lives in the world outside. The code Codex cre-
ated for me included CSS, HML, and Javascript, all that cruft that
has been patched together to make the Web. But I did not have
to be concerned with any of that, to get a working program that
anyone can run in their browser. The OpenAI Codex Live Demo
at https://www.youtube.com/watch?v=SGUCcjHTmGY shows that
Codex can be used to interface with a specified API, and gives
further examples of its ability to connect the garden to the world.

Whether this arrangement is wholly a good thing or not in a
computational medium depends on one’s goals. One goal could be
to have such a capacious garden that one never needs to go outside,
to get one’s intellectual work done. Learning “real programming”
would then be a separate venture, undertaken only by thosewho (for
some reason) want to work with computation outside the garden,
say professional software engineers.

Codex would not be a good choice for the capacious garden goal.
Why? Because in the end Codex is working with the characteristics
of the code in its corpus, that is, “real programming” code, and not
the reformed code in one’s garden. Boxer, as a representative vision
of an inclusive garden, is a better fit here.

What if, instead, one’s goal is for one’s computational medium to
help one adjust to the big world, in the sense of being a step towards
“real programming”? Boxer may seem stronger than Codex in this
respect, in that there is some overlap between what a Boxer user has
to think about, and what a “real programmer” has to think about.
“Real programmers” have to keep track of different kinds of things,
and what can be done with them, like different data types. Boxer
offers a simple set of distinctions– there aren’t many different kinds
of boxes– but there are differences. In Codex, on the other hand,
one needn’t deal with these differences among things, explicitly, at
all, as we’ve seen in the examples. Boxer has control structures, too,
and Codex, as used in the examples, has them only implicitly: they
are there in the code, but hardly at all in what the user has to say.

It may be, though, that one could use Codex in a way that does
involve understanding and dealing with these issues. Indeed, one
use that is envisioned for Codex is as a programmer’s assistant: the
user is a programmer, and writes conventional code, and just gets
help from Codex with the details [2]. Thus Codex might form part
of a more or less conventional programming curriculum.

Finally, what if one’s goal is to inhabit a garden in which things
are simple, and little specialized knowledge is required, but at the
same time wants one’s creations to be able to connect with things
on the outside? As we’ve seen, Codex does seem to be able to fill that
bill, at least in the example of creating ordinary Web applications.
The OpenAI Codex Live Demo, mentioned earlier, shows that much
more can be done.

Boxer could be extended to interface with any given external
system, presumably, but developer effort would be needed to do that.
Codex would need work, too, to create explanations for students
of how to use a given platform, and this work, too, would likely
need to be done by a programmer, who could understand the target
system well enough. But it wouldn’t be software development work.

https://www.youtube.com/watch?v=SGUCcjHTmGY

Automatic Programming and Education Conference’17, July 2017, Washington, DC, USA

6.6 Codex has important functional limitations,
including handling graphics, and layout.

As mentioned, I was unable to create graphical representations of
clocks that would work. The issue seems to be that there are many
ways to create graphics on the Web, and Codex has trouble making
appropriate choices, based on the operations one needs to perform.
For example, sometimes Codex would propose code that would
display a canned image of a clock, which is hopeless for making
the hands move.

It is plausible that this limitation could be eased by creating a
collection of examples that could be included in one’s prompts,
when one needs graphics. Conceivably a form of turtle graphics
could be supported in that way, but this is far from clear.

Layout is also problematic, and success would probably require
knowing more about HTML than would be ideal, and giving Codex
a lot of hints based on that knowledge. Here the contrast with Boxer
is stark: there one just puts things where one wants them.

6.7 Codex, in its current form, is frustrating to
work with.

Using naked Codex, as I did, where one provides a prompt, and
collects the output, is tedious in many ways. Here are some.

One can’t tell whether the code will work without trying it out,
which means saving the code somewhere, and running it.

Often a prompt will not give working code on a first attempt,
and one has to choose between asking for another (stochastic)
generation for the same prompt, that may end up working, or
making a change to the prompt.

One can’t tell whether a given prompt will work or not. it often
took several iterations to find prompts, and a sequence of prompts,
that would work.

Assembling a prompt, so that it includes appropriate earlier
prompts, and associated code that Codex has generated for those
prompts, and an appropriate new request, is fussy.

Some of these issues could be helped by fairly simple tooling,
and indeed such tooling quite likely exists. For example, a tool that
would automatically bring one’s code up in a browser would be
great.

6.8 Codex is the opposite of concrete.
One of the design goals for Boxer is to make computation concrete.
For example, the values of variables can simply be exposed to view,
and program execution can be visualized in detail.

Codex could not be more different. Unless one can read code, as
a hypothetical math student exploring clocks cannot, one sees only
one’s own description, and the running program. Nothing about
program execution is exposed, and variables can be seen only if
one has asked to see them. Programs contain some variables one
doesn’t even know are there.

But does this matter, and in what way? For me, it was liberating
to be able to explore the Rotating Cubes problem, as a working
Web application, without having to bother with computational
details. Some of the same questions about goals that came up when
discussing the walled garden problem are relevant here. Perhaps I
don’t need to have computation made concrete to do what I want
with it, and perhaps I do, for other purposes.

6.9 Like Boxer, Codex is not one of those
“highly tuned and elegant tools and other
pieces of software that we will learn to use
in the niches for which they were intended.”

A common paradigm for computing in the schools is that students
are given tools created for specific purposes: a genetics simulator,
or a system for manipulating diagrams in geometry. One drawback
of this approach is that students have to learn to use to use many
tools, rather than a single framework, as with Boxer. A possibly
larger problem is that students, and teachers, can only explore paths
that have been identified and paved by the tool creators. They can’t
go off in directions of their own choosing. In particular, even if the
tools they are given have broad functionality, students won’t able
to work easily across the domains of coverage of different tools,
as Antranig Basman (personal communication, January 19, 2022)
has pointed out. It is widely recognized that domain boundaries
like these need to crossed, but that there are strong forces that
act to build them up (see Donald Campbell, [1]. It will be good
if computational tools can help reduce the barriers, rather than
strengthen them.

In this respect, Codex is like Boxer. There’s no a priori scoping
of what the tool can and cannot be used to explore (though there
are practical limitations, at least for now, as already discussed.)

The late Mike Eisenberg, who was a participant in the commu-
nity at MIT from which Boxer arose, argued forcibly and often
for the importance of supporting students’ interests. As long as
educational research is focused on finding educational interven-
tions for broad classes of learners, things that work pretty well
for most learners, it will be bounded away from truly realizing its
potential. That’s because extraordinary impact, for a learner, comes
from following their own intellectual direction, not one imposed
on them as members of a broad class.

7 CONCLUSION
Codex, and similar language-model based tools, have taken large
steps towards the goals of automatic programming researchers of
the 1980’s. As a medium for computational exploration in school, it
has intriguing capabilities. Whether one is attracted to its unusual
potential, or not, thinking about it may contribute to clarifying
our goals, as the educational computing community reflects on the
inspiring intellectual legacy of the Boxer project, and how its ideals
can be realized.

ACKNOWLEDGMENTS
I thank Antranig Basman, Katherine Hermann, Owen Lewis, and
Jason White for many useful discussions.

REFERENCES
[1] Donald T Campbell. 2017. Ethnocentrism of disciplines and the fish-scale model

of omniscience. In Interdisciplinary relationships in the social sciences. Routledge,
328–348.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[3] Andrea A DiSessa. 2001. Changing minds: Computers, learning, and literacy. Mit
Press.

Conference’17, July 2017, Washington, DC, USA Clayton Lewis

[4] Andrea A. diSessa and Harold Abelson. 1986. Boxer: A reconstructible computa-
tional medium. Commun. ACM 29, 9 (1986), 859–868.

[5] John Mason. 1995. Exploring the sketch metaphor for presenting mathematics
using boxer. In Computers and Exploratory Learning. Springer, 383–398.

[6] Charles Rich and Richard C. Waters. 1988. Automatic programming: Myths and
prospects. Computer 21, 8 (1988), 40–51.

[7] Jeremy Roschelle and JohnMason. 1995. Sketching aMultidisciplinaryMicroworld:
A Collaborative Exploration in Boxer. In Computers and Exploratory Learning.
Springer, 289–304.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in neural information processing systems. 5998–6008.

A CODE FOR COIN FLIP EXAMPLE

<!DOCTYPE html>
<html>
<head>
< title>Coin Flips</ title >
<style>
table , th , td {

border : 1px solid black ;
}
</style>
</head>
<body>
<h1>Coin Flips</h1>
<table>
<tr>
<td onclick=" flip (this) ">H</td>
<td onclick=" flip (this) ">H</td>
<td onclick=" flip (this) ">H</td>
</tr>
<tr>
<td onclick=" flip (this) ">H</td>
<td onclick=" flip (this) ">H</td>
<td onclick=" flip (this) ">H</td>
</tr>
<tr>
<td onclick=" flip (this) ">H</td>
<td onclick=" flip (this) ">H</td>
<td onclick=" flip (this) ">H</td>
</tr>
</table>
<script>
function flip (element) {

if (element.innerHTML == "H") {
element.innerHTML = "T";

} else {
element.innerHTML = "H";

}
}
function flipRow(row) {

var table = document.getElementsByTagName("table")[0];
var tds = table . rows[row].getElementsByTagName("td");
for (var i = 0; i < tds . length ; i++) {

flip (tds [i]) ;
}

}
function flipCol (col) {

var table = document.getElementsByTagName("table")[0];
var tds = table . getElementsByTagName("td");
for (var i = 0; i < tds . length ; i++) {

if (i % 3 == col) {
flip (tds [i]) ;

}
}

}
function flipDiag () {

var table = document.getElementsByTagName("table")[0];
var tds = table . getElementsByTagName("td");
for (var i = 0; i < tds . length ; i++) {

if (Math.floor (i / 3) == i % 3) {
flip (tds [i]) ;

}
}

}
function flipOtherDiag () {

var table = document.getElementsByTagName("table")[0];
var tds = table . getElementsByTagName("td");
for (var i = 0; i < tds . length ; i++) {

if (Math.floor (i / 3) == 2 − i % 3) {
flip (tds [i]) ;

}
}

}
</script>
<button onclick="flipRow(0)">Flip Row 0</button>
<button onclick="flipRow(1)">Flip Row 1</button>
<button onclick="flipRow(2)">Flip Row 2</button>
<button onclick="flipCol (0) ">Flip Col 0</button>
<button onclick="flipCol (1) ">Flip Col 1</button>
<button onclick="flipCol (2) ">Flip Col 2</button>
<button onclick="flipDiag () ">Flip Diag</button>
<button onclick="flipOtherDiag() ">Flip Other Diag</button>
</body>
</html>

B MORE ABOUT CODEX
I include here material not needed in discussing Codex as a com-
putational tool for education, that may be of interest to those who
are interested in the system itself.

Codex is a transformer [8], a complex, multilayer neural network
whose internal functioning is poorly understood. Elhage, Olah,
and coauthors at https://transformer-circuits.pub/2021/framework/
index.html make some progress in unpicking some aspects of in-
formation flow in these systems. They suggest that some of the
functioning of the network is best understood as copying material

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

Automatic Programming and Education Conference’17, July 2017, Washington, DC, USA

from the prompt to the output. The way the prompt and output are
represented internally actually means that nothing can literally be
copied, but rather must in a sense be reconstructed. Nevertheless,
behaviorally, much of what the system does has the effect of copy-
ing. One can see this in the examples of the prompts and associated
code, where stretches of the output code are identical to stretches
of the prompt.

In other cases it seems that the system is copying material from
its corpus, that is, from the vast body of code on which it was
trained. For example, Codex produced code for Prompt 0 of the
Coin Flips example, but that prompt included no code at all.

Here, too, actual copying is simply not possible. The system has
access to the corpus only during training, and not at all during
operation. And even during training, it is only given stretches of
code from the corpus to practice on, so to speak, and never has
access to the entire corpus at once. Nevertheless, we’ll speak about
“copying”, from the prompt and from the corpus, as if that is what
is happening.

All of the examples involve re-presenting to Codex code that it
itself generated, in response to an earlier prompt. One can speculate
that this helps by giving Codex more relevant code to copy. The
importance of this suggests, plausibly, that “copying” from the
prompt is easier than “copying” from the corpus.

Perhaps relatedly, the importance of problem decomposition
seems to be that Codex has extra difficulty “copying” material from
the corpus, when the request to be satisfied is complex. If it succeeds
in finding material for a simple request, and that material is then
re-presented in a prompt, it can work more effectively by “copying”
from the prompt, rather than from the corpus.

What’s involved for both sources, corpus and prompt, is more
than simple “copying”. The code needs to be adapted, and in just
the right way. For example, in the Rotating Cubes program, the
code for rotating columns,

function rotVColumn(col) {
var table = document.getElementsByTagName("table")[0];
var tds = table .getElementsByTagName("td");
for (var i = 0; i < tds . length ; i++) {

if (i % 3 == col) {
rotV(tds [i]) ;

}
}

}

is very similar to that for rotating rows, that was provided in the
prompt:

function rotHRow(row) {
var table = document.getElementsByTagName("table")[0];
var tds = table . rows[row].getElementsByTagName("td");
for (var i = 0; i < tds . length ; i++) {

rotH(tds [i]) ;
}

}

But, as can be seen, it is not identical. The “copy” process has to
work out when the material can just be “copied”, and when it has
to be adapted, and how.

In this case the transformation looks like a simple analogy, simply
involving the replacement of “row” by “col”, and “rotH” by “rotV”
but that is misleading. The prompt fragments corresponding to
these two stretches of code are

"write a function flipCol that takes a number and flips the letters
in that col" ,

in the earlier part of the prompt, and
"write a function rotVColumn that takes a number and applies

rotV to the triples in that column"
in the current request. The correspondences here are not trivial,

involving identifying “flips the letters” with “applies rotV to the
triples”.

In the same example, compare the code

function flip (element) {
if (element.innerHTML == "H") {

element.innerHTML = "T";
} else {

element.innerHTML = "H";
}

}

in the example provided in the prompt, with the corresponding
code

function rotH(element) {
var table = document.getElementsByTagName("table")[0];
var tds = table . rows[0].getElementsByTagName("td");
var td = element.innerHTML;
var split = td . split (" , ") ;
var a = parseInt (split [0]. substring (1)) ;
var b = parseInt (split [1]) ;
var c = parseInt (split [2]. substring (0, split [2]. length

−1)) ;
var d = 7−c;
var e = [a ,d,b];
element.innerHTML = "[" + e[0] + " , " + e[1] + " , " + e

[2] + "]" ;
}

generated in response to the request to rotate the triples. There is the
same high level structure in both, including the use of innerHTML
to get and set the values. But the bodies of the two functions are
quite different. The code for splitting up a triple, and putting it
back together, had to be “copied” from the corpus, not from the
prompt. It’s also noteworthy that the prompt said nothing at all
about how to perform the spitting and reassembly, or even that
these operations would be needed.

It appears that the “copying” process is affected by a kind of
interference. The system may be able to generate correct code for
request A, and for request B, but not for A and B requested at the
same time. But it likely will be able to satisfy A and B, if it is given
its separate solutions for A and B to work from, when given the
combined request.

Other contextual effects show that Codex’s response to input is
quite different fromwhat one expects from “computers”. On the neg-
ative side, asking for a Web page with title “Clocks” often brought

Conference’17, July 2017, Washington, DC, USA Clayton Lewis

in irrelevant, and quite complex, code dealing with clocks, even
though the code was not responsive to what was actually requested,
functionally. That is, even though one would normally think, “This
title is just a word, it doesn’t affect what ‘the computer’ will do,
Codex is affected by it. On the positive side of this effect, choosing
the page title “nums with legend” helped Codex integrate code for
displaying the legend into the code for the nums functionality, as
mentioned earlier. Here, “helped” is anthropomorphized language
for “It didn’t generate the correct code until I changed the page
title.”

Difficulty in “copying” from the corpus may be responsible for
Codex’s challenges with graphics, as discussed in the body of the
paper. Because there are different ways to create graphics on the
Web (tags, canvas, svg), and all of these are represented in
its corpus, Codex has to decide what to “copy”. It is easy to get

this wrong, because some forms of graphics don’t readily support
some of the operations that others do. For example, the transform
attribute of svg makes rotation easy, but if Codex has chosen a
different form of graphics, things won’t work out well, if rotation
turns out to be needed. It’s hard to help it over this kind of problem,
because, as mentioned earlier, it doesn’t respond well if asked to
do too many things at once. So one can’t just tell it everything it
will need to do, in an effort to help it make the correct choices.

To insert an education point here, it seems likely that human
learners face the same challenge. If there are many ways to do
something, selecting an approach, as a response to a simple cue,
isn’t possible. This is an educational argument for Boxer’s approach
of providing a single, integrated medium, over the alternative of a
mosaic of specialized tools for different problem domains.

	Abstract
	1 Introduction
	2 Codex is a language-model based system that generates program code.
	3 Using Codex for Exploratory Programming in a Math Topic
	4 Clocks?
	5 Rotating cubes
	6 Discussion
	6.1 Codex allows someone to create programs of the sort suggested for intellectual explorations in math class, as illustrated by the examples from Roschelle and Mason, with very little knowledge of programming.
	6.2 Codex allows one to modify these programs, in ways Roschelle and Mason suggest, still with very little knowledge of programming.
	6.3 Using Codex requires understanding problem decomposition.
	6.4 In working with Codex, a great many uninteresting representational details can be ignored, while more fundamental ones can be focused on.
	6.5 Codex allows one to create programs that are integrated into external computational ecosystems; in the examples, the Web.
	6.6 Codex has important functional limitations, including handling graphics, and layout.
	6.7 Codex, in its current form, is frustrating to work with.
	6.8 Codex is the opposite of concrete.
	6.9 Like Boxer, Codex is not one of those “highly tuned and elegant tools and other pieces of software that we will learn to use in the niches for which they were intended.”

	7 Conclusion
	Acknowledgments
	References
	A Code for Coin Flip Example
	B More about Codex

