
On the Generality of Boxer Principles of Spatial Metaphor and Naive Realism

Jeremy Roschelle
Digital Promise
jroschelle@digitalpromise.org

Abstract

Reflecting the principled design of programming languages for the express purposes of being
understandability and useful, the Boxer programming language rested on dual principles of
spatial metaphor and naive realism, as well as a broader principle of “reconstructability.” These
principles are over 35 years old and the language itself is mostly a museum piece today. Are
they relevant today? In a prelude, I discuss how and why these principles were incorporated
into the design of Boxer’s graphics system, a project I completed as an undergraduate student.
Then in an interlude, I consider how these principles played out in non-programming language
contexts in my work as a learning technology researcher. Finally, the postlude considers how
these principles might play out today and into the future

Introduction

Why can’t I easily control my router? Why is it so hard to program my smart house to do more
than trivial “its sunset; turn light on” routines? Why can my music software programmatically
manipulate the notes to add some swing, but I cannot inspect what it doing to the rhythm and I
can’t change how it swings if I want to? Why is my laptop so full of different automation
capacities—AppleScript, Automator, Bash, “Shortcuts,” Google AppScript—and I rarely use any
of them despite my MIT computer science degree? It’s well over 35 years since it was clear to
me that I was capable of writing little bits of code to do useful things—as long as the devices
met me halfway. Yet despite all the intervening advances in technology, my life is full of
highly-engineered user interfaces that still fail to meet my expectations.

My entry to this workshop on the history of the Boxer language is a playful reflection. The latin
word “lude” means playful and is a common English suffix. Alluding to a central joy of
Boxer—its playfulness—the Prelude section will reflect on my own early history with Boxer, its
principles and its graphic system. These importantly address how to design a programmable
system that is learnable and understandable. Then an Interlude section will discuss how
similar principles were included and influential in my subsequent work as a learning
technology researcher. Finally, a Postlude section will comment on the ludicrous state of affairs

1

mailto:jroschelle@digitalpromise.org

in my computationally-adept house that eludes my understanding, perhaps with brief allusion
to my early days spent with Music Logo and secluded attempts to master today’s music
composition software. I’ll conclude with an attempt at a lucid thought about ludic (playful)
computer interfaces.

Prelude

I went to MIT as an undergraduate because I liked to make things as a child by taking toys
apart and putting them together in new configurations. Much to my sister’s chagrin, this
included all manners of little alarms and surprises that might be triggered by her movements,
say, opening a closet door. An engineering school seemed right as I was very clear that
although I loved making music, making music would never pay the bills.

At MIT, I thought I’d be a physicist because the big ideas were so exciting to me. Combined
with another fact, this may explain how I ended up in the orbit of another physicist, Andy
diSessa. My career as a physicist ended quickly, yet my time with Andy continued on for many
years. Although I fondly remember a few classic MIT physics lectures, such as Walter Lewin on
rainbows, as best I could tell the physics department was hellbent against learning. Each day,
the sliding blackboards of lecture hall 26.100 were meticulously filled with equations from the
first board, top left, to the ninth and last board, bottom right. An hour of lecture and not a
moment devoted to making sense of all the formalism. This is exactly what motivated me to
become a researcher in learning technology—I knew there had to be a better way to teach
those who were enthralled by STEM concepts but not in love with equation manipulation.

I landed in computer science because Hal Abelson and Gerry Sussman excelled in explaining
big ideas in the legendary Scheme course, 6.001, which at the time was supported by a paper
binder of lecture notes, yet to become a book (Abelson & Sussman, 1985). Functional
programming, lambda expressions, closures—oh my!—I thrilled to learn that computer science
was more than glorified hacking. Hacking, of course, was also in abundance at MIT. Indeed
students who were up a bit too late hacked buildings well before we had the possibility of
smart homes. In the differences between computer science and backing, I learned a first
principle: “side effects” or a program that changed some external state or relied on external
state was the antithesis of functional programming.

2

Later, my musical interests attracted me to
Building 20, a somewhat ramshackle quonset
hut, because there were very nice practice
pianos there. And down the hall was Jeanne
Bamberger, doing wonderful things with Music
Logo (Bamberger, 1991). What Jeanne taught
with Music Logo blew my mind. Constructivist
music appreciation! I had thought of music as
transmitted from the composer through the
instructions to the performer to the ears of the
passive listener. Jeanne turned this completely
upside down, enlightening me as to how music

was instead constructed. Constructed by the listener. Constructed by the performer. And only
loosely guided (especially with regard to its emotional impact) by the composer. The
instrument of my constructivist re-birth was a programming language that represented music
as lists which could be inspected, played by the Apple II, and playfully transformed either by
typing or by writing little snippets of Logo code. For a term paper, I analyzed Beethoven’s Fifth
by seeing how far I could get with only inputting four notes directly (“ba ba ba bum”) and
producing the rest of the first movement by writing code to transform those four notes. By
constructing my own 5th facsimile I not only came to better understand Beethoven’s
composition as playful transformation of motif, but also where he artfully inserted non-motif
notes and phrases to make it all work (Roschelle, 1982).

Hal Abelson happened to be my undergraduate advisor and Jeanne was my mentor, and thus it
should be no surprise that I eventually met Andy diSessa. Andy cared about those two things
that were most driving me. He cared about Big Ideas. And he cared about how people could
Learn Big Ideas. When it came time to do a senior thesis, Hal and Andy observed that Boxer at
the time had no graphics and likely thought to themselves: “well, let’s stick an undergraduate
on it, maybe we’ll get lucky,” So I was asked to make the graphics for Boxer.

Of course, Andy and Hal wanted turtle graphics in Boxer. They had recently published another
mindblowing treatise, Turtle Geometry (Abelson & diSessa, 1981), in which they demonstrated
that very abstract and high level mathematical concepts could be understood playfully by
investigating the travels of the lowly turtle. And herein, I ran into a dilemma. Turtle graphics
was all side effects. The little triangular drawing tool on the screen, called a “turtle,” was the
anti-hero to which every good Scheme-devotee trained in the art of functional programming
must take offense. In Logo, you write code and the turtle does things; it is state-dependent, but

3

only reluctantly reveals its state to those who inquire via mysterious incantations. Is the turtle
hiding or showing now? Is its pen up or down? I don’t know, do you?

Boxer, of course, was made of boxes. Therein I found a solution (Roschelle, 1985). The first
part was obvious: I would create a graphics box in which graphics could be drawn by a turtle
(renamed “sprite”). This merely partitioned the screen to create a place for graphics. Further, I
wanted to reflect the containment of the turtle within the graphics box in my design. However,
I did not want to mess up the nice clear drawing surface by littering it with code. This tension
led me to a new invention for Boxer, which was the idea of a box that could be “flipped” to
reveal its backside. On the backside of a graphics box, I made a box for the turtle.

This design decision had two very positive
consequences. First, because the graphics
and the turtle were now boxes, I could use
the existing box-naming convention to
give them names. I could call my turtle
“fred” and send it commands by writing
“tell Fred [Square 40]” leading Fred to
draw a square of size 40. Second, I could
put more boxes inside of Fred to
correspond to the turtle’s state. A turtle
has position, and so there were x-position
and y-position boxes for every turtle’s
coordinates. Likewise, a turtle has a
direction it points, and thus there was a
heading box. Likewise, there were boxes
for pen state (up or down) and whether
the turtle was visible (hidden or shown).
These boxes were specially recognized by
my code so that the correspondence

between the backside and frontside were maintained. If you changed a turtle’s orientation with
a command like “left 65,” you could see both the turtle spin to a new orientation and see its
numerical heading change in the heading box. If you typed a new number in the heading box,
the turtle would likewise pivot to the new heading.

Hal and Gerry used the term “syntactic sugar” for programming conventions that avoid really
awkward code, and I sprinkled two kinds of sugar in my design. I made up a new Boxer

4

convention of “transparent” boxes, which grouped a portion of the screen but did not make a
new scope for the variables within. Hence, instead of awkwarding writing “tell graphics [tell
fred [right 65]],” one could just tell Fred directly. I also took advantage of portals, which
allowed a box to be shown in more than one place. In my design, one could make a portal to a
particular turtle variable of interest and thus give that variable a new name in a different place.
For example, when making two turtles dance, one might want to easily access both their
headings without lots of tell statements. This could be accomplished by two portals, one
called “Fred-Heading” and the other called “Beth-Heading,” each which would allow access to
get or set the turtle’s orientation from within a program. (Another little bit of sugar was that
one did not have to show ALL a turtle’s state variables; they could be removed or reinserted as
needed; this avoided clutter).

There was a final element that bugged me about my early design. The drawings of the turtle
on the graphics box were still side effects; one could only clear all the previous trails of the
turtle pen, but could not programmatically move a drawing to the left or the right. Also, the
turtle was only sort of an object. It was an object from a programming standpoint, but users
could not click on the turtle, for example, to pick it up and move it or to cause it to do
something. Boxes to the rescue!

Around this time, I was programming on a LISP machine in the corridor of the AI lab, because
the way an undergraduate student could gain access to a machine was that the terminals were
left in the hall. Seymour Papert had a photo shoot and apparently needed to be captured
working with a student. Apparently I fit the bill and thereby secured my 5 minutes of
Warholian fame in which I made my turtles dance in the presence of Seymour Papert.

Back to boxes. I decided that the turtle’s
own shape did not have to be a triangle, but
rather by creating a “shape” box inside the
turtle, one could provide a program that
would draw the turtle. This enabled turtles
to look like arbitrary drawings (and even
text), and thereafter moving a turtle on the
screen could translate an entire drawing to
a different portion of the screen. Another
kind of box was a “click” box, and when the

user clicked on a turtle’s shape on the graphics side of the box, the code in the backside would
be executed. Thus the turtle was now a real object both in the code and in the user interface.

5

In 1986, a year after I left MIT, Andy and Hal published a nice piece that explained the
principles which we had been talking about and I had implemented (diSessa & Abelson, 1986).
The graphics design was consistent with Boxer’s design as a reconstructable medium. That is,
if you come upon a graphics box that does something you like, you can flip it over to see all the
code responsible for that behavior. In the paper, the authors give an example of a simple
rocket-launch video game in which one can flip over the box to see what makes the rocket
move. Of course, all the code is also editable, so you could copy the box and edit it to do what
you want. Consistent with spatial metaphor, the graphics design made use of containment so
that turtle’s state variables were inside turtles and so that turtles were inside graphics boxes.
The continuation of the spatial metaphor allowed for consistent ways to name and “tell”
commands to turtles, to support multiple turtles in one graphics box, to use portals to access
variables, and more. The idea of “flipping” a box allowed for the relationship between a new
user interface (like the rocket game) and its code to be expressed spatially. Finally, naive
realism was present in how a box that looked like a turtle’s heading or position acted as if it
actually directly controlled the turtle’s visible orientation and location.

Interlude

I left MIT for the wild west of Berkeley, following Andy diSessa’s own move to become a
professor in the School of Education. In graduate school, I did not continue with Boxer, but
instead returned to my original motivation: why was physics so hard to learn and how could
technology make it easier?

At Berkeley, I became interested in theories of mental models (Johnson-Laird, 1983) and how
they support learning (Gentner & Stevens, 2014) as well as ideas about visual representations
to support learning (Kaput, 1992) and qualitative reasoning (Bobrow, 1984). These learning
principles strongly relate to the Boxer design principles of naive realism and spatial metaphor. I
was thrilled to read about a meeting of Einstein and Piaget (Miller, 1992), in which they
discussed how playful exploration of space was both intrinsic to child development and
Einstein’s own construct of special relativity. It was not just spatial metaphor and naive realism,
but also a constructive learning-by-doing approach that invited the learner to be playful. In a
ludic turn, I realized play was fundamental to learning, and that human cultures have always
designed play environments for their young. But what kinds of principles allow playful learners
to learn some of the difficult math and science concepts we ask them to learn today?

In my dissertation work, I continued with the Boxer principles in the design of the “Envisioning
Machine,” software which supported high school learning about velocity and acceleration

6

(Roschelle, 1991). In the Envisioning Machine, students could directly manipulate vectors
(using a mouse to change the direction and length of arrows) that represented velocity and
acceleration. They would use this ability to model an animated motion in one screen called “the
Observable World” using the animated vectors in another screen called “the Newtonian
World.” I discovered that students learned about velocity and acceleration because these
spatial visualizations enabled them to bring familiar metaphors like “pulling” and “stretching”
to bear (Roschelle, 1991); these metaphors were also termed “p-prims” (1983) and linked to
qualitative reasoning. I also found that spatial metaphors and naive realism were good for
supporting collaborative learning; two students could readily use the pragmatics of
conversation to together construct shared meanings for Newtonian vectors (Roschelle, 1992).
This happened as students played a game (which scientists would call modeling) in which they
tried to make the Newtonian World do the same thing they they saw in the Observable World.

I did this research by videotaping students as they collaborated with the Envisioning Machine
and I needed a way to ease the burden of analyzing the videotapes. Spatial metaphor and
naive realism again came into play as I developed two video analysis tools, VideoNoter and
CVideo (Roschelle, Pea & Trigg, 1990). Each used a timeline to allow spatial control of the
motion of the video transport, and then supported annotations placed in time alongside the
timeline. One could both see where the video was currently playing (while watching relevant
annotations) or drag the time indicator to a new location (e.g. near a target annotation) and the
video would rewind or fast-forward to play from that location.

I also taught a discussion section of the Berkeley version of 6.001 (using the Abelson &
Sussman, 1985 book). In so doing, I drew Boxer-like diagrams to explain many of the scheme
concepts related to variables. The students responded particularly well to using boxes to

7

explain environments and closures, programming language features which otherwise are very
abstract to understand.

Later, I was involved in development of SimCalc, which was a tool to support student learning
about rates of change, a topic in Calculus (differentiation and integration) but also important to
middle school mathematics (proportional reasoning and linear function). SimCalc allowed
students to directly manipulate slopes in graphs (dragging the slope with their mouse) and to
see resulting motions, for example, of a soccer player moving along a field. Students have a lot
of trouble at first separating rates from totals. For example, in the common phase “the
economy is down” do we mean that Gross Domestic Product is shrinking (really bad) or only
that the rate of economic growth is slowing (not so bad)? This kind of confusion between a rate
and amount often leaves a student who is learning about rate in the dust.

Figure: Two students using SimCalc

Whereas most teaching in middle school mathematics relies heavily on how to manipulate
algebraic expressions, we found that introducing rate and proportionality via manipulation of
spatial, visual representations was more successful. In a classic exercise that is very commonly
used as a diagnostic in national or international math tests, students who first played with
SimCalc were later able to distinguish (a) a point of intersection between two graphs (being at
the same position) from (b) parallel slopes of two graphs (moving at the same speed). Later a
team built 7th and 8th grade curriculum units with SimCalc, and we conducted a randomized
controlled trial across schools throughout Texas. We found greater learning for students who

8

used SimCalc curriculum units (Roschelle et al, 2010), a finding which supports the power of
Boxer principles of naive realism and spatial metaphor.

Although none of the Envisioning Machine, CVideo, nor SimCalc were written in Boxer, the
principles carried forward to support learning of difficult math and science topics.. Indeed,
looking back now at the diSessa and Abelson (1986) article, I realize I was chasing the same
broad problem. Their writing about programming languages complained that the designers of
programming languages were applying criteria — formal simplicity, efficiency, rigor, uniformity
— that were great for experts, but inappropriate for learners. Similarly, instructors in
mathematics and physics at the time tended to emphasize algebraic forms which are concise,
efficient, rigorous and uniform, but terrible for providing conceptual insight to learners. Those 9
sliding blackboards in my undergraduate physics class in 26.100 were filled with algebra that
was not only hard for ME to learn, but really hard for most anyone to learn. And 26.100 is not
just at MIT, but its also what every middle school mathematics classroom is like. And we
wonder why students are turned off by math in middle school!

The 1986 article instead called for a focus on understandability, usefulness to do things the
learner wants to do, and tightly integrated designs for user interaction with graphical
visualizations. This call to action applies to more than Boxer; it also to what I was finding
worked for learners of physics (the Envisioning Machine) and mathematics (SimCalc). And by
conducting both rigorous qualitative and quantitative research, I had found that the principles
really worked for mathematics and physics learners, especially when coupled with enabling
playful engagement in problem solving.

9

Coda

During this time, I also decided to eat my own dog food by now trying to learn something that
had eluded me back at MIT, quantum mechanics. This time I would try to learn this difficult
topic with spatial metaphor and naive realism. Despite the awful instruction I had experienced,
some MIT instructors excel at teaching and one of the most famous in this regard was Richard
Feyman. As part of an online distance-learning course, I read his book QED (Feynman, 1985).
As I learned about photons, I was shocked to realize that quantum mechanics could be
understood through geometry — space — and not only through formal algebraic
manipulations. It occurred to me that The Geometer’s Sketchpad, a constructive environment
for building interactive, dynamic geometric drawings, could be used to build my own models of
QED. With the help of Sketchpad’s inventor, Nick Jackiw, I built geometric diagrams in which I
could draw the many possible paths of a photon from a source to a destination. Each path
supported the travel of a spinning clock hand (unit vector), and the intensity of the light at a

destination was calculated by the
magnitude of vector sum of all such
spinning clock hands. The vector sum
appears as a curling object which
converges pretty quickly to the final
intensity prediction, even with just
tracing a handful of possible photon
paths. I could interactively play with my
diagrams and see the resulting
predictions for the intensity of light and
thereby understand many intriguing
phenomena with interference patterns
and the like. I was able to understand
Feyman’s explanations of quantum
mechanics!

So in the end, playful engagement with
spatial metaphor and naive realism —
Boxer’s principles — enabled me to
come to an intuitive, constructive
understanding of the very concepts
which had caused me to abandon
undergraduate physics.

10

Postlude

The Boxer principles fit with other cognitive and social principles, such as mental models,
collaborative learning, and constructivism. Today, one obvious application is supporting
students to learn computational thinking and computer science. Such work is being ably carried
forward in environments like Scratch and AppInventor and by new robotics toolkits that recall
the mechanical turtles in 1960s Logo. As part of my work, I visit schools all over the country.
I’ve been amazed to see very young children such as first graders able to explain the code they
built to me. Obviously the principles that Logo and Boxer brought us are still very important to
a central dilemma of 21st century education: how to teach all students about computer
science.

And yet I wonder if the use of these principles shouldn’t be for more than for children and for
more than computer science learning. I wonder if the success of graphic user interfaces in our
everyday lives is reaching a limit, and whether ordinary people might benefit from approaches
that are enabled by allowing people to write code that augments the machines they use
everyday.

Clearly Apple thinks so; it has provided my MacOS with at least four different scripting
approaches: AppleScript, Automator, Shortcuts, and the shell. While powerful and “simple,” I
find these are all terrible things to use and it’s hard for me to find any fellow Mac users who
use them. Each scripting language simplifies the syntax of programming but does nothing for
understandability. And I wonder why. The MacOS has a rich naive realism metaphor of a
desktop with folders containing folders (like boxes in Boxer) and you can even attach “Folder
Actions” to folders to cause them to do something when their contents change. AppleScript,
like Boxer, uses “tell” to navigate the objects in a hierarchy. Yet in my experience, it is so hard to
make sense of what an AppleScript is doing and so mysterious when it fails. Simplifying
programming syntax without an accompanying design-for-understandability appears clearly
insufficient for people like me. I can’t “play” with any of these approaches; if I have to use them
for a project, I now know that I’m going to have hours of painful debugging awaiting me.

Likewise, I’ve played with many devices in my smart home. The smart home systems all use a
quasi-spatial metaphor, for example, devices are in rooms and zones contained in a home. And
yet none of the smart home hubs I own (considered among the industry’s best) present a visual
spatial metaphor to help me understand where my things are, or to locate the “routines”
(programmability) adjacent to the devices being programmed. No wonder that I can get as far
as “when its sunset, turn some lights on” but none of my programmable smart home devices
has more than a handful of user routines in it. Lacking the spatial metaphor, I get overwhelmed

11

with the complexity of a long list of rules. And trying to fit my automation ideas into someone
else’s narrow rule formalisms quickly gets frustrating.

I also long for Music Logo. Musical production software is amazingly powerful and yet I find
learning it to be too much of a career for the amateur. All the software organizes music in
timelines, and the notes you you play shows up as boxes that you can move around and
manipulate. And yet the only way I can see what is in the box is through the software’s chosen
graphical interface, and this is even though the notes are stored via Midi as numbers in
lists—the very same numbers in lists that I was able to enjoyably manipulate in Music Logo on
an Apple II. 40 years later and it was easier to programmatically manipulate music on an Apple
II than a modern Mac.

Although it obviously appears ludicrous to many in the software industry, I wonder if were
aren’t up against some complexity barriers in everyday products that could be well-addressed
by re-organizing the products for understandability and for giving the user the ability to write
small bits of code, presented through a spatial metaphor and naive realism, and offered with
support for learning by play. Enabling everyday users to play with code they can learn and
reconstruct, when supported by artful design, isn’t ludicrous. Indeed, to conclude, I believe
what Boxer tells us is this: the ludic path is the lucid path to the future.

References

Abelson, H & Sussman, G, (1981). Turtle geometry. MIT Press. ISBN: 0-262-51037-5
Abelson, H & Sussman, G, (1985). Structure and interpretation of computer programs. MIT

Press. ISBN: 0-262-51087-1
Bamberger, J.S. (1991). The mind behind the musical ear. Harvard University Press. ISBN:

0-674-57607-1
Bobrow, D. G. (1984). Qualitative reasoning about physical systems: an introduction. Artificial

intelligence, 24(1-3), 1-5.
DiSessa, A. (1983). Phenomenology and the evolution of intuition. In Gentner & Stevens (Eds).

Mental models.
diSessa, A. A., & Abelson, H. (1986). Boxer: A reconstructible computational medium.

Communications of the ACM, 29(9), 859-868.
Feynman, R. (1985). QED: The Strange Theory of Light and Matter. Princeton University Press.

ISBN: 9780691083889
Gentner, D., & Stevens, A. L. (Eds.). (2014). Mental models. Psychology Press.
Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language,

inference, and consciousness (No. 6). Harvard University Press.

12

Kaput, J. (1992). Technology and mathematics education. In Handbook of research on
mathematics teaching and learning

Miller, A. (1992). Imagery and intuition in creative scientific thinking. Creative people at work:
Twelve cognitive case studies

Roschelle, J. (1982). Music, Martians and Computers. Unpublished term paper.
Roschelle, J. (1985). The design of a graphics subsystem for Boxer. Unpublished thesis.
Roschelle, J. (1991). Students’ construction of qualitative physics knowledge: Learning about

velocity and acceleration in a computer microworld. Unpublished doctoral dissertation,
University of California, Berkeley

Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. Journal of the
Learning Sciences, 2(3), 235-276. https://doi.org/10.1207/s15327809jls0203_1

Roschelle, J., Pea, R., & Trigg, R. (1990). VideoNoter: A tool for exploratory video analysis
(Report #90-0021). Palo Alto, CA: Institute for Research on Learning

Roschelle, J., Shechtman, N., Tatar, D., Hegedus, S., Hopkins, B., Empson, S., Knudsen, J. &
Gallagher, L. (2010). Integration of technology, curriculum, and professional
development for advancing middle school mathematics: Three large-scale studies.
American Educational Research Journal, 47(4), 833-878
https://doi.org/10.3102/0002831210367426

Acknowledgements

Thank you to my mentors in Boxer, Andy diSessa, Hal Abelson and Jeanne Bamberger, and to
Antranig Bosman for prompting these reflections.

13

https://doi.org/10.3102/0002831210367426

