
10. Creating Software Applications for Children:
Some Thoughts About Design

Michael Eisenberg

Department of Computer Science and Institute of Cognitive Science
University of Colorado, Boulder, CO 80309-0430 USA

Abstract. The last decade has seen an explosion in the number, variety, and com­
plexity of software applications. While this phenomenon has been most pronounced
in the world of professional software (i.e., commercial software aimed at adult pro­
fessionals), it is no less true in educational software. Moreover, the trends visible in
commercial application design-notably, an increase in interface complexity, and
proliferation of narrowly domain-specific packages-are likewise visible in the
educational realm.

This paper makes several arguments about the design of such "high-functional­
ity" applications for educational purposes. First, it argues that these applications
should be programmable, incorporating elements both of direct manipUlation inter­
faces and of programming environments. Second, it argues that there need be no
firm boundary between "professional" and "educational" applications. Third,
it argues that a variety of "scaffolding elements," such as software critics and
example-based catalogs, are useful experimental techniques with which to enhance
the leamability of educational applications.

The paper presents three working prototypes of programmable applications, for
the domains of graphics, computational physics, and charting, respectively. All three
are based in the Scheme dialect of Lisp, and collectively these applications illus­
trate methods of putting the above-mentioned design principles into practice.

10.1 Introduction: The Advent of Educational Applications

Over the past decade, a quiet revolution has occurred in the culture of educational
software. In the early 1980s, the most visible and spirited debates in the educational
computing community focused on a few central questions--e.g., whether drill-a,nd­
practice programs were pedagogically valuable (cf., Solomon, 1986, ch. 2); or how
best to incorporate cognitive models and artificial intelligence techniques into edu-

176 Eisenberg

cational software (Sleeman and Brown, 1982); or whether (for instance) BASIC or
Logo was the best programming language for children to learn (Luehrmann, 1982).
While none of these issues has disappeared, the traditions of software design that
they reflect-computer-assisted instruction, intelligent tutoring systems, and child­
friendly programming environments-have collectively been challenged, if not
eclipsed, by the advent of what might be called "educational applications."
Programs such as SimCity, SimLije, Interactive Physics, Kid Pix, the
Geometer's Sketchpad, and the Explorer series are representative of this
trend-all might be viewed as tools, applications, or simulations aimed at
elementary or high school students.

To be sure, there is a wide variety of styles and educational approaches repre­
sented even in this small set of examples. SimCity and SimLije are perhaps closer in
spirit to "games" than applications, and in their nontraditional subject matter they
are less "classroom-oriented" than other games (some examples like the popular
Carmen Sandiego series are both more game-like and more classroom-oriented in
style). The Geometer's Sketchpad is best described as a mathematical tool, while
Kid Pix might be classified as a true graphics application for children. And of course
these examples do not appear without historical precedents: Earlier programs like
Rocky's Boots might be seen as conceptual ancestors of more recent educational
applications. In any event, while a fine-grained history and taxonomy of the most
popular educational software would be a desirable project, we needn't pursue the
point at length here; for our purposes, we can identify several typical elements of
educational software applications. These include: domain-specific simulation
components (as in SimCity and the Explorer series); feature-rich direct manipula­
tion interfaces (as in SimLije, Interactive Physics, and the Geometer's Sketchpad);
and a focus (as in Kid Pix) on the creation or design of artifacts-such as drawings,
compositions, multimedia "shows," and so forth-as opposed to the solution of
software-posed problems. While none of these individual elements is a necessary
or sufficient condition by which to classify educational software as "application
software," they are representative of an overall "tool/application-based" style of
work. And we can further identify these applications by noting a particular power­
ful element that they tend not to include: namely, a student-accessible program­
ming environment (in the tradition of Logo (Papert, 1980) or Boxer (diSessa and
Abelson, 1986)).

Despite the very real successes achieved within the educational-application
paradigm-and despite the tremendous creativity evinced by the best programs­
this last point may be seen as a troubling one. Some of the more ominous trends
visible in the design of educational applications mirror those occurring in the world
of commercial applications; and in both cases, these trends may arguably be traced
to the absence of programming environments.

Consider, for instance, the burgeoning growth of application complexity in both
the commercial and educational realms. A perusal of one's local newsstand, and

Creating Software Applications for Children 177

the collection of magazines devoted in large part to software advertisements and
reviews, will confirm this phenomenon in the world of commercial applications.
Typically, reviews or advertisements of new or updated software will focus On the
description of ever-larger numbers of interface options or features:

"XyWrite 4.0 ... offers improvements in performance and dozens of new commands
and ease-of-use features." (PC World, May 1993)

"Publish It! Easy is an entry-level desktop-publishing program packed with page­
layout features you'd expect to find only in packages costing three times the
price [It] offers a wider range of paint and drawing tools than in previous
versions " (Mac Computing special issue, 1993)

"The latest version of Theorist features several important enhancements ln ad­
dition to adding support for tables, the new version of Theorist provides QuickTime
support Other new features include support for Fourier transforms and Bessel
functions, the ability to create scatterplots from tables and matrices, and the abil­
ity to customize the appearance of notebooks with different fonts." (Mac User,
June 1993)

"MacProject Pro is a significant upgrade to MacProject II, providing tools for
better organization and entry of data, enhanced display capabilities, much­
improved resource management, more-sophisticated scheduling features "
(MacWorld, May 1993)

It is in fact unusual to find an advertisement or review of a new release (or up­
grade) of existing commercial software that fails to describe a marked increase in
the number of features; and the same pattern of growing complexity can be seen in
educational applications as well. The interfaces of programs such as Interactive
Physics and SimLife are impressively (one might argue, dauntingly) large.' Even
the original Kid Pix program-following the pattern of its commercial graphics­
software cousins-has been followed by a subsequent release of add-ons to the
earlier system.

In both the educational and commercial realms, then, software design is charac­
terized by a spiralling growth of feature-sets. But while most reviews and adver­
tisements describe this burgeoning feature-expansion in unhesitatingly positive
terms, it is possible to view this trend with at least a certain degree of ambivalence.
To take a specific instance, a recent advertisement of the well-known CorelDraw
program noted that its latest release contains over 100 "feature enhancements" (PC
Computing, July 1993). One might reasonably ask whether the fifth or sixth itera­
tion ofthis upgrade process will result in five or six hundred such additions; and if
so, how will users ever hope to accommodate this deluge of novelty? More point­
edly, will these five hundred new features really alter or improve users' under­
standing of graphics, or, more likely, will the users simply be overwhelmed? These
questions take on even more urgency in the realm of educational software, where

1 For instance, the Sim Life interface, by a rough count, has over 300 menu choices and
control options (and over 200 pages of accompanying documentation).

178 Eisenberg

huge feature-sets lend an especially frantic and busy tone to applications. Rather
than promoting a style of usage in which students can develop patient mastery over
a creative medium, these feature-sets instead encourage endless moment-to­
moment exploration of designer-supplied interface features. The result is that mas­
tering the interface of one of these applications takes precedence over mastering
the purported subject matter; one text on SimCity, for instance, devotes a substan­
tial proportion of its instruction to techniques for succeeding in the game itself
(e.g., how to "fool" the program into ignoring special patterns of taxation (Dargahi,
1991)) as opposed to ideas related to the "real" topic of city planning.

Yet another troubling aspect of application development that is shared by both the
commercial and educational worlds is the somewhat arbitrary fragmentation of applica­
tion software. In the commercial world, this phenomenon is illustrated by the large
number of distinct software packages that come into existence for mildly varying tasks:
A user interested in graphics, for instance, may own a package for creating hand-drawn
paintings, another for creating architectural drawings, another for creating geometric
drawings, another for creating flowcharts, and so forth. Similarly, in the educational
world, the pattern can be glimpsed in applications such as the Expiorerseries (in which,
e.g., "harmonic motion," "two bodies," and "gravity" units are all marketed as separate
applications), and in the popular Geometric Supposerseries (which likewise offers sepa­
rate programs in quadrilaterals, circles, and triangles).2

Both these trends-the growth of feature-sets, and the fragmentation of pack­
ages-may be attributed in part to natural economic motives on the part of software
designers. Periodic software upgrades, accompanied by the addition of new fea­
tures, can be used to resell the same software repeatedly to a community of loyal
users; and multiple variations of software applications can be employed to market a
basic design substrate many times over. But there is another reason for these trends,
rooted in the absence of programming environments that allow users to build ideas
and create extensions for themselves. If a student can write programs to extend an
application-using a modeling language to create a toy ecosystem, for example­
then there would be little need for the gargantuan, feature-heavy interface of a pro­
gram like SimLife; and arguably, the student in such a case would be more focused
on the subject matter of ecosystem simulation than on the act of wandering through
the wilds of the SimLife interface. If a student can use a set of geometric primitives
as building blocks to investigate a variety of distinct topics, then there is no need
for a fragmented set of Geometric Supposer units; conceivably, the same language
substrate could be used as a foundation for interchangeable, and mutually enhanc­
ing, units on triangles, circles, and so forth-much as the Mathematica language
can be extended with procedural libraries focusing on a variety of special-purpose
mathematical topics.

2 A more recent "SuperSupposer" version of this program does in fact offer these units in
combination, while the original units continue to be offered as separate programs.

Creating Software Applications for Children 179

Again, it is worth mentioning that the best educational application software­
Explorer, SimLije, and the Geometric Supposer included-is often nothing short of
beautiful: appealing in its interface, creative in educational ideas, and astonishing
in technical execution. Nevertheless, even these excellent applications fall short of
what they could achieve by the integration of interactive, application-enriched, ac­
cessible languages. In the remainder of this paper, we pursue this critique in several
ways. The second section of the paper articulates several philosophical principles
for educational application design. The third section illustrates the tenets of the
second, presenting three programmable applications for the domains of graphics,
computational physics, and charting respectively. In the fourth section we conclude
with some remarks on related and ongoing work.

10.2 Desiderata for the Design of Educational Applications

While the current culture of educational software design exhibits some tremendous
strengths-as argued above-there are three principles of software design that could
arguably improve that culture, and that might well be found controversial within
that culture. This section presents the case for these three principles:

• A focus on "programmable application" design, integrating
direct manipulation interfaces with interactive languages;

• A productive blurring of the distinction between "professional"
and "educational" software;

• A variety of "scaffolding" elements, including software
critics, catalogs, and embedded tutorials, whose purpose is to
assist students in coping with the complexity of mastering the
application interface, language, and subject domain.

The first of these principles is in a sense primary, in that it leads to the other two:
The second principle might be seen as a corollary of a focus on programmable
application design, and the third might be seen as an attempt to mitigate the most
common pitfalls that occur in programmable application design. We now examine
each of these principles in turn.

Programmable Applications

Programmable applications (Eisenberg, 1991) are software systems that integrate
the best features of two important paradigms of software design-namely, direct
manipulation interfaces and interactive programming environments. The former
paradigm-popularly associated with menus, palettes, icon-based interaction
techniques and so forth-stresses values ofleamability, explorability, and aesthetic
appeal; the latter, by providing a rich linguistic medium in which users can develop
their own domain-oriented "vocabularies," stresses values of extensibility and
expressive range.

180 Eisenberg

Historically, direct manipulation and programming languages have often been
viewed as (at worst) opposed or (at best) orthogonal frameworks for software de­
sign: Indeed, one of the early seminal papers on direct manipulation described the
idea as "a step beyond programming languages" (Shneiderman, 1983). In point of
fact, however, the respective strengths of direct manipulation and programming
languages are surprisingly complementary. Direct manipulation techniques are ideal
for those "extra-linguistic" tasks that reward skills of hand-eye coordination and
that (maddeningly, to artificial intelligence researchers) seem to defy formal repre­
sentation-tasks such as drawing a picture by hand, identifying a pleasing color
combination, or steering a cursor around an obstacle. Programming, in contrast, is
ideal for tasks that call for formal representation and abstraction-tasks such as the
production of a novel intricate geometric design, or the creative modeling of a com­
plex dynamical system. (Arguably the two paradigms support what Norman (1993)
calls "experiential" and "reflective" styles of cognition, respectively.) Moreover­
going a step further-direct manipulation and programming are capable of more
than passive coordination: as will be argued later in this paper, the complementary
strengths of the two approaches suggest numerous opportunities for
creative and symbiotic combination.

In the context of educational software design, the programmable-application
approach implies some points of difference with traditional notions of educational
programming. First, rather than starting with a general-purpose programming lan­
guage as a given and asking what can be done within this language framework, the
programmable-application designer instead starts from the requirements of the
application itself. Thus, rather than asking, "What can we incorporate into Logo (or
Scheme, or Boxer) to represent (e.g.) musical notes?" the programmable-applica­
tion designer instead asks, "What would be the best musical application to provide
for children, and what kinds of language (and interface) elements does this sug­
gest?" Asking the question in this alternative way in turn implies that we may well
want to endow educational applications with a choice of several associated lan­
guages (that can be selected depending on the experience or preferences of the
child); or that we might want to rethink fundamental language elements (such as
the representation of parallel processes, or the provision of logical queries) to ac­
commodate important ideas in the application domain; or that we might want to
tailor language implementations for particular applications (e.g., operations that
write to screen locations might be implemented differently depending on whether
the application is intended for a single user or multiple users); or that we might
want to design language features around the use of particular interface devices (such
as a piano keyboard or electronic string instrument); or that we may even want to
create a new application-specific language for a particular purpose.

The programmable-application approach also implies subtly different arguments
for the value of programming as an activity than those historically advanced in
educational circles. Rather than arguing that programming is an important skill in
its own right, divorced from any particular subject matter-an argument plausibly

Creating Software Applications for Children 181

derived by analogy with general literacy skills (cf., Kemeny, 1983)-the program­
mable-application approach instead focuses on programming as a means for
creative expression in particular domains of interest to the child. Thus, the reason
that a child interested in (say) music might well want to learn programming is that
it provides a rich musical medium allowing her to express musical ideas to which
she might otherwise never have given voice. Programming, on this view, is not an
exceptionally valuable skill in the abstract-either as vocational training, or be­
cause of what it mayor may not transfer to-but is rather a skill whose definition
and importance evolves, and becomes revealed, within particular applications and
in accordance with the interests of the child. Whether a child is well-served by the
activity of programming is therefore best answered not by looking at "computer­
science-specific" questions-e.g., whether the child has mastered notions of data
structures-but rather by looking at what the child can express, through the use of
programming languages, within her own spheres of interest.

If the programmable-application approach exhibits some changes in emphasis
from traditional ideas of educational programming, it exhibits an even starker
divergence from the ideas implicit in most current (non-programmable) educational
applications. Rather than viewing programming as beyond the capabilities of
students, or as antithetical to the design of learnable software, the programmable­
applIcation designer instead creates software that allows students to work with both
a powerful (and ideally, learnable) interface and a powerful (and ideally, learnable)
programming language. If properly designed, the complexity of such an applica­
tion should grow with use, as students develop larger and more advanced programs
within the application; that is, the complexity ofthe application should derive from
the student's ideas, and not from the sprawling size of the interface. Moreover, by
representing their ideas in a progressively elaborated linguistic medium, students
are given an opportunity to grow with the application over time-perhaps, over a
lifetime; the transition between "educational" and "professional" activity is
seamless. This leads us to the second of the three design principles mentioned above.

Educational Applications vs. Professional Applications

Many of the most familiar and successful models of education are those for which
the distinction between "educational" and "professional" activity is difficult to pin­
point. The often-cited example of apprenticeship (Collins et al., 1989), in which the
student works alongside a professional mentor, is one such model; though the ap­
prentice and master have distinct roles (at least at the outset of training), the ap­
prentice develops his skills gradually through participation in professional activity.
Similarly, the Brazilian samba school eloquently described by Papert (1980) allows
beginning dancers, experts, and those in between, to work together as part of a
common creative project. Perhaps a more mundane example is provided by piano
education: a beginning piano student certainly plays different pieces than an expert,
but the pathway from "beginning piano" to "expert piano" is gradual, and the
instrument played by the beginner is the very same instrument as that played by
the master.

182 Eisenberg

Most educational applications, in contrast, do not provide the tools that allow a
student to move from beginning to expert work; as such, they implicitly reflect an
educational philosophy in which educational and professional activities are sharply
distinguished. An apprentice city planner, for instance, would eventually seek out
modeling tools more expressive than those provided by SimCity; an apprentice com­
putational physicist would move away from Interactive Physics toward a full-fledged
programming environment. These applications, marvelous as they are, would be
seen as toys within the professional community-intriguing and lovely toys, per­
haps, but toys nonetheless.

In principle, there need be (and perhaps should be) no firm distinction between
educational and professional applications. Rather than create an "educational phys­
ics application" or "educational geometry application," or whatever, we might in­
stead design applications intended-like the piano-for lifelong use. On this view,
designers might start by thinking about what sorts of (e.g.) physics applications
would be useful for the professional community; the educational version of such an
application would then be a system based on the very same framework. Thus, if
"real" physicists work with modeling languages, so should students of physics.

Scaffolding Elements

The first two design principles presented in this section have argued (a) for the
inclusion of programming (as well as direct manipulation) elements in educational
applications, and (b) for the design of educational applications that can evolve,
through use, into professional applications. But these principles, admittedly, still
leave a variety of nagging and unanswered questions.

One of these questions concerns the learn ability of programmable applications.
Conventional wisdom in commercial software design holds that programming is
difficult for users, and represents an unwelcome hurdle to the "non-programmer";
presumably, this objection would be felt even more acutely for the design of educa­
tional applications. If adult users-according to this argument--do not wish to learn
programming, then how much more difficult would it be to incorporate program­
ming into applications intended for children or teenagers? Moreover, if­
according to the second design principle-we wish to design educational applica­
tions that mirror professional activity, and if the professionals themselves wish to
avoid programming, then how can we legitimately argue for the inclusion of
programmability within educational systems?

A second, and related, question concerns the phenomenon of "burgeoning appli­
cation complexity" mentioned in the introductory section of this paper. Certainly,
programmable applications will themselves be complex (though perhaps the sources
of complexity will be different than those in current applications); and progrl;Ull­
ming environments are hardly immune to the disease of "creeping featurism." Just
as interface features tend to grow in number over time, so do language primitives­
the historical development of Lisp is instructive in this regard. How, then, can

Creating Software Applications for Children 183

applications-whether programmable or not, whether educational or commercial­
provide techniques for coping with the growth of complexity over time?

Such questions are pointed, and the responses (one hesitates to call them "an­
swers") to these objections are tentative at best. As to the first point, regarding the
presumed difficulty of programming, there is at least some reason to question the
conventional wisdom: Nardi (1993), for instance, presents powerful arguments for
the learnability and ubiquity of formal languages in a wide range of professional
activity. Moreover-and again in contrast to the conventional wisdom-at least
some commercial and professional applications do indeed seem to be moving to­
ward the inclusion of powerful "end-user programming environments";
Mathematica, Director, many database systems, and AutoCAD are notable examples
of this trend, as are the numerous applications incorporating various types of macro­
creating and scripting facilities. As to the second point, regarding the growth of
complexity, it is worth reiterating that there are different sources of complexity
within applications, just as there are different sources of complexity in professional
domains; and the nature of complexity derived from huge feature-sets may well be
different in kind, and more harmful in its impact on creativity, than complexity
derived from expanding language vocabularies.

These responses, though they may have some validity, nevertheless do not ex­
empt the designer of educational applications from considering the thorny ques­
tions of (a) how to render programmable applications more learnable, and (b) how
to manage their complexity. One potentially fruitful approach to these questions is
to embed a variety of "scaffolding" elements within applications--elements whose
express purpose is to assist students in learning the application interface, language,
and domain. Such scaffolding elements might include:

• software critics (Fischer et al., 1991) that run as background
routines within the application, monitoring the student's
activity and alerting the student to potential problems or
errors;

• browsable catalogs (Fischer et at., 1992) of exemplary or
illustrative work done within the application, serving as
starting points for student activity;

• embedded tutorial material that the student can access in
order to learn specific topics about the application, language, or
domain.

Scaffolding elements of this kind are problematic additions to applications: Quite
plausibly they might exacerbate, rather than alleviate, the problems of feature-ex­
pansion and burgeoning complexity. Nonetheless these new elements should be
judged on an individual basis, as experiments in application design. Ideally, these
experimental additions can be combined in modular fashion, and hence "mixed and
matched" within particular applications; and those elements that prove successful
in enhancing learnability can be selectively retained.

184 Eisenberg

It is worth pausing at this juncture to summarize the three design principles advo­
cated in this section. The first principle argues for a renaissance of the values of
educational programming in the context of applications. The second argues that by
pursuing programmable application design, we can realize a philosophy of educa­
tion which respects the student by viewing his activity as a natural precursor of
professional activity. The third argues that, in order to cope with the inevitable
problems of programmable application design, we need to consider a variety of
application elements geared toward enhancing learnability and alleviating the bur­
dens of application complexity.

The following section of this paper describes three experimental programmable
applications, all based on the Scheme dialect of Lisp, and all including elements of
both "educational" and "professional" software. While none of these applications
represents a complete realization of the design principles presented in this section,
they collectively reflect an attempt to put these design principles into practice.

10.3 Three Prototype Applications

The three applications to be described here are all intended as experiments: envi­
ronments in which to investigate the design principles articulated in the previous
section. The first (and earliest) application, SchemePaint, is a graphics application;
the second, SchemeSprings, is an application for modeling linear and nonlinear
oscillators; the third, SchemeChart, is designed for the creation of charts and infor­
mation displays.3 We now describe each of these applications in turn.

SchemePaint

SchemePaint is a programmable application integrating elements of direct-manipu­
lation paint programs with a "graphics-enriched" interactive programming envi­
ronment. Figure 1 displays a view of the application. Here, the SchemePaint win­
dow at right is the "canvas" upon which drawings are created; the Pen window
includes the core functionality of a skeletal direct manipulation paint-program in­
terface; and the transcript window presents an interpreter for a "graphics-enriched"
Scheme language. Of the menus at the top of the screen, the File, Edit, Command,
and Window menus are standard MacScheme menus; the remaining menus at right
are additions to SchemePaint.

The language built into SchemePaint may be viewed as a standard Scheme inter­
preter to which a variety of "graphics sub-languages" have been added. These sub­
languages are similar in spirit to the notion of "embedded languages" advocated by
Abelson and Sussman (1985): They may be thought of as independently loadable
libraries consisting of new procedures, data objects, and (in some cases) interface

3 All three of these applications were created in MacScheme (Lightship Software, Palo Alto,
CA); all three run on Apple Macintosh computers.

Creating Software Applications for Children 185

features. Figure 1 shows the use of one ofthese sub-languages, for working with a
Logo turtle. Figures 2 and 3 depict the use of two other sub-languages: a dynamical
systems language, and an "Escher tiling language."

.. File Edit Command WindOw Paint Planar Maps Turtle I ~nn"~n ••

tranStrlpt

I~~T"!,L"" ~)
)> Cd.f l rw <oc:l s Id.) (~t. 8 <tCl .101) (r l 4S»)
oct
))) <,....,.at. 8 (oe:\ 30) Crt .. ,))
0

~ ~

1

If'
i
, ~,

• IClick
, ,

: ,
0 I , "' , , , ,

{\. I
I

, , / ,
. i
'j'

Figure 1. A view of the SchemePaint application. The SchemePaint window is the "can­
vas" in which figures are drawn; the Pen window contains direct manipulation paint tools;
and the transcript window is the interpreter for a "graphics-enhanced" Scheme. Here, the
user has created and used a new turtle procedure, and has added a hand-drawn squiggle.

Figure 2. Here, the user employs a linear (rotate-and-scale) map by applying it iteratively to
a hand-drawn polygon. SchemePaint's dynamical systems sub-language also supports the
use of nonlinear maps.

186 Eisenberg

Figure 3. SchemePaint's "Escher tiling sub-language" in use. At top, in three successive
stages, the user creates a "basic tile" in the Escher window associated with the sub­
language. At bottom, the user is able to employ tiling procedures to replicate the newly­
created tile.

While it would be a somewhat lengthy detour to describe all the aspects of the
SchemePaint system here (more details can be found in Eisenberg, 1991), it is worth
mentioning several points in the context of this paper. First, the program is de­
signed-in the spirit of programmable applications-to facilitate both "drawing by
hand" and "drawing by program." Figure 4 suggests the type of cooperation per­
mitted by the program: the figure shows a (mostly hand-drawn) butterfly whose
wings are decorated with Julia sets (Barnsley, 1988) created with SchemePaint's
dynamical systems procedures.

Figure 4. A SchemePaint picture.

Creating Software Applications for Children 187

Another point worth noting is that SchemePaint is designed not merely to permit
a passive combination of direct manipulation and programming, but to facilitate a
more symbiotic style of interaction between these two design strategies. Figure 5
depicts one such method employing a "programmable color" option: Here, the user
has evaluated a SchemePaint expression that allows the mouse to act according to
any user-specified function from x- and y-coordinates to colors. (In this particular
instance, the mouse draws a color gradient from red to white based on x-position.)
In the same vein, SchemePaint includes techniques for creating programmable but­
tons and sliders, pressure-sensitive pen procedures, and for coercing mouse-drawn
points, lines, and polygons (among others) into program-accessible objects.

Figure 5. Here, the user has written a procedure from position (x- and y-coordinates) to
color that-depending on the value of x-returns a color value smoothly varying between
red and white. By assigning this "programmable color" to the mouse, the user can draw a
color gradient.

Finally, because SchemePaint is presented as an application rather than as a
general-purpose programming environment it is a promising venue for teaching
programming to those students whose primary interests lie in graphics or computa­
tional art. More broadly, SchemePaint, like programmable applications generally,
represents an opportunity for those students often described as "non-programmers"
to obtain an introduction to programming in a subject closer to their own interests.
The program has in fact been used in a full-semester graduate-level course to teach
Scheme programming to non-computer science students; more recently, the system
has been used to introduce Scheme programming to a small population of elemen­
tary and middle school students.

SchemeSprings

In the case of SchemePaint, the focus is on moving paint programs (which are
typically "pure" direct manipulation systems) in the direction of programmable
applications by incorporating a programming environment. By way of contrast, the
SchemeSprings system seeks to augment computational physics systems (which
are typically programming languages) by incorporating direct-manipulation inter­
face tools. The SchemeSprings system, like its predecessor, seeks to combine an

188 Eisenberg

interactive programming environment (in this case, centered on the domain of
oscillators) with a direct manipulation interface.

• File Edit Command Window General Graphs Simulation
. , .. i : ... ": : : I

• I ::

Mac:Sch .. m,,1D Top level
») (start-sc:h ••• sprlngs)

:!; . i :' . r: I ;'

-----.y,--~.!'::.'!~--.-----

Figure 6. The initial SchemeSprings screen. Oscillators are constructed in the Simulations
window, using elements from the Parts window; results can be plotted in the Graphs win­
dow. The transcript window provides access to an "oscillator-enriched" Scheme interpreter.

Figure 6 depicts the initial Scheme Springs screen. Sample parts for oscillators
can be selected from the Parts window: these include "walls" (stationary objects),
linear springs (the user can specify the natural length and force constant of the
spring), and point masses (the user can specify the value of the mass). These parts
may be used to construct oscillator models in the Simulations window; the simula­
tions may now be run, using a fourth-order Runge Kutta integrator, and results of
various kinds may be displayed in the Graphs window.

In addition to the direct manipulation tools that allow for the construction of
linear oscillator systems, there is an "oscillator-enriched" Scheme language (again,
available through the transcript window) that allows the user to construct a variety
of "specialty" springs and masses. As a brief example, we can create a Scheme
procedure to make cubic (nonlinear) springs:

(define (make-cubic-spring natural-len cub-coeff sq-coeff
lin-coeff)

(make-pure-difference-spring
natural-len
(lambda (diff) (+ (* cub-coeff diff diff diff)

(* sq-coeff diff diff)
(* lin-coeff diff)))))

Creating Software Applications for Children 189

This procedure employs the SchemeSprings primitive make-pure-di f ference­
spring, which creates spring objects whose force vectors depend only on the dis­
tortion of the spring from its natural "rest" length, and whose direction is opposite
to that of the distortion. We can now use this procedure to create a new cubic spring
object (this particular spring is "soft" in the sense that the cubic force term acts to
make the spring's restoring force less than linear for small distortions (Abraham
and Shaw, 1982):

(define soft-spring-object(make-cubic-spring 20 -0.03 0 2))

Simulations .. ~.!:~.p..~~
20 _

= /::::::-:;:-"
VY~ ((C))\
= "-..~:·~3

I
-20,+ -::-:r.....,...,-.,-.,-.,-.,-.,-.,.---,-

-30 30

Figure 7. An experiment with a "soft" cubic spring. The Simulations window shows a
wall-and-spring system in the course of a simulation; the Graphs window shows the results
of three simulations (including the current one), in which the initial y-position of the mass is
the only factor changed. The flattened elliptical shape of the position-versus-ve1ocity graph
(for larger initial distortions) is typical of soft springs. (Abraham and Shaw, 1982)

Figure 7 now depicts the use of this spring object: We have created a simulation
in which the mass and wall are linked by a cubic spring, and have graphed the mass
velocity against its position for several thousand integration steps.

From this starting point, it is also not difficult to create more complex simula­
tions of various types. We can make springs with time-varying force constants;
springs with "noisy" force constants (varying with a certain amount of random­
ness); masses whose value varies as a function of time or position; and many
others. (cf., Andronov, Vitt, and Khaikin (1987) for examples along these lines.)
Figure 8 depicts one additional experiment: a simulation of a cubic spring with a
sinusoidal forcing function (a Duffing oscillator), resulting in chaotic motion
(Guckenheimer and Holmes, 1983).

190 Eisenberg

Graph~

2

Vy

-2
-3

Figure 8. A chaotic position-versus-time trajectory resulting from the simulation of a forced
Duffing oscillator. The parameters in this experiment were taken from an example in
Guckenheimer and Holmes (1983),

SchemeChart

The third application to be described, SchemeChart, is in some ways a recent elabo­
ration of the SchemePaint system, focusing on the creation of charts and informa­
tion displays. For the purposes of this discussion, the key development in
SchemeChart is the attempt to incorporate the sorts of scaffolding elements
mentioned in the previous section. Figure 9 shows a scenario of the SchemeChart
system in use. Graphs are created in the SchemeChart window; the Paint Tools
window (like the Pen window in SchemePaint) permits the use of standard direct
manipulation graphics tools; the Samples window provides a "coarse-grained" se­
lection among chart types; the Charts window provides finer-grained selection
based on an iconic catalog of SchemeChart examples; and the transcript window
is the application-specific Scheme interpreter.

In the Figure 9 scenario, the user has selected the "bar chart" choice from the
Charts window; when this selection is made, a variety of specialty bar charts are
provided in the Samples window. The user selects "trapezoidal bar charts" (bar
charts with non-horizontal upper lines, for depicting ranges of values) from the
Samples window; now, by making a menu selection, the user is able to see a variety
of relevant Scheme procedures for creating charts of this type, as presented in the
window labelled Trapezoidal Bar Chart Examples.

Creating Software Applications for Children 191

• file Edit Command Window General Turtle Help

)~ (:llQt"t.-~l)

dono
))) (p I o\-chcrt trGp-bor-chcr II) -.

[raDOl oldel Bar Chart [HemPles

transcript

• MAKE-SIMPLE-TRAPElOIO- BAR-CHART .-----.---,

cotegory-nome vclue-Mme
cotegones Yolue-sel - list colors

Used for moklng • tropezoldol bor ChOrl.
Eoch el ement of Yolue-set- list consi sts
of the set of numbers determining the
l he top edge of the tropezol d,
IE.emple:
(delln. TRAP- BARCHART I
(MAKE -SIMPLE - TRAPEZOID-BAR- CHART

"Eyents " -Polnts­
'(-sw lmml ng- "racing")

S<lI em eC ho, I

Figure 9. A screen view of the SchemeChart application. The user has created a "trapezoi­
dal bar chart" from the sample procedure provided by the application; see the description of
this scenario in the text.

The key element of this scenario is that the user is able to access language ex­
amples from an existing iconic catalog; and moreover, that these examples are based
on typical tasks that the user might wish to accomplish. The Scheme procedures
presented in the new window may be evaluated directly, or edited to produce new
variations; this allows the user to obtain an introduction to programming tasks by
example modification, as suggested by Lewis and Olson (1987).

SchemeChart includes several other techniques intended to assist the user in dealing
with the complexity of the application. Figure 10 shows one such technique in a
scenario similar to that shown in Figure 9. Here, the user has edited a standard color
bar-chart procedure to create a chart in which the three quantities being graphed are
relatively close in value. When the new graph is created, a "critic" mechanism in
the application is alerted: the exclamation point icon in the Charts window blinks
several times to inform the user that a potential problem has been spotted in her
graph. The user can now (again, through a menu choice) bring up a window in
which the system's critic message'is passed on to the user, as shown in Figure 11; if

192 Eisenberg

the user wishes she can simply ignore the message, or reedit the original expression
(e.g., by plotting a different set of quantities, or trying a different type of chart).

Color Bar Chart EHamples
• MAKE-SIMPLE-COLOR-BAR-CHART

categories values colors
Used for making a (simple) multicolor
bar chart .
.fExample:
(define COLOR-BARCHART 1
(MAKE-SIMPLE-COLOR-BAR-CHART

'("dogs" "cats" "birds")
'(15 15.2 14.8)
(list red blue green)))

Figure 10. The user edits the sample expression in the window at left to create a new bar
chart; in response, the "critic alert signal" (the exclamation point in the Charts window)
flashes several times to indicate that a potential problem has been spotted with this newly­
created chart.

Small Bar Chart Differences
Bar charts are usually employed
to signal differences. These values,
though, don·t differ by much:
(15 15.2 14.8)

Figure 11. The critic message for the graph created in Figure 10.

One other element of SchemeChart worth noting is its "query-mode" facility,
represented by the question-mark icon in the Charts window. In this mode of op­
eration, the user can select-via mouse-portions of newly-created graphs (such as
the axes, or axis-labels); once selected, the user can access the names of various
procedures relevant to the creation or alteration of the given graph portion. By
viewing "query-able objects" in this fashion, the user can begin to work with the
system's language facility by association with newly-created objects.

Each of the three applications described in this section represents only a partial
realization of the design principles articulated earlier. SchemePaint is perhaps the
best illustration ofthe first design principle-as a programmable graphics applica­
tion, it focuses on the integration of direct manipulation and programming

Creating Software Applications for Children 193

techniques. It does not, however, include any scaffolding elements, and thus pro­
vides the user with little assistance in learning either Scheme or, for that matter, the
domain of graphics itself. SchemeSprings illustrates the second design principle: it
is neither an "educational" nor a "professional" application per se, but could con­
ceivably be employed either as an educational system in which students could simu­
late simple oscillator systems or as the basis of a much more advanced simulation
project; indeed, the system has been used to simulate the complex behavior of Shaw's
(1982) nonlinear "dripping-faucet oscillator model." Nevertheless, this applica­
tion, too, provides little in the way of domain-oriented assistance to its users.
SchemeChart, finally, is geared toward investigating the incorporation of scaffold­
ing elements; but it does so at the cost of some added interface complexity.

10.4 Related and Ongoing Work

The principles and applications described here are similar in spirit to recent efforts
in the development of Logo environments. LegolLogo (Resnick, 1989), for ex­
ample, is a compelling example of the integration of programmability into the
domain of design and robotics; and the work described by Resnick (1993) in "pro­
grammable brick" development is a continuation of this effort. Similarly, the
programmable application concept has been greatly influenced by the emphasis of
the Boxer community (diSessa and Abelson, 1986) on programming as an expres­
sive medium, by Abelson and Sussman's (1985) focus on creating domain-specific
"embedded languages," and (more recently) by the work of Fischer and colleagues
on domain-specific design environments (Fischer and Lemke, 1988; Fischer et at.,
1991). Myers et ai. (1992) provide an excellent overview of strategies for end-user
programming; Nardi (1993) advances many strong arguments in favor of program­
mability; and a growing and impressive body of work in programming-by-example
(Cypher, 1993) might also be viewed as a principled attempt to rethink the
inclusion of programming within applications and to make programming more
accessible to users.

The work described in this paper diverges from each of these related efforts along
various dimensions. In its emphasis on integrating programming with direct
manipulation, and on embedding programming within particular stand-alone
applications, there are some differences between the systems described here and
the Logo/Boxer efforts; likewise the inclusion of programmability represents a de­
parture from Fischer's earlier work in design environments. In contrast to the focus
of most end-user programming efforts on "modifiability" or "tailorability" of ap­
plications, the systems described here essentially treat programming as a tool with
which to rethink application domains; thus the emphasis is less one of perturbing
application interfaces, and more a matter of employing programming languages as
means of creative expression (Eisenberg, 1991). Finally, in contrast to the concerns
of programming-by-example advocates, the work described here makes no attempt
to shield users from standard constructs of programming such as iteration, recur-

194 Eisenberg

sion, compound data structures, and abstraction; rather, the design strategies
espoused here present the user (whether child or adult) with full-fledged program­
ming environments. This decision is motivated by the beliefthat programming-by­
example has yet to exhibit the level of expressiveness of "true" programming
languages; and that the perceived (and vastly overestimated) difficulty of program­
ming can be greatly alleviated by embedding task-oriented languages within
applications (cf., Nardi, 1993).

In many respects, the work described here is preliminary: Certainly, in the short
term, each of the three sample applications is the focus of continuing effort.
SchemeSprings and SchemeChart, in particular, are still in early stages of develop­
ment; a variety of direct-manipulation graphing tools are in the works for the former,
and a new Lisp-based version of the latter is in preparation. In addition, two new
Scheme-based applications-for the domains of chemical kinetics and diffusion­
limited aggregation-are currently being developed.

In the longer term, there are exciting possibilities for expanding the notion of
programmable applications to make use of newer interface devices such as
DataGloves, speech recognition systems, "virtual reality" interfaces, and so forth
(Foley, 1987). Perhaps the most fully-realized version of the design strategies de­
scribed in this paper would work toward the development of complete "application
machines" in which special-purpose hardware, interfaces, and programming lan­
guages could be employed concurrently for educational and professional applica­
tions. Thus, rather than thinking in terms of a "graphics application," whether for
children or adults, we might consider instead the creation of a full-fledged "lan­
guage-based graphics studio"--complete with programmable electronic easels, wall­
sized screens, 3D viewing devices, and so forth. In keeping with the principles
advocated here, such an environment would reflect a spirit of integration: of lan­
guage and hand-eye coordination, of "abstract" and "reactive" thought, of
professional and educational work, and of adults' and children's experience.

Acknowledgments

Thanks to Gerhard Fischer, Julie Di Biase, Chris DiGiano, Gina Cherry, and mem­
bers of the Human-Computer Communication Group at the University of Colorado
for their contributions to the ideas in this paper. Special thanks also to Hal Abelson,
Andy diSessa, and Gerald Jay Sussman for their mentorship. This research was
supported by NSF grants RED-9253425, IRI-921034, and by a Young Investigator
award (IRI-9258684).

Creating Software Applications for Children 195

References

Abelson, H. and Sussman, G. J. with Sussman, J. (1985) Structure and Interpretation of
Computer Programs, Cambridge, MA: MIT Press

Abraham, R. H. and Shaw, C. D. (1982) Dynamics: The Geometry of Behavior, Santa Cruz,
CA: Aerial Press, Inc.

Andronov, A A, Vitt, A A, and Khaikin, S. E. (1987) Theory of Oscillators, New York: Dover
Barnsley, M. (1988) Fractals Everywhere, Boston: Academic Press, Inc.
Collins, A., Brown, J. S., and Newman, S. E. (1989) Cognitive apprenticeship: Teaching

the crafts of reading, writing, and mathematics, in L. Resnick (ed.), Knowing, Learning,
and Instruction, Hillsdale, NJ: Lawrence Erlbaum

Cypher,A. (ed.) (1993) Watch What I Do, Cambridge, MA: MIT Press
Dargahi, N. (1991) SimCity Strategies and Secrets, Alameda, CA: Sybex Inc.
diSessa, A. and Abelson, H. (1986) Boxer: A reconstructible computational medium.

Communications of the ACM, 29/9, 859-868
Eisenberg, M. (1991) Programmable applications: Interpreter meets interface, MIT AI

Laboratory Memo 1325
Fischer, G., Grudin, J., Lemke, AC., McCall, R., Ostwald, J., Reeves, B.N., and Shipman,

F. (1992) Supporting indirect, collaborative design with integrated knowledge-based design
environments, Human-Computer Interaction, 7/3, 281-314

Fischer, G., Lemke, A.C., Mastaglio, T., and Morch, A (1991) The role of critiquing in
cooperative problem solving, ACM Transactions on Information Systems, 912, 123-151

Fischer, G., and Lemke, AC. (1988) Construction kits and design environments: Steps toward
human problem-domain communication, Human-Computer Interaction, 3/3, 179-222

Foley, J. (1987) Interfaces for advanced computing, Scientific American, 257/4, 126-135
Guckenheimer, J. and Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields, New York: Springer-Verlag
Kemeny, J. G. The case for computer literacy, Daedalus, Spring 1983
Lewis, C. and Olson, G. (1987) Can principles of cognition lower the barriers to

programming?, in G. Olson, S. Sheppard, and E. Soloway (eds.) Empirical Studies of
Programmers: Second Workshop, New Jersey: Ablex

Luebrmann, A (1982) Don't feel bad about teaching BASIC, Electronic Learning, September
1982

Myers, B, Smith, D. C., and Horn, B. (1992) Report ofthe "end-user programming" working
group, in B. Myers (ed.) Languages for Developing User Interfaces, Boston, MA: Jones
and Bartlett

Nardi, B. (1993) A Small Matter of Programming, Cambridge, MA: MIT Press
Norman, D. (1993) Things That Make Us Smart, Reading, MA: Addison-Wesley
Papert, S. (1980) Mindstorms, New York: Basic Books
Resnick, M. (1989) Lego, Logo, and life, in C. Langton (ed.), Artificial Life, 397-406,

Reading, MA: Addison-Wesley
Resnick, M. (1993) Behavior construction kits, Communications of the ACM, 3717, 64-71
Shaw, R. (1984) The Dripping Faucet as a Model Chaotic System, Santa Cruz, CA: Aerial

Press, Inc.
Shneiderman, B. (1983) Direct manipulation: A step beyond programming languages, IEEE

Computer, 16/8,57-69
Sleeman, D. and Brown, J. S. (eds.) (1982) Intelligent Tutoring Systems, London: Academic

Press
Solomon, C. (1986) Computer Environments for Children, Cambridge, MA: MIT Press

196 Eisenberg

Software
AutoCAD Autodesk, Inc. Sausalito, CA
CorelDraw Corel Corporation. Ottawa, Ontario, Canada
Director MacroMind, Inc. San Francisco, CA
Explorer Sunburst. Pleasantville, NY
The Geometer's Sketchpad Key Curriculum Press. Berkeley CA
The Geometric Supposer Sunburst. Pleasantville, NY
Interactive Physics II Knowledge Revolution. San Francisco, CA
Kid Pix Broderbund Software, Inc. Novato, CA
MacScheme Lightship Software, Inc. Palo Alto, CA
Mathematica Wolfram Research, Inc. Champaign, IL
SimCity Maxis, Inc. Orinda, CA
SimLife Maxis, Inc. Orinda, CA

