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Abstract. This paper explores the phenomenological and curricular dynamics of 
implicit mathematical structures embodied in "transparent" computer-based tools. 
Examples from a clinical study of students working with the TabletopTM database! 
data analysis environment illustrate the process by which disruptions of transpar­
ency can provoke increasingly reflective use of a tool and bring students into 
engagement with valuable mathematical ideas. The interaction among learner, 
medium and curriculum is seen to have important implications for pedagogy, tool 
design, and evolving conceptions of mathematics. 

12.1 Introduction 

Computer-based tools figure increasingly prominently in visions of curricular re­
form. Their ability to capture, display, store, transmit and transform representations 
of physical and social phenomena and of human communication offers the hope of 
empowering children to reach beyond isolated subject matter and the walls of the 
classroom into a wider and more meaningful world. The capabilities of tools--data 
analysis, information access, scientific data gathering, video analysis, dynamic 
modeling, etc.-sometimes attract more attention than the tool structures which 
underlie these capabilities. The representations and operations of a computer tool 
constitute a mathematical structure, a model implicit in the tool. This paper is 
concerned with the status of this underlying mathematics: in students' experience 
as they learn to use computer tools, and in evolving conceptions of mathematics 
curriculum. 

Many people (novices and non-experts) use computer tools without being much 
aware of the workings of the tools' implicit models, or even of their existence. 
Their use of a tool is guided instead by their knowledge of the situation being mod­
eled. This is a kind of naive realism in which the mediating mathematics is invis­
ible, at least for a while. We value tools whose design makes them conducive to this 
kind of naive realism: We may call them "transparent." Much effort goes into 
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trying to build intuitively accessible representations and fluid, flexible ways of act­
ing on those representations, in the hope that, on a clear day, a student might look 
into a computer and see through the glass screen, through the tool interface, through 
the mathematical model, all the way to a real world situation of interest to her or 
him- and to have this transparency endure for a substantial period of interaction. 

Because the model is only a model, there must inevitably be an exodus from this 
computing Eden. The transparency of the interface breaks down, and the computer 
tool becomes clearly and frustratingly distinct from the "object of interest" to which 
it had previously given unimpeded access. Such moments can be important in a 
child's experience. Episodes of lost transparency can become insurmountable ob­
stacles that cut short the child's engagement, or minor intrusions of inexplicability 
that loosen but do not break the child's grasp of the activity. More positively, they 
can be opportunities to learn more about the medium itself-the tacit mathematics 
of the computer tool. Such episodes also raise important questions for the educator 
concerned with software and curriculum design. Should the breakdown be inter­
preted as a failure of the environment to live up to its goal of transparency, or as a 
natural and valuable component of students' engagement with important mathemati­
cal ideas? The answer is different each time, and involves a judgement about the 
learnability and cultural relevance-in other words, the curricular appropriateness­
of a particular piece of mathematics as it is embodied in the tool. 

Why work to create transparency if we know it will be broken? Modeling tools 
with a capacity for transparency can help us experience and understand mathemat­
ics as a way of seeing the world. Mathematics itself becomes not just something to 
look at, but something to look through. The tool's mathematical model and the 
object to which it is applied can illuminate each other, through both their similari­
ties and their mismatches. Like glass and mirrors, some mathematical domains can 
best be seen by looking at the distortions and effects they create when looked through. 

12.2 Transparency and Tabletop 

Let us dig a bit deeper with the help of some specific examples of students grap­
pling with a disruption of transparency within a computer environment. These ex­
amples come from a small study conducted by Aaron Falbel and myself (Falbel and 
Hancock, 1993). The study used a prototype version of the Tabletop database/data 
analysis environment, developed at TERC. While much of what we saw appears 
relevant to most data tools, a few facts about Tabletop will be helpful in under­
standing what happened. 

12.2.1 Tabletop Essentials 

Tabletop is a tool with which students can construct, explore and analyze simple 
(i.e., record-oriented) databases. It was developed to support a curricular move-
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ment in the United States towards increased treatment of data analysis and statistics 
as subjects of study within mathematics, and increased use of data and data analysis 
to support projects and inquiry in many subjects. The illustrations in Figures 1 
through 5 provide a visual overview of some of Tabletop's capabilities at the time 
of the study (a more powerful version has since been developed for publication).! 
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Figure 1. The Tabletop database/data analysis program provides a conventional row-and­
column view for entering and editing data. 
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Figure 2. The "Tabletop window" shows one icon for each item in the database. The icons 
are initially scattered randomly. Any icon's detailed information can be examined at any 
time by pointing and clicking the mouse. Icons can also carry labels with information from 
any field of the database (in this case, country name). 

ITabletop and Tabletop Junior, for Macintosh or Windows, are distributed by Broderbund 
Software, Novato, CA USA. 
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Figure 3. A set constraint can be established by using pop-up menus to select a field and a 
comparison operator, and by entering a comparison value. Icons satisfying the constraint 
move into the circle. They move quickly and simultaneously, but smoothly so that any indi­
vidual can be tracked. 
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Figure 4. Up to three circles can be active at once. Any part of any constraint can be modi­
fied directly, and the affected icons will immediately move to new positions. 
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Figure 5. Through various spatial arrangements of icons, combined with optional summary 
computations, Tabletop can generate frequency distribution graphs, scatter plots (shown 
here), crosstabulations, and other plots. (Tabletop Software and interface design ©1989-
1994, TERC, Inc.) 

Tabletop offers two coordinated representations of a database: the row/column 
window and the "Tabletop" window. The row/column window is used for database 
construction and data entry. Information in the rowlcolumn window is arranged in 
rows and columns, corresponding to database records and fields. The Tabletop win­
dow presents the database as a set of small animated icons. These icons can be 
arranged automatically into Venn diagrams, scatter plots and other arrangements 
useful for data analysis. The appearance of an icon is editable, so that in a database 
of cats, for example, the icons can look like cats, and one can think of Venn dia­
grams and scatter plots as though one were actually arranging the real cats. When 
students make databases about themselves and their classmates, they routinely talk 
about Tabletop icons as though they are people: "Paula and Nathan went in here" 
"How come I went above Mary?" etc. This illustrates, in a modest way, one kind of 
transparency in a mathematically based rendition of the world. 

The Venn diagram, with which we are concerned here, is a spatial alternative to 
the traditional representation of a database search query. It can have between one 
and three overlapping loops. In each loop the user may specify a set constraint in 
three parts: a field, specified by choosing from a menu of all the fields in the data­
base; a comparison operator (=, >, <, etc.), again chosen from a menu; and a value, 
which can be typed in. Objects for which the mathematical statement so specified is 
true will slide automatically into the loop and all others will slide out. 



226 Hancock 

12.2.2 Subjects and Method 

Our study originated in the context of a project in which we worked with teachers 
in an urban elementary school to carry out extended piloting of Tabletop in a class­
room context over a period of two years. Students in grades 5 through 8 (that is, 
aged 10-14) carried out a variety of data collection and analysis projects, including 
an "All about Us" activity examining assorted personal trivia; an investigation of 
neighborhood recycling patterns; a CokelPepsi taste test; a nutrition study compar­
ing the calories, carbohydrates, protein, etc., consumed on one day by 60 students; 
consumer information about sneakers; and others. All students had experience add­
ing data to a database, and most of them had experience creating databases of their 
own and knew how to add fields as well as records. Although students were gener­
ally confident and successful when creating databases of their own, we decided to 
look more closely at students' ability to decide when to enter new data and how to 
organize it. The students were accustomed to making databases (often with the 
teacher's guidance) and then seeing what graphs they could make. The problem of 
envisioning a desired graph and then figuring out what kind of data to enter would 
be a reversal of the usual process, and one that might require some challenging 
backwards reasoning. We devised the following task, which we call the "group 
separation problem," as a distillation of this issue. 

To set the problem, a database consisting of a single column of names is created 
in the subject's presence. Some are male names and some are female names. 

I Name I 
John 
Mary 
Sally 
Tim 
Betty 
Robert 
Sue 

Figure 6. Initial database for the group separation task. 

Now a simple problem is posed. Can the subject get the computer to place the icons 
representing the male names in one Venn ring and those representing the female 
names in another. The question is a bit tricky in that the problem cannot be solved 
without returning to the database window and adding additional information. Ordi­
narily this information would be in the form of a new field with the heading "sex" 
or "gender" or "boy/girl" or some other such designator and an entry correspond­
ing to each name specifying whether the person is "male" or "female," "boy" or 
"girl" (less conventional solutions are also possible, as we discovered). Once this is 
done, two loops can be made in Tabletop window with constraints referring to the 
new field. For example, adding a gender field as in Figure 7(A) makes it possible to 
create a Venn diagram as in Figure 7(B). 
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I Name I I Gender! 
John male 
Mary female 

(A) Sally female 
Tim male 
Betty female 
Robert male 
Sue female 

(B) 

Figure 7. Sample solution to the group separation problem. 

We posed this task individually to thirteen students, aged 10 to 12, who each had 
between one and two academic years' worth of familiarity with Tabletop. We also 
used follow-up problems with a similar structure: separating cats from dogs, 
married people from single, children from adults. The problem appeared to require 
a kind of interaction with Tabletop that was new in their experience, leading to the 
problematic intrusion of layers of the interface which had been previously transpar­
ent to them. 

A sense of this previous transparency can be gleaned from the way that many 
students began the task. They proceeded directly and with apparent confidence to 
build a Venn diagram. Beginning at the first slot in the constraint, they found that 
the single available choice was name (corresponding to the only field in the data­
base). Here I had the impression of a surprised hesitation. When we asked students 
what was wrong at this point, they were not able to say; nevertheless, I believe that 
if the word "gender" had appeared as an option for the first slot of the constraint, 
they would have used it without hesitation. Indeed, more than one previous data­
base in class projects had had a gender field, which students had used successfully 
in constructing graphs and Venn diagrams. Since field names had always been ready 
to hand when needed, students had not previously had to question how they came to 
be there. 

Eventually, with or without hints from us, all subjects realized that they needed to 
input data into the row/column window, to specify who was a boy and who a girl. 
We had expected to be focusing our attention on whether and how students came to 
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realize that the computer needed to be told who was a boy and who a girl, since 
from the subject's point of view it is obvious from the names. While many students 
did take time to come to this realization, the part of the task that proved far more 
challenging to them-and more interesting to us-was the process of figuring out 
how to get this information into the computer in a usable form. This was a hard 
problem for most of these students; only two solved it without substantial hints and 
guidance. We begin with one of the two successful ones, atypical in many ways but 
potentially illuminating for the topic at hand. 

Example #1: Transparency of Words (The Case of Kamil) 

Karnil (age 12) ftrst tries to solve the boys/girls problem within the Table­
top window. He tries a Venn loop with Name = " g ir 1 s". Then he clicks 
twice on the fteld section of the constraint. The only fteld available is 
Name. ''I'm trying to change this," he comments. Then he asks: "Does 
the computer know that they are girls?" No, we reply. "Then you can't 
do this." He double-clicks on an icon, bringing up a small window with 
the person's name and no other information. "I need to tell it more," he 
says. Still, for a while, he keeps trying variations in the Venn diagram. 
He tries Name> "boys" and all the icons go in. (With textual data the 
software interprets less than and greater than in terms of alphabetical 
order, a feature which we have learned is more confusing than useful.) 
"The computer thinks they're all boys." We ask: Is that because of this 
symbol (the greater-than sign)? "That means that there are more boys 
than girls." 

Quite soon he decides that the computer needs to be informed who is a 
boy and who is a girl. He adds a new fteld, called Boys, but he stops 
before entering any data and asks, "Does the computer know what 'boy' 
means?" We answer, "Well, it knows that as well as it knows what 'John' 
means." He does not ftnd this reassuring, and after a few moments of 
puzzling, he says, "Wait-I could put Calories! Boys eat more calories 
than girls." (His class had done a study the previous month in which 
each student had counted their calories for a day, and the class had used 
the resulting data to try to conclude who as a group ate more calories, 
boys or girls. There had been a slight trend that boys ate more than girls, 
but there was a lot of overlap between the two groups.) Kamil then 
removes his empty Boys fteld, and adds a new fteld called Calories. 

He assigns each boy 202 Calories, and each girl 100 (Figure 8A). Then 
he builds a Venn diagram with one circle labeled Calories < 200 and 
one labeled Calories > 200. Sure enough, the girls go into one circle 
and the boys into another (Figure 8B). We ask, "But what if a girl really 
ate more than 300 calories?" "You could take it down, he says." "Would 
that be lying?" "Well you could make the boys bigger." 
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I Name I I Calories I 
John 202 
Mary 100 

(A) Sally 100 
Tim 202 
Betty 100 
Robert 202 
SUe 100 

(B) 

Figure 8. Kamil's first solution to the group separation problem, based on a fictional 
Calories field. 

Kamil says that this is easy now that he has the hang of it. He says he 
could use the same technique on other problems, and he does. Given 
seven slips of paper with cats and dogs, he makes a database with an 
Animals field containing the animals' names, and a Pounds field in 
which each dog is given 102 and each cat 90. Given seven people to 
separate by marital status, he creates a Years field in which he enters 
lO for single people and 20 for married people. Both ofthese solutions 
work. In both cases he also cautions, "'This isn't going to make any 
sense," and prefers not to discuss any rationale or metaphoric basis for 
his choice of field names and values. 

To see if Kamil's roundabout solutions reflect better knowledge of 
numerical than categorical data, one of the researchers adds a third 
field to Kamil's database of married and single people. This field is 
called Years Word and contains the strings "ten" and "twenty" 

corresponding to the lOs and 20s in Kamil's Years field. We ask 
Kamil if he could use this field to separate the married people from 
the single people. He says yes, but then pauses and asks: "Does the 
computer understand numbers?" We equivocate. Kamil makes a Venn 
diagram with loops labeled years word >" fifteen" and years 

word <" f i f teen" . This puts all the icons in the first loop and none 
in the second. Kamil then tries using CONTAINS rather than greater 
than. Using the constraint years word CONTAINS "y" he is able to 
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get all the married people into one circle. Then he stops and says "uh­
oh"-presumably realizing that the same trick will not work for the 
second circle because there is no letter in "ten" that does not also occur 
in "twenty". We suggest using more than one letter. Kamil takes this 

. advice and creates a successful Venn diagram with loops labeled years 

word CONTAINS "twenty" and years word CONTAINS "ten". 

Asked if he could apply a similar strategy to the earlier problems, Kamil 
says yes. We return to the animals database. Kamil adds a field called 
Letter, and enters the letter "t" for every dog and "c" for every cat. 
m the Tabletop window, two Venn loops with constraints letter = 

"t" and letter="c" produce the desired separation. Sure enough, he 
has solved the problem without numbers! As before, he resists the no­
tion that there might be any meaning to his choice of the letters "t" and 
"c". One researcher begins a question: "Suppose you were going to 
give this database to another person ... " Kamil interrupts: "I know what 
you're going to say." He renames the field containing the animals' names 
from Animal to Name, and the field with the letters from Letter to 
Animal. Then he changes all the "t"s to dog and all the "c"s to cat. 

Afterwards he says that "the words puzzled me for a few minutes." 
Asked if he would used numbers or words in future situations, he says 
he'd use whichever was easier. 

Let me offer an interpretation of this session that is undoubtedly not the whole 
story but helps to illuminate the ideas of this paper. In the first problem, Kamil 
decides to try to tell the computer who is a boy and who is a girl, but he is troubled 
by the realization that the computer will not know the meaning of the words. So 
instead, he devises a method, using fictional numerical weights, that relies not on 
meaning but on mechanism. (By this I mean that the weight numbers are used not 
as representations of fact, but as devices which take advantage of known patterns in 
the tool's behavior.) With prompting from the interviewers, Kamil is able to apply 
a mechanism-oriented approach to letters as well as numbers. Finally Kamil returns 
to the use of words, but this time with an understanding that (in our words) words in 
a database can be treated mechanistically by the computer, while being meaningful 
to a human reader. 

The same story can be retold in terms of transparency. Textual data in database 
programs is mediated through what are termed character strings. Up to this point in 
his interactions with Tabletop, I postulate that Kamil had used character strings 
transparently, seeing only the words that were spelled in the strings. The group 
separation task prompted Kamil to reconsider this assumption in the light of his 
beliefs about what a computer understands. By analogy with numbers, which he 
knew how to manipulate mechanistically, Kamil adopted a method based on opera­
tions like equality and substring search (called "CONTAINS" in Tabletop), in which 
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strings behave not as words but as character strings. The use of opaque notations 
like "c" and "t" initially facilitated his work at this new symbolic level. At the end, 
however, he was able to coordinate a use of character strings in which meaning and 
mechanism each have their place. 

12.3 Transparency and Kindred Concepts 

En route to clarifying what transparency may mean in this context, let me mention 
some other terminologies that cluster around this issue. "Direct manipulation" 
(Shneiderman, 1983) was the design goal of the 1980s. "The systems that best ex­
emplify Direct Manipulation all give us the qualitative feeling that we are di­
rectly engaged with control of the objects-not with the programs, not with the 
computer, but with the semantic objects of our goals and intentions" (Hollan, 
Hutchins and Norman, 1986). One of the most important principles associated with 
this idea is that of coordinating a program's output and the user's input within a 
single representation, which could therefore take on continuity as a "model world" 
during the interaction. 

For a more experience-oriented view, we can turn to Heidegger. His vocabulary 
of "readiness-to-hand," "breakdown," and "presence-at-hand" was explained and 
promoted by Winograd and Flores (1986) as a way of analyzing the phenomenol­
ogy of tool use, with explicit attention to the ways that our awareness of mediating 
devices may vary. The essential idea is that as long as a tool is "ready-to-hand," i.e., 
functioning in a way that allows it to be taken for granted, it does not exist as a 
distinct object for the user. A hammer being used to drive a nail, for example, "is 
part of the hammerer's world, but is not present any more than are the tendons of 
the hammerer's arm .... The hammer presents itself as a hammer only when there is 
some kind of breaking down or unreadiness-to-hand. Its 'hammerness' emerges if 
it breaks or slips from grasp or mars the wood, or if there is a nail to be driven and 
the hammer cannot be found." (Winograd and Flores, 1986) These terms could be 
applied to Kamil's experience: Initially ready-to-hand, Tabletop's handling of words 
became present-at-hand early in the session under the force of his own questioning. 

Long used in semiotics, the term "transparency" has been revived within a cultur­
ally oriented perspective (Wenger, 1990; Lave and Wenger, 1991; Meira, 1991), 
wherein its meaning is both well-developed and ambitiously broad. Lave and Wenger 
(1991) characterize transparency of technology as "the way in which using artifacts 
and understanding their significance interact to become one learning process." The 
clinical examples presented here exemplify such an interaction, I believe. How­
ever, for these writers, significance can extend to the many "fields of meanings" of 
an artifact within a culture (Wenger, 1990). In the case of a tool like Tabletop, these 
might include the role of data analysis and statistics in scientific and political dis­
course. While such indirect meanings are indeed essential in learning to use such a 
tool well, the tool is not used for the purpose of representing them. Such meanings 
are not what I am talking about in this paper. 
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I am concerned here with the more basic case of a mathematical device that is 
being used to model a situation of interest. For such a modeling relationship, the 
metaphor of transparency carries a useful set of implications. It acknowledges a 
model's mediating role by placing it between the user and the domain of interest. It 
suggests how one might not be aware of the model's presence, even while depend­
ing on it. "Transparent" thus captures much the same notion as "ready-to-hand," 
but it seems more apt for symbols and representations. (Perhaps "ready-to-eye" 
would be a more Heideggerian coin.) At the same time, we know that transparent 
objects are not always invisible-they can be looked at as well as through (which is 
equivalent to the ready-to-handlpresent-at-hand distinction). 

The metaphor of transparency can also be misleading. It can be taken to imply 
that a transparent medium reveals objects as they "really" are, rather than as 
medium-dependent constructions. It also suggests that transparency is a property of 
the medium itself, independent of the perceiver'S learning, whereas transparency 
can the hard-won outcome of learning to use a medium well. But there is a kind of 
transparency that we do not work to achieve, and which seems to reveal objects as 
they "really" are: This is naive transparency, and it happens as long as, and insofar 
as, our prior constructions of the domain are not challenged in our experience of the 
new medium. As Andy diSessa has said, "transparency is best, not when it is given, 
but when it is achieved" (personal communication). But let us not look down too 
much on naivete: It is an essential and inescapable dimension of our being. In trans­
parency there is always a dynamic mixture of the naive and the reflective, the given 
and the achieved. 

12.4 The Transparency Dialectic 

Lave and Wenger (1991) make this important statement about transparency: 

It combines the two characteristics of invisibility and visibility: invisibility 
in the form of unproblematic interpretation and integration into activity, 
and visibility in the form of extended access to information. This is not a 
simple dichotomous distinction, since these two crucial characteristics are 
in complex interplay, their relation being one of both conflict and synergy. 
(p. 103) 

I would like to use some slightly different language to describe what this com­
plex interplay can be like. We may take Kamil's session as an example of a 
recurring phenomenological-epistemological progression in the transparency of 
computer tools, which might be called the "transparency dialectic." This dialectic 
opposes naive transparency (thesis), to opacity (antithesis), with coordinated trans­
parency as a synthesis of the two poles. Naive transparency might also be called 
naive realism: The user does not suspect the existence of some mediating layer or 
component. In opacity, the mediating layer is problematic and the situation of inter­
est is not directly visible; the tool's mechanisms must be reflected on, and solutions 
are based purely on mechanism, as when Kamil cautions that, "This isn't going to 
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make any sense." In coordinated transparency the user achieves a synthesis of mean­
ing and mechanism: Shelhe can understand and accommodate the requirements of 
the medium's mechanisms, but is usually able to act and think as if there were no 
such layer in between. This is a desirable outcome. To quote Wenger (1990), "rep­
resentation artifacts must become invisible for the learning to be fully integrated in 
some ongoing activity."2 

It might seem needlessly confusing to use the term "transparency" for both the 
beginning and end states of this dialectic. Clearly they are very different kinds of 
experience. But "transparency" may be a good name for what's similar between 
them. Consider two people interacting together around a computer environment, 
making transparent use of some tool component. Suppose that for one person the 
transparency is naive, and for the other it is coordinated. As long as the use of the 
tool component does not become too problematic, their behaviors will be very hard 
to distinguish. In all likelihood the two people themselves will not be aware of a 
difference in their experience of the tool. This similarity is very important, with 
many implications for communication and learning processes. 

Kamil's use of numbers as a transitional solution brings up some interesting subtle­
ties. It seems reasonable to say that numbers served as a model of how a symbol 
could be used in a non-transparent way. However, the opacity of Kamil's numbers 
is not exactly parallel to that of his letters. The character strings that mediate the 
input and output of numbers, unlike those used for words, are normally transparent, 
because a string of digits can be treated by the computer as a true number, suscep­
tible to all the standard arithmetic operations. 3 Kamil uses digit strings transpar­
ently: It is the numbers themselves which are opaque. Kamil knows that the com­
puter can manipulate numbers (note that he asks "Does the computer understand 
numbers?" only later in the session, referring to spelled-out numbers). And yet 
Kamil's use of numbers is not as definitely opaque as it would have been had he 
simply made a field called Number, with meaningless numbers; instead, he makes 
fields (Calories, Pounds, Years) which are meaningful, but fictional. The role of 
fiction is intriguing. Perhaps the fictional structure supported his use of the tool's 
numerical mechanisms by keeping a clearer connection to his past uses of the tool. 
One might also say that through the device of fiction, Kamil turned the modeling 
relationship around, making a fictional world serve as a cognitive interface to the 
tool's abstractions. 

The potential for turning around the modeling relationship is a benefit of trans­
parency. A good modeling tool embodies mathematics in a way that makes it easier 
to "see" the subjects to which that mathematics is applied; once these subjects are 

2See diSessa (1986) for a similar progression described in terms of functional and structural 
understanding. 
3The digit string layer can occasionally become salient when students accidentally set the 
type of a numerical field to "string," leading to unexpected tool behaviors. 
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in view, they become a background against which the mathematics itself can be 
better seen. Words can illuminate the workings of character strings; weights of boys 
and girls can illuminate the transformation from data table to Venn diagram. 

Clinical Example #2: The Transparency of Structure 

Kamil's preoccupation with the meaning and meaninglessness of words was unique 
in our study. (Not, I would argue, because the issues are irrelevant to other children, 
but because it was only with him that we witnessed them being worked out.) What 
about the other subjects? More commonly, subjects ran into difficulty not with the 
words themselves, but with the way the words needed to be arranged in order for 
the computer to deal with them correctly. Independently of each other, most of the 
subjects (9 out of 13) created similar data structures of a kind that, although intelli­
gible to humans, is quite inappropriate in the Tabletop program. They added not 
one but two columns to the database-one for girls and one for boys. In each col­
umn they simply listed all the names of that gender, without regard for the align­
ment of information in rows (a typical example is shown in Figure 9). This led, of 
course, to bizarre data records. Double-clicking on icons in Tabletop, for example, 
yielded object descriptions such as in Figure 9(B). 

I Name I ~ I Girls I 
John John Mary 
Mary Tim Sally 

(A) Sally Robert Betty 
Tim (:; Sue 
Betty (:; (:; 

Robert (:; (:; 

Sue (:; (:; 

Name: Mary Name: Tim 
(B) Boys: Tim ,Mary Boys: <> ,Tim 

Girls: Sally Gi rls: Sue 

Figure 9. An unsuccessful attempt to solve the group separation problem. Inappropriately 
structured data in (A) produces confusing records as in (B). 

Some vocabulary would be helpful here. We will call the representation consist­
ing of a field of individual names and a parallel field of corresponding properties a 
property-based representation. In contrast, a set-based representation presents 
equivalent information in the form of sets, each with its own name and list of 
members (Falbel and Hancock, 1993). 



Property-based 

!Name! 
John 
Mary 
Sally 
Tim 
Betty 
Robert 
SUe 

! Gender! 
male 
female 
female 
male 
female 
male 
female 
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Set-based 

~ !Girls! 
John Mary 
Tim Sally 
Robert Betty 
o SUe 
o 0 
o 0 
o 0 

Figure 10. Two fundamentally different representations of the same information. 

Either kind of representation can be used to describe the same underlying logical 
relationships. While most database programs, including Tabletop, require an attribute­
based representation for data entry, it appears that, at least in instances like this one, 
the set-based form comes more naturally to youngsters than does the attribute form. 
Many of our subjects struggled through, often with some hints, to an attribute-based 
solution, but would then slip back to a set-based orientation on follow-up problems. 
There are many interesting questions to consider regarding the conditions of and 
reasons for students' apparent preference for set-based representations. One conjec­
ture is that many of the facts recorded by students in databases-ages, weights, 
calorie counts, etc.-may fit more naturally for children in an attribute-based 
format, as compared with a binary boy/girl distinction, which seems to be more 
naturally represented by children in a set-based format. While students had defi­
nitely made and used binary fields in their databases, it is possible that these were all 
modeled by a teacher, so that it was not up to the students to choose an attribute­
based representation over a set-based one (Falbel and Hancock, 1993). 

Here, however, my interest is in the fact that the difficulty encountered by these 
students represents, once again, an opaque intrusion of a domain of the tool that had, 
up to that point, been transparent to them. In this case the domain is the data struc­
ture on which the tool operates. Just as character strings, together with their associ­
ated operations and relations, such as substring search, can be thought of as a math­
ematical domain, so can the tool's underlying data structures-the records and fields 
visible in the data window-together with the transformations that generate possi­
bilities for plots and graphs in Tabletop window. These transformations form a mecha­
nistic layer of the tool, which operates independent of meaning. Of course, meaning 
is not irrelevant: The structures and transformations have been designed so that when­
ever the program rearranges the words in the database, they still make sense and 
reflect the truth. If, in one row of the data window, we enter female under the 
Gender heading, and Rashida under the Name heading, we are not surprised when 
later Name: Rashida and Gender: female appear together when a particular icon 
is double-clicked. Because both these arrangements of words are meaningful to us, 
we do not have to think about them in terms of underlying mechanisms. That is, the 
mechanistic layer can be transparent, as long as we have matched our meanings to 
the structure in accordance with the tool's design. From the point of view of these 
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students, even with many hours of Tabletop experience, the data entries in the data 
window were simply reasonable ways to describe the facts, and the computer's re­
presentations of the facts were unproblematic. 

In terms of the transparency dialectic, for many of our subjects the group separa­
tion task presented difficulties that disrupted the naive transparency in their experi­
ence of data structure in the software. With the exception of one subject who devel­
oped a coherent explanation of the problems of set-based representations, most 
subjects who eventually solved the problem muddled through without a clear sense 
of why one method worked and another didn't. These subjects still have a distance 
to go in exploring the opaque mechanisms of data structure. The experience of 
working on this problem may at least have helped to raise the issue for them. 

What was it about the group separation task that precipitated the breakdown of 
transparency? The group separation problem begins with a goal expressed in terms 
of arrangements of icons, and asks what prior condition is necessary in the data 
window to achieve it. As already noted, this is the reverse of the transformation that 
the software makes automatically, and it is also the reverse of what the students had 
generally been asked to do.4 In their previous projects the students had first created 
databases, designed either by adults or by themselves. Then they had explored in 
the Tabletop window to see what graphs they could make. With little prior expecta­
tions of what graphs they would be making, they had no reason to notice if a 
particular kind of graph was possible or not possible. The motto "Aimlessness 
perpetuates naive transparency" may capture some ofthe problem here. An explor­
atory, come-what-may orientation may have been appropriate for a while, but I 
think these students would now benefit from more planful, goal-oriented activities 
in which the affordances of the tool would be subject to more critical scrutiny. 

12.5 The Tool and the Curriculum 

The question of how a teacher might manage the vicissitudes of transparency raises 
important issues of curricular and pedagogical judgement. By solving some prob­
lems ahead of time, and steering activities around potential difficulties, teachers 
can (and routinely do) allow aspects of a tool to remain invisible in students' expe­
rience. Conversely, teachers can make it more likely that an invisible transparent 
layer will come into view, and can support groups or individuals in reflecting on it 
and arriving at a coordinated understanding of it. The judgement about how to pace 
this process, i.e., the process of the transparency dialectic, can be based on all kinds 
of considerations, including classroom goals and how they are being served along 
the way, as well as students' readiness for frustration and complications. Thejudge-

4As Andee Rubin points out (personal communication), this feature of reversal is shared 
with other difficult tasks, such as medical diagnosis and the construction of mathematical 
proofs. We know a solution when we see it-but how to create one? 
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ment can be better made to the extent that the teacher is aware of that layer and the 
circumstances under which it is more or less likely to intrude into the class's awareness. 

Though timing may be under the teacher's influence, the fact remains that, no 
matter how supposedly "transparent" the tool design, without a teacher's vigilance 
to prevent it, any part of the mathematical model that is being looked through will 
eventually need to be looked at. Rather than struggle against this powerful trend, I 
would rather adopt a view of computer-based tools, and the mathematics they em­
body, that harmonizes with it. Let us think of a tool not only as a device to make 
useful things happen, but also as a way of packaging some mathematics that we 
judge to be worthy of students' attention. Let us consider the transparency dialectic 
itself to be a process which students might have reason to practice and get better at. 
In short, let us adopt the principle that, to paraphrase McLuhan, the medium is the 
curriculum. This principle has several implications. 

First, tool designers should acknowledge that they are designing not just a tool 
but a curriculum. The implicit mathematics of a tool needs to be brought into the 
open and weighed in the same way that any kind of curriculum is weighed: for its 
accessibility and interest to children, its cultural significance, its contribution to 
intellectual and social empowerment. At times, general-purpose computer environ­
ments have been portrayed as a radical alternative to the oppression of planned 
curriculum. While the rigidity and materialism of overly scripted, instructionist 
curricula is certainly something to be overcome, adults should still make careful 
choices about the artifacts, ideas and activities with which we ask children to en­
gage. Indeed, Papert's Mindstorms (1980), which some have read as a manifesto 
against curriculum, is an eloquent curricular argument, and appropriately so. When, 
for example, he portrays the computer as an entity that "speaks mathematics," or 
argues for the general utility of skills such as debugging and making subprocedures, 
Papert is making an argument for the curricular value of LOGO and similar envi­
ronments based in part on the mathematics they embody. 

Second, the implicit mathematics of a tool needs to be judged on its form as well 
as its content. Is the implicit mathematics rendered in a coherent and developmen­
tally appropriate fashion? One example of a problem of coherence comes from a 
commercially available educational data analysis program that accepts data in col­
umns (Figure 11). Among the graphing options possible with this tool, one is a box 
plot by groups. Here the implicit mathematical model is that each column repre­
sents a group of cases, with the numbers representing some measurement on mem­
bers of the group. However, another option will render the same numbers as a scat­
ter plot. Now the implicit mathematics is different. Both columns now apply to the 
same group of cases, with each column representing a different attribute. (And sud­
denly unequal column size is a problem, where before it wasn't.) To use the termi­
nology introduced earlier, this tool wavers between a set-based and an attribute­
based interpretation of rows and columns. Almost never would both interpretations 
make sense for the same input. This is not good tool design. While the tool provides 
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a useful set of capabilities, the underlying mathematics is incoherent. When issues 
of data structure become problematic, the tool's mixed messages are more likely to 
lead to confusion than to enlightenment. 

~ ~ 
9 
8 

1 1 
12 
18 
19 
27 
30 
42 

(A) 

B 75 
o 
a 
t 

50 

s 25 

18 
90 
70 
35 
85 
49 
73 
87 

80 

60 

40 

20 

(B) 

+ + + 

+ + 

+ 
+ 

+ 

10 20 30 
Cars 

(C) 

Figure 11. An example of incoherence in a mathematical tool. Plots (B) and (C) represent 
conflicting interpretations of the data structure in (A). 

Another aspect of mathematical coherence is completeness. For example, Table­
top has a shortcoming that is shared by all current educational data tools: It is 
incomplete with respect to the transformation of data structures. Most obviously, 
the reverse transformation from set-based to attribute-based representations should 
be possible. This would allow children to enter data in a set-based form when it 
better matched their understanding of the situation. But more generally, the domain 
of data structure should be rendered as a transformational space, which students 
could explore in order to make sense of structures and transformations as a coher­
ent system. The point of such a data tool would not be to prevent the mechanisms of 
data structure from ever intruding on students' experience; the relationship between 
set-based and attribute-based representations, for example, is still important to learn 
about. But the intrusion could happen a little later, a little more gently, with the help 
of more cognitive support and the reward of greater empowerment within the 
environment. 



The Medium and the Curriculum 239 

Incidentally, I can describe this ideal tool in terms of its general properties, but 
exactly how it should behave is not obvious. Mathematics and computer science 
offer a hodge-podge of data structure concepts, more or less conditioned by his tori­
cal limitations and idiosyncrasies of computing technology: table, relation, array, 
matrix, variable, list, vector, tuple, tree, pointer, queue, stack, record, object, and 
scores more. A coherent, accessible theory of data structures and transformations 
would be a significant design accomplishment-and its acceptance would be a major 
political accomplishment! This brings me to my third point. 

The third implication of "the medium is the curriculum" is that, where the math­
ematics of a computer tool is judged worthwhile, it needs to be integrated into the 
accepted body of mathematics curriculum. This may entail some reorganization of 
topics and branches of mathematics. However, a first step is simply recognizing the 
existence and importance of the mathematical ideas that are embodied in a tool. 

The mathematics of data structures is a prime example. Data structures and their 
transformations deserve first class citizenship in the mathematics ofthe 1990s. At 
present data structures are taught in the U.S. only at the college level, as second­
year computer science. But data structures are not just the province of program­
mers. They are absolutely fundamental to data analysis as well as to the use of most 
computer-based tools. Data structures and their transformations are also very pow­
erful mathematics, with strong connections to other kinds of mathematics like alge­
bra, linear algebra, symbolic logic and other discrete math topics, and, of course, 
computer programming. One way to integrate data structures into the mathematics 
curriculum would be to incorporate them into discrete mathematics-balancing what 
I consider to be an overemphasis on algorithms in current visions of the field-and 
also to build a connection back from college level discrete mathematics all the way 
to attribute blocks and sorting activities in the first grade. Data analysis and data 
manipulation environments would be an important part of that connection. In addi­
tion, algebra curriculum could be revised to build on the conceptual similarity be­
tween data "fields" and algebraic variables. (By suggesting new ways to think about 
mathematical topics, I don't mean to imply that mathematical pedagogy should be 
heavily topic-oriented. The best learning about data structure, and indeed all of 
these topics, may happen in interdisciplinary contexts.) 

Before such changes can be contemplated, the discourse of educators, mathema­
ticians and statisticians will need to acknowledge the ubiquity and fundamental 
nature of data structure concepts. These concepts have a peculiar kind of invisibil­
ity now. Adults who must use data structure concepts every day, in doing statistics, 
say, or using various computer tools, do not seem to be aware of concepts they are 
using, or of the need to pass them on to novices. Polanyi (1958) described a cat­
egory of knowledge which he called tacit. Among other things, tacit knowledge is 
indispensable in making sense of seemingly straightforward linguistic communica­
tion. Likewise, data structures are a kind of tacit mathematics, indispensable to the 
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intelligibility of data analysis and data tools, straightforward though these may seem 
to expert users.5 

The advent and maturation of computer-based tools and their use in classrooms 
provides an opportune time for bringing tacit mathematics to light. Tools are part of 
the trend away from learning about mathematics and science, towards learning to 
do mathematics and science. As this transition progresses, children in their engage­
ment with tools help to expose the gaps between theory and practice. It is an inter­
esting twist on the phenomenon of transparency, where our own knowledge can 
itself be invisibly transparent, so that we don't realize what knowledge we draw 
upon in order to use a tool or technique successfully. Fortunately, our own transpar­
ency dialectic is underway. Reflection on newly recognized transparent knowledge 
can help mathematicians and educators in reconstructing a mathematics in which 
more students will find clarity. 
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