
19. The Many Faces of a Computational
Medium: Teaching the Mathematics of Motion'"

Andrea A. diSessa

Graduate School of Education, University of California at Berkeley
Berkeley, CA 94720 USA

Abstract. This chapter reviews the development and deployment of two editions
of a course on the mathematics of motion. The course was based on the premise
that everyone involved-students, teachers and researchers-should develop a flex
ible competence with a general, programmable computational medium, Boxer. We
illustrate the many ways that Boxer was used in the course, from microworlds and
flexible tools to tutorials, from a compact and precise notation in which to define
and use fundamental concepts, to providing the basis for extended and thoroughly
personalized independent projects. A computational medium has many attractive
qualities that help foster a gradual but effective shift in classroom practices to new
ones that support more effective and more enjoyable learning of important math
ematical and scientific ideas.

19.1 Introduction

Literacy, in the conventional sense of understanding and being able to produce
written language, pervades our educational system deeply. It is, indeed, difficult to
imagine what things would be like if literacy were not a taken-far-granted part of
the competence of teachers and students. Of course, students and teachers learn and
instruct the humanities by reading and writing, but things are really little different
in mathematics and science. Textbooks usually dominate every phase of "inges
tion," from organizing what is called a lesson, to being the direct focus for students
(reading the text) on their first pass at learning the subject. On the second pass,
problem solving, what fits nicely into a few sentences determines units and focus.

'This paper is based on an earlier version presented at the sixth international conference on
Technology in Mathematics Teaching, Birmingham, England, September, 1993. The work
described was supported, in part, by the National Science Foundation, grant numbers NSF
MDR 88-50363 and NSF-RED-92-52725. The opinions expressed are those of the author
and not necessarily those of the NSF.

338 diSessa

And modest technical extensions oflanguage literacy (but still within easy reach of
paper and pencil technology), algebra, graph drawing and the like, fill out the rest
of the externalized thinking props that both constitute and develop understanding.

It seems inconceivable that the properties of such a fundamental part of thinking
and learning do not, in some important measure, determine what is thought and
how it is learned. One doesn't need the subtlety of a Whorfian hypothesis to see
how children shut out of conventional discourse forms suffer in school.

Complementary possibilities constitute the most exciting prospects for education
in a century or more. That is, by extending linear language into the multiply con
nected, dynamic, richly textured graphical and interactive forms allowed by com
puters we may fundamentally extend the material bases for thinking and learning,
and with them the whole practice of education.

To oversimplify, there are two contrasting conceptions of a computationally en
hanced literacy. The dominant one today I would describe as a trivial literacy. In
this view, experts and software designers will supply the general populace with
highly tuned and elegant tools and other pieces of software that we will learn to use
in the niches for which they were intended-symbol manipulators, graphers, simu
lations and simulation tool kits, and the like.

In contrast, a deep computational literacy offers one crucial additional resource
in-principle access for everyone to the creation and modification of the dynamic
and interactive characteristics of the medium, the very characteristics that define
the medium as an extension and improvement of text in the first place. In meta
phorical terms, reading without writing is only half a literacy. Deep computational
literacy means "writing" in addition to "reading," creating as well as using.

Most would call this additional resource and set of activities programming. We
prefer not to prejudice the form of access to creation and modification of dynamic
and interactive structure by using a word loaded with assumptions about difficulty
and social patterns (e.g., "programming is hard, and programmers do it for you").
Instead, we prefer to refer to the encompassing system that has full programmabil
ity-an intended basis for a new literacy-as a computational medium.

The issues concerning whether the development of a deep computational literacy
is possible and desirable are complex. We make three main points about these here.

Nontrivial tool; nontrivial skills. First, powerful intellectual tools are naturally
nontrivial to learn. Trivial literacy assumes that complete intuitive transparency
and no learning curve characterize the best software. In contrast, the "no free lunch"
correction to this prejudice against learning is that transparent power is very likely
to have no effect on the individual, except in hislher local ability to accomplish. If
our goals are educationally to transform individuals, then we should expect a long

Many Faces of a Computational Medium 339

development that, in the end, results in generalizable intellectual power rather than
just the ability to do something better by using a tool crafted for that particular
purpose. Long development with powerful payoff ought to be familiar from tradi
tionalliteracy. In the body of this paper, we point out many cases where student and
teacher accomplishments built on substantial prior accomplishments.

Exponential cumulativity. The second point is directly related. A computational
medium provides exponential rather than linear cumulativity. That is, a new com
petence with the medium enhances any context in which that competence might be
applied. In contrast, for example, learning a highly tuned and targeted application
means learning one more skill or capability. This is fine and appropriate. But when
an expanded cumulativity is possible, it may be the better option.

"Small dollops," ownership and deep appropriation. Third, allowing creative
access to the fundamental capabilities of the medium provides for the organic evo
lution of practice. Dropping dollops of software into teachers' and students' lives
has serious appropriation problems, even if the software is excellent. Once again,
"software dollops" provide only linear cumulativity. Furthermore, a piece of soft
ware typically obliges users to learn a new practice around it. Everyone knows that
excellent software can be "used wrong," and teachers always struggle with fitting
"a piece at a time" in with the rest of what they do.

A computational medium alleviates these problems. First, the "dollops" added
may be quite small. Within the context of a computational medium that provides
many capabilities "for free," each application may need to add only a few specific
capabilities to be useful, as opposed to a complete self-contained world. That means
new software is sometimes easy to develop-teachers or students may get into the
development act. The ability to modify, hence adapt to local circumstances, is also
a strength of a computational medium. Even "big dollops" of software are modifi
able and extendible to the point that they may truly serve the community's sense of
its own needs and personality. In short, a computational medium may change the
grain size of "new software," the sense of connectedness with prior classroom prac
tices and other work, and the basic ownership connection felt toward the software.

This chapter takes a concrete approach toward arguing the reality and importance
of the above considerations. We examine the use of our computational medium,
Boxer, in two editions of a course on the mathematics of motion. Basically, we
simply list many of the forms of software that we, teachers and students developed
as part of these two classes. Some of these forms (microworlds, tutorials) will be
very familiar. Even for these, however, patterns in their development and use imply
fundamental shifts in the practice of teaching and learning with a computational
medium compared with conventional software. As I have emphasized elsewhere
(diSessa, 1989) the surrounding practices and social relations for a piece of soft
ware are essentially always much better indicators of its effectiveness-and even
of what it is-than any description of the software itself. Some forms of software

340 diSessa

we describe are less familiar (e.g., interactive representational forms) and more
specific to the use of a computational medium. In these cases also, the underlying
patterns of use are the critical issues.

There are many things this review will not cover. Each piece and type of software
has many important properties-not the least of which is the learning theory behind
them-that we cannot describe here. When possible we refer readers to more ex
tensive descriptions. Neither will we be able to give an accountable description of
the success in learning that these courses and pieces of software fostered. Instead,
we need to rely on face value (which some of our recounting nonetheless unam
biguously suggests) in order to concentrate on the underlying patterns of develop
ment and use. Those patterns are the best indications that the form of learning really
has been substantially altered by the presence of a computational medium.

19.2 Overview of the Classes

Both classes we describe aimed at teaching kinematics, the mathematical descrip
tion of motion. Among the topics covered were: concepts of instantaneous velocity
and acceleration in one and two dimensions; relative motion, frames of reference
and compositions of motion; vectors and vector forms of velocity and acceleration;
graphing (e.g., position, velocity and acceleration graphs and relations among them);
and at least qualitative versions of the basic idea of integration and differentiation.
Although for the most part we tried to avoid causal aspects of motion (dynamics),
both courses ended with versions of Newton's second law, which specifies the rela
tions among force, mass and motion.

The first edition of the course involved eight sixth grade students, four male and
four female, four days a week during a full academic year. Their school was aca
demically-oriented and independent, located in Oakland, California. The students
were bright and articulate, but not by any means prodigious.

The second edition took place during fifteen weeks in an independent high school
in San Francisco. There were six males and two females. Like the sixth grade class,
the students were volunteers, but unlike the sixth grade selection, these students
skewed toward the low achievement end of the scale at their school. This course
was greatly compressed compared to the sixth grade edition. Indeed, only ten of the
fifteen weeks were spent on kinematics; the rest were spent on learning Boxer.
Most of the students in both classes had not programmed before, and none of them
had encountered Boxer.

Among the orientations that characterize these classes, apart from the use of Boxer,
were an emphasis on learning through collaborative discussions and extended indi
vidual or group projects.

Many Faces of a Computational Medium 341

19.3 Microworlds

The ideal microworld should have the following properties: (1) It ought to have a
fairly simple interactional form students can easily learn. (2) It ought to provide a
wide range of self-motivated activities. (3) It ought reliably to bring students into
contact with fundamental mathematical or scientific ideas.

0[50 OUrJ° [] speed ac

• 0

Data Data

! race-track 1

• • • • • • •

II I I I I I I I I I II I I \1 I I I

•

SPEEDS

Dat,,-

• •

I I I I I I

POSITIONS

8
12
16
20
2.
28
32
36

I I II II I

Figure 1. In Number-speed two turtles are programmed to race by generating lists of
speeds and positions. Here, the first turtle is programmed with initial position 0, speed 4,
acceleration O.

Figure 1 shows a main part of a simple microworld called Number-speed de
signed by Steve Adams, which was used about one-third the way through both
courses. The idea is that a list representation for speeds makes an excellent
approach to understanding some of the essentials of position, speed and accelera
tion. Students exercise the ideas (1) that speed determines a local property of
motion, (2) that speed provides the unit time increment to position, (3) that, in
complementary manner, differences in position determine speed, and (4) that the
same set of relations (2 and 3) holds between acceleration and speed.

The main activity in the microworld was "turtle racing." Students programmed
number lists by setting initial speed, position and acceleration. Acceleration was
limited to plus or minus 1 and O. One could then inspect the lists of positions and
speeds and see the motion thus determined. A series of graded challenges were

342 diSessa

included. For example, students had to describe particular motions to their partners
in words, and their partner then had to program them. The most complex set of
challenges involved markers placed on the turtle racetrack at which point one or the
other of two programmed turtles had to be ahead.

The presentation of this microworld is mostly entirely generic Boxer structure. It
uses unadorned, basic structures with which every user is familiar. The number lists
are simply data boxes (variables) that most students encounter in their first few
sessions with Boxer. Data boxes may be edited directly at any time, or they may be
changed by a program, which changes are immediately visible to users. Developers
of materials using Boxer thus may use data boxes as user interface input or output
devices, with no special 10 statements or programming. Many times, 10 and inter
face programming constitutes a principal effort in developing computer materials.

Using generic structure has one disadvantage and three critical advantages for
students. The disadvantage is straightforward, a prototypical example of issue 1:
nontrivial tools; nontrivial skills. Students need to be familiar with basic structures
in Boxer in order that the open use of these won't constitute a serious block to
getting things done. This is not a straightforward matter for designers of materials
because Boxer, like any complex system, has both simple and more difficult to
master components. So developing skills in using the simpler components effec
tively and generally anticipating the level of competence of students is critical. 1

The three advantages of using generic Boxer components in micro worlds all have
to do with various manifestations of cumulativity, issue 2. First, using generic Boxer
provides immediate familiarity based on prior experience. Students sit down know
ing things that are possible and things they are likely to be asked to do. In our
motion courses by and large we felt we were close to the ideal state-that students
don't need to learn anything technically new (e.g., what is the nature of what they
see on the computer screen; how should we interact with it?) in order to start engag
ing a new microworld conceptually. Number-speed was an example.2 Success here
was in some measure due to our accumulated experience as designers of Boxer
materials. In contrast, a very early course using Boxer flirted with disaster because
we seriously overestimated the ability of students to construct all their own tools
from scratch. (See diSessa, 1993.)

The second advantage is the flexibility that cumulative skill allows. When stu
dents are presented with systems built from familiar parts, they have unusual

I A side effect of using generic Boxer structures in microworlds is that it is more difficult for
people who don't know Boxer to get a sense for how easy or difficult the microworld may
be to use, and even what things are possible with it.
2 This is a design as well as a systems issue. It is as easy to add bells and whistles to
microworlds in Boxer as with other systems. However, we steadfastly avoided doing this
for these courses.

Many Faces of a Computational Medium 343

access to inner workings, whether to see how microworlds work or to modify or
extend them. In the case of Number-speed we saw a stunning example ofthis, which
we facetiously dubbed "learning by cheating" (Adams and diSessa, 1991). A pair
of sixth grade students was working on the last challenge in the microworld cur
riculum, which involved three changes of lead in a turtle race. This is an impossible
challenge (with constant acceleration)! These students came to understand the im
possibility ofthe challenge by hand editing the speed list (ordinarily automatically
generated by setting initial speed and acceleration) so that there were three changes
of lead. Then they developed an argument that the pattern needed could not have
been produced within the constraints of the actual program. We had many other
examples of students productively using microworlds in ways we did not antici
pate, some described below. Many of these were attributable to the fact that they
had direct access to the "innards" of the microworlds.

The third advantage to students of using generic structure, like Boxer lists of
numbers in Number-speed, is the cumulativity that builds from any powerful repre
sentational system. Lists of numbers are general, useful, and effective representa
tions both computationally and intellectually. Students will have many contexts in
which the representation actually does work for them. Boxer number lists were
generated and used in many circumstances by students other than in Number-speed.
One sixth grade student, in fact, did an independent project on "calculus" by imple
menting generic list processing programs that "differentiated" and "integrated"
functions, represented by number lists.

Number-speed is an especially nice example of representational cumulativity
because conceptual aspects of its use are so tightly intertwined with technical as
pects. In the same way that by learning about graphing, one also learns about func
tions, number lists are powerful computational constructs for thinking about
motion. We used them consistently in many circumstances, for example, as a medi
ating conceptual representation that allowed students more easily to translate
between, say, velocity and acceleration.

In one episode, sixth grade students were discussing the position graph that would
result from a velocity that linearly increased to a point and then remained constant.
The students knew the first part of the graph would be concave upward, and the
second part would be a slanted but straight line. The students debated whether there
would be a "comer" where these portions joined, or would they join smoothly?
(See Figure 2a.) One girl settled the issue, arguing that "the amount it (position)
increases each time increases to a certain amount and then stays constant." The
graph should slope more and more, and then continue at its highest slope. We inter
pret this as an implicit reference to a speed list that increments positions. It is as if
she constructed a speed list such as in Figure 2b in her mind corresponding to the
given velocity graph, then read out the implications of each speed for the position
list and graph.

344 diSessa

a. distance b.

speed

0
speed 1

/
2
3
4
5

?

/
time

~
distance

time

Data

time

Figure 2. Generating a position graph from a velocity graph. (a) The question. (b) Number
lists provide a tool to resolve the issue.

Figure 3 shows a relative motion micro world called Elmira. The large cross rep
resents a frame of reference in which the small circular ball moves. One specifies a
motion for the frame of reference and one for the ball. These motions are indepen
dently executable. We asked students to predict the combined motion that the ball
exhibits with respect to the fixed background when it and its frame of reference are
simultaneously moving. Students can slow the motion, "single step" it, or use a
number of analytical tools such as showing the path of the ball in the moving frame
of reference, showing the path of the moving frame of reference, or drawing the
path of the ball on the fixed background frame of reference.

Elmira took about a day of programming initially to implement. Subsequently,
implementing redesigned and new features based on formative trials took about
another two days of programming. This is not unusual with Boxer. Many of our
microworlds were implemented in only a few days. But it compares strikingly to
the man-years typical of educational software development. The main reasons for
reduced development time are the powerful general structures (e.g., for text editing
and dynamic graphics) that are immediately useful for developers, teachers and
students in Boxer. As a result of "quick prototyping," most of the time spent on a
microworld can be on educational design, not coding.

Many Faces of a Computational Medium 345

r!lOtion menu J
move- frame-of - refere.nce

• move-~ll

+
documentotion

library of mot: ir.m8

.... ________ .J

Figure 3. The cross is a frame of reference (here it is "falling"). The ball is moving diago
nally upward (dotted path) in the frame of reference, resulting in a net parabolic path.

One of the tricks that makes quick development possible in Boxer is that we can
rely on students' know ledge to fill in where otherwise much development program
ming is needed. Instead of elaborate error trapping, for example, errors are not
unusual events for students who have programmed a computational medium. Most
are handled as a minor annoyance, without interfering with the main intellectual
work of the microworld. This observation is in line with the discussion on uses of
generic Boxer structure in the Number-speed rnicroworld. In particular, easing the
developer's (or teacher's) burden relies on the cumulative power of students' learn
ing Boxer (issue 2), and it is subject to the "nontrivial skills" caveat (issue 1).

Quick and easy development of materials is an important aspect of the organic
growth of teaching practice (issue 3). We introduced Elmira to the teacher of the
sixth grade class literally the day before she was going to use it. Although we felt
we had a good design, the teacher had several strong reactions. First, she wanted to
rearrange and simplify the menus for students. Second, she wanted us to remove all
documentation as she considered it a distraction and complication rather than a
help for her students. Finally, she wanted to modify and rearrange the sequence of
problems. We made all these changes and the "new" micro world was used success
fully the following day.3

3 The teacher was a reasonably competent Boxer user, and we have no doubt she could have
made the changes herself. However, it was expedient for us to save her the trouble.

346 diSessa

Whether or not the teacher was correct in her redesign is beside the point. What
she did was substantially to make the microworld her own. Her own style and sen
sibilities concerning her students could easily be established. In general, we see
teachers as serious collaborative designers of Boxer materials, not only in initial
design but also in the field. It is important that we can supply easily modified mate
rials, and that what teachers learn in changing one microworld is applicable to
others (cumulativity). We will provide other examples of the possibility and power
of teacher and student modifiability below.

By now, it should be unnecessary to note how important it was that this teacher
had a sense for what was easily possible in Boxer (nontrivial tools). Among other
things, our relationship with her could not have been sustained if she constantly
suggested impossible-to-achieve changes, e.g., if she wanted boxes to behave like
windows. Teachers without her accumulated competence and confidence could not
engage in the ownership-through-redesign process.

Here we note just one feature of Elmira that fostered student modifiability via
exponential cumulativity. The motion library that contains all available motions for
the microworld is completely student accessible and extendible. The representation
of the motions is number lists, in consonance with Number-speed and the curricu
lum more broadly. Because students may use this microworld before number lists
are familiar, we included a translator in the library that could tum a more familiar
representation of motion, a turtle program (move forward, turn right, ...) into num
ber lists. In our experience students like to play with unusual motions like "reverse
gravity" (the frame of reference "falling up") and irregular motions. Because of
Boxer's features, including the general knowledge students have about perusing
and editing Boxer structure (in this case, the library) the translator took only about
15 minutes to implement.

Elmira is among the best studied of the micro worlds we made for these courses
(diSessa, 1989; Metz and Hammer, 1993). Studies show that students can effec
tively learn Elmira using dynamic spatial intuitions rather than formal constructs
like equations and functions. This helps validate a central assumption behind the
development of computational media-that new graphical, dynamic and interac
tive structures can genuinely develop forms of intelligence that standard literacy is
inadequate to reach.

Figure 4 shows a microworld that we introduced to students about the same time
as Elmira. It is called Tinker and contains magical tinker-toy rods, each of which
has a characteristic motion. Some are fixed in length and direction. Some grow at a
constant rate. Some turn perpetually in a circle. Students can hook a series of such
rods, end to end, and watch the resulting complex motion of the end of the final rod.
This microworld concerns the composition of motions, and it provides a very con
crete image of the vector decomposition of motions. We use Tinker as a modeling
kit in which students explore building complex motions out of simpler ones. For

Many Faces of a Computational Medium 347

example, the composition of a constantly growing tinker rod and an "accelerating
downward" rod produces every form of gravitational toss-parabolas of all sorts, a
simple toss straight up and fall back down, or just a uniform "drop from rest."
Composing circles appropriately leads to sinusoids (or more generally, epicycles),
and composing sinusoids appropriately leads to circles or ellipses.

mtiOlUl u .. ting

!DOn

clear

10 24

step

slo-DID U So

trace

skeinen

Figure 4. The trace of a sequence of "tinker rods," having the motions specified by the three
boxes in "motions listing." "Trace" (show the path of the end tinker) and "Skeleton" (leave
images of all tinker positions) are turned on.

Tinker, even more than Number-speed or Elmira, relies on making generic Boxer
structure available to students. The list oftinkers that students generate and modify
is a sequence of boxes in a box, each of which contains the computationally active
parameters of the program that runs the microworld. Thus, in a real sense, students
are modifying the code of the microworld directly rather than an interface to it.
While we provided some shortcut means to make the most usual changes to the
system of tinkers, students could and did reach directly into the "tinker code" to
make more exotic changes. Sometimes, students avoided the shortcuts we provided
because, presumably, directly editing the box representation of tinkers was com
pletely understandable to them.

Tinker illustrates another of our design heuristics in constructing microworlds.
We added some features that were designed to allow students to explore the aes
thetics of compound motion, as well as its mathematics. Figure 4 shows a sample
product. This again extends "school stuff" into the personally meaningful parts of
students' lives. A computational medium should blur the boundaries between forms
of activity, school versus "having fun," allowing deeper appropriation of the me
dium and ideas expressed in it. Designing microworlds for aesthetics, as well as
mathematics, reminds us that appropriation has to do not only with technical fea
tures, but also with the attitudes, intentions and strategies of those using it.

348 diSessa

We did, of course, develop more microworlds for this course than we have time
to describe. So we close this section with a few anecdotes about some of the central
features of microworlds constructed in a computational medium (rather than as
stand-alone applications). These also have to do with issue 3, ownership and deep
appTopriation, via personalizability and extendibility.

The "learning by cheating" episode above was a dramatic, but not really unusual
occurrence. In Number-speed itself, for example, all the students in the sixth grade
class spontaneously (with each others' help) added a command to the menu in the
very first exercise of the microworld. We had wanted to introduce the idea of gen
erating number lists in the abstract. But the students discovered how to activate
motion based on the number lists, and all decided it was fun or useful to do so. We
were happy to let them set the pace in this way as our own judgments about how to
introduce exercises were tentative. In many other microworlds, as well, students
made small or large changes. One high school girl added some missing features to
Elmira that she felt she wanted.

One very telling incident occurred when I visited the sixth grade class to observe.
A boy and girl who were using a microworld I had developed were evidently a little
bored4 and diverted themselves by selecting large chunks of the micro world, delet
ing them and then pasting them back. I asked them if they weren't worried about
doing that. The girl replied she was not because the microworld was really simple,
and she could "put it back" easily. Whether or not she could do this without having
to find a fresh, undamaged version is, again, beside the point. These children evi
dently felt they owned and could do with Boxer microworlds as they liked.

19.4 Thtorials and Exercises

Although tutorials and "computer exercises" are not characteristic of our pedagogi
cal style, we did develop and use a number of these. Tutorials are extraordinarily
easy to develop and modify in Boxer. Text editing is a capacity that one uses from
the first encounter. Boxes inside boxes take only a keystroke per box to construct,
and these provide a nice hierarchical form to help students get overviews on a clear
conceptual organization of the material. Expanding and shrinking boxes provide
means for controlling complexity for the creator and user of a tutorial.

Because a computational medium is fully integrated with programming, any dy
namic or interactive chunks may be included in a tutorial. These may only be "moving
pictures," or complete simulations. General tools that have been built for other
purposes can also trivially be imported into or used to fabricate pieces of a tutorial.
A graphing tool can simply be cut and pasted into the midst of a tutorial, if it would
be useful for a student to use at that point. This is a material form of cumulativity.

4Yes, our students were not always at-the-edge-of-their-seats enthusiastic about everything
we asked them to do!

Many Faces of a Computational Medium 349

An example that we shall describe in more detail later are vectors that a graduate
student programmed as an extension to Boxer. Vectors are "graphics boxes" than
one can make with a keystroke. They contain an arrow, representing the vector,
which can be modified in direction or length by clicking and dragging with the
mouse. Any graphics box, including vectors, may be "flipped" to reveal non-graphi
cal structure. In this case, we had coordinate numbers shown (and modifiable) on
the flip side. The critical feature of Boxer vectors is that they are completely
computationally active. One can execute "add V and W" and see the resultant vec
tor; one can tell a Boxer graphical object to move along a particular vector.

Writing a vector tutorial in Boxer involved writing some text and inserting vec
tors at appropriate places. A line or two of code can generate illustrations of vector
properties, or dynamic images of vectors controlling motion.

From the student perspective, Boxer tutorials are open and flexible, hence
personalizable and appropriable. Students can write notes for themselves or re
spond in writing to teacher's questions at any point. One effective feedback strat
egy that some Boxer teachers use (see Noss, this volume) is to leave notes (or even
code-fragment suggestions) for the student to discover on returning to his/her work.
A nice example of Boxer's flexibility in support of student initiative, in fact, oc
curred in the vector tutorial. In the section on properties of vectors, one pair of high
school students decided on their own to try out what happened in shuffling around
three vectors, rather than the two that were used in the tutorial to illustrate commu
tativity. It was an easy matter for them to "change the code" in the tutorial.

Tutorials and exercises in Boxer are frequently the place where students learn not
only a concept, but how to implement that concept in a program. Vectors also pro
vide ready examples of this. Part of the vector tutorial had students fill in a line or
two of code using vectors to create a particular motion. Cumulativity with a com
putational medium, as we pointed out with Number-speed, can be both conceptual
and practical. For example, programming with vectors became the basis for many
individual student projects.

Another example of an exercise we constructed for students was a nearly com
plete program, assembled in a few minutes and implemented with vectors, of a ship
moving on the surface of a moving ocean. The student exercise was to fill in the
single line of code that caused the ship to move appropriately, give its motion and
the ocean's motion expressed as vectors. The exercise worked well to connect rela
tive motion to vector addition.

19.5 Flexible Modeling Language

Programming, if it is a part of general student literacy, is an excellent general mod
eling language. In a sense, it is a universal modeling language and as such may
provide exceptional cumulativity, subject to caveats associated with other general

350 diSessa

but highly nontrivial tools. We made a couple of uses of programming in this mode
in our motion course. Indeed, the very first exercise in these motion classes was for
students to create simulations of a number of familiar motions, like a book being
dropped or sliding to rest after a shove on a table, or a dot painted on a rolling tire.
For students, this was an introduction to the complexity (or simplicity) of analyti
cally describing real-world motions. For us, it produced some important insights on
how our students began thinking about motion. Only one pair of sixth grade stu
dents initially thought it was important to display the speeding up of an object in a
fall. And they chose to depict that speeding up with an object that actually slowed
down during its fall. It slowed down because they chose to depict "more speed"
with more dots drawn by the moving object! (See Figure 5.) This is an unconven
tional but cogent representational form that is actually common among children
and less technically sophisticated adults. The representation would be easy for a
teacher to misinterpret. Windows into conceptual and representational competence
of students, such as offered here by a simple programming/modeling task, are im
portant in any constructivist instruction. This example also shows that modeling
need not be an esoteric activity carried out with hard-to-learn specialized tools .

•
•

Figure 5. A student representation of an object gaining speed in falling. A conventional
representation would depict equal time intervals, leading to increasing dot spacing.

19.6 Compact and Formal Representations

Perhaps the most controversial aspect of the way that we taught motion with a
computational medium is that we used programming essentially to replace algebra
as the formal representational language in which to express basic definitions and
fundamental laws. Note the form of the argument here. Everyone knows algebra is
difficult (a nontrivial tool). Yet few dispute its cumulative power and dismiss it
instructionally just because it is difficult. We are arguing that the same kind of
considerations and balanced judgment must be made for programming. Program-

Many Faces of a Computational Medium 351

ming may even have greater cumulativity in being useful in many other ways than
as a formal representation, and it arguably requires less instruction than algebra, at
least as used in these courses.

There are many deep epistemological and pedagogical issues concerning using
programming as a compact, formal representation into which we cannot enter here.
(See, for example, Sherin, diSessa, and Hammer, 1992.) We argue here in a very
abbreviated form that using programming in this way is a good thing to do.

(1) Motion is an interesting topic that is demonstrably teachable to much
younger children than those to whom it is usually taught. Sixth grade
children don't know algebra, but they can easily learn the program
ming necessary to move things around. If there is any general ana
lytic precision that can be brought to motion for these children, it is
through programming.

(2) Programming representations of motion are fundamentally more
interesting than, say, algebra. Programming makes things actually
move and interact, and it allows treating more complex types of
motion than solving equations.

(3) Programming involves discrete, one-step-at-a-time models of mo
tion that are important, psychologically tractable intermediate mod
els of continuous processes.

acceleration

/

Llnove velocity
change velocity add-vectors velocity acceleration

~"

Figure 6. The "tick model" in one and two-dimensional forms.

The core of our use of programming as a formal language is the "tick model."
Figure 6 shows scalar (one-dimensional) and vector versions of the tick model.
Two variables, v and a, represent velocity and acceleration. At each tick of the
clock, the procedure tick is executed in which: (a) an object moves a distance v

352 diSessa

(thus defining velocity as a small chunk of motion); and (b) velocity gets changed
by being incremented by the acceleration.

We taught the tick model in tutorials for both one and two dimensional (vector)
motion. We used it again and again as a reference representation for thinking about
motion. And we encouraged students to use it, as appropriate, in their own projects.

19.7 A Medium for Collaborative Design

In the high school course we essentially asked students collectively to design a
version of the tick model that expresses important aspects of Newton's second law
in the absence of forces motion is a constant vector, and forces act by adding
vectorially to existing velocity. This collaborative design was (with qualifications)
a success and is documented in detail in Sherin, diSessa and Hammer (1993) and
diSessa (in press). Our discussion here must be brief. Above all, it is completely
evident from our review of the videos of this group effort that it was extraordinarily
dependent on many aspects of the course that came before. That is, cumulativity
was a critical feature in its success. For one, the use of vectors in programs was
crucial in bringing clarity and forcing precision in the discussion. For another, it
was clear that both the programming the students had done (in, for example, the
ocean motion exercise-composition of motions) and also the conceptual under
standing they had gotten from using programs were instrumental parts of this ef
fort. The course had built an appropriate conceptual cumulativity, and program
ming was a critically intermixed representational cumulativity.

While considering the collaborative aspects of "designing Newton's laws" is a
good time to emphasize that media of any sort can make only limited contributions
to educational success. Boxer did, as suggested above, help students understand
each other in appropriately precise terms. See also diSessa (1993) for further ac
counts of sometimes remarkable collaborations and reasons we believe Boxer sup
ports these. However, collaboration is a complex and delicate affair. No computer
system can "fix" cultural gaps or similar impediments. Similarly, the dedicated and
systematic effort of our teachers to encourage a collaborative spirit and strategies
beyond question deserves recognition.

19.8 Tools

The principles behind tool building and use are quite similar to those behind literacies.
Tools creation represents material cumulativity in embodying the intelligence of
the designer. Tools are frequently nontrivial to learn, but warrant learning for their
power and the personal expressiveness they liberate. A computational medium is a
wonderful context in which to develop and share tools. In fact, one of my favorite
images of educational practice based on computational media is as tool-building
and sharing for learning. Vectors, again, can serve as an excellent example. Gradu-

Many Faces of a Computational Medium 353

ate student Bruce Sherin, who developed Boxer vectors, facilitated the develop
ment of many tutorials and microworlds. We mention two more here, and an addi
tional one later.

We decided that relative motion was an excellent introduction to two dimen
sional kinematics, and so we developed a simple game microworld to start students
off.5 "Cheeser" has a mouse running across the surface of a table, trying to reach
and nibble a piece of cheese hanging from a thread down almost to the tabletop.
The table is also moving according to some regular or irregular program, so the
mouse must react to, counter and compensate for any motion of the table. Students
"played mouse" by manipulating a vector representing his running speed and direc
tion in real time.

A simpler microworld had students directly manipulating the vector velocity or
acceleration of an object to accomplish specific tasks, like orbiting a planet or docking
a spacecraft with a moving mother ship. Both of these were easy exercises for us to
write based on having interactive vectors as an extension of Boxer programming.

Another tool that we introduced to the course was a simple graphing utility. How
ever, for the most part, we had students, if they wanted to, write their own graphing
programs. This was within their programming competence and, we judged, both
educational and helpful in preserving their ownership over the tools they used.

19.9 "MBL" Style Activities

Adding inexpensive interfaces to external sensors (microcomputer-based laborato
ries) allows an important style of software that is easily accommodated in a compu
tational medium. Instead of complex smoothing algorithms and automatic graph
ing, we chose to give students access to the raw data from a motion sensor. We felt
the flexibility and reality of dealing with real data, errors and all, outweighed the
negative consequences of such a low-level interface. One exercise, which proved
surprisingly difficult, was simply to have a graphical object trace a (scaled version
of) the motion of an object that was being moved in front of a distance detector.

Another "real world" activity involved taking strobe photographs showing mul
tiple exposures of tossed and dropped objects. We had worked up to this experi
ment by having students debate various issues, such as how an object speeds up in
falling, or whether the horizontal component of a tossed object's motion decays.
Some sixth grade and high school students (correctly) believed the velocity of a
falling object would be incremented at regular intervals by a constant amount. Some
thought it would be multiplied by a constant factor. One sixth grade girl thought the

5 It is no accident that relative motion and compositions of motions defined so many student
activities. We decided these are conceptually foundational, so emphasized them.

354 diSessa

motion would have a constantjerk6 (third derivative-which she had encountered
herself by extending the tick model, adding a variable that incremented accelera
tion!). Most students believed the horizontal component of motion of a tossed ob
ject fades, either spontaneously or as a result of the "interference" of gravity.

The days leading up to the strobe experiment in the high school class had not
gone as well as expected. So the night before data analysis we built a tool that
would simplify the exercise for them. Basically, students had to adjust a series of
vectors (accelerations) to get a graphical object to follow the scanned-in images of
dropped and tossed objects. Once again, a student had a better idea and, with help,
he was able to extend our tool to deal with horizontal and vertical components
separately. Adaptability and flexibility are key contributions of a computational
medium toward personal and group ownership, toward relevance and fit of soft
ware to context of use and, overall, toward appropriability of both software and
new educational practices.

19.10 Projects and Personal Work

Students generally liked personal projects and classroom discussions (such as "de
signing Newton's second law," described above) best in the courses. We provided
several occasions to accommodate projects. Of course, these were of variable inter
est to us as educators with respect to developing motion concepts. But the personal
involvement that projects brought was almost always gratifying. Projects are an
important context in which computational media provide critical resources to help
students take personal ownership over ideas and software, fostering a deep appro
priation of both.

Early in the sixth grade class, we invited students to contribute exhibits to a "speed
museum," depicting and illustrating aspects of speed they had learned so far. One
girl got enthusiastically involved with a "bouncing babies" game, where Adorable
and Cutie were babies tossed out the window of a burning hospital. The player had
to move a net under them to save them or else they bounced on the pavement. This
student demanded extra time after school to work on her project, as did several
other students.

Two other girls worked on a scale model simulation of "carelessly speeding Jose
Canseco" (referring to a famous baseball player who got into trouble repeatedly for
speeding). "Careless Jose" runs down "Innocent Sue" with his Corvette. It turned
out to be conceptually challenging to get the speeds of Sue's walking and Jose's
driving to proper scale in the context of a depicted 200 foot long stretch of side
walk. The students spontaneously used two different conventions to represent speed,
both of the form "time to traverse a specific distance." The two conventipns

6We informed the student of this conventional name after she had spontaneously explored
the idea.

Many Faces of a Computational Medium 355

became a topic of conversation with the teacher, as well as how to convert these to
more conventional representations of speed ("inverting fractions").

=
=

"Triangles"

·Chalk"

11111111111.1111111111
"Sonar"

, . "-'"
"Dots"

--"//111 \\\\\\"
"Slants"

"Eiffe'"

__ ~L..-'

"T's"

Figure 7. Representations of motion invented by sixth grade children. "Slants" uses slope
to represent speed. "T's" uses dashes for speed, a vertical bar for time.

A boy in the class wrote an elaborately illustrated tutorial that showed and ex
plained several motions in various different representational formats invented by
the class, including graphing speed versus time. Figure 7 shows several of these
representations (diSessa, Hammer, Sherin and Kolpakowski, 1991). Another pro
duced a stunning graphing adventure game that presented mUltiple levels of chal
lenges at identifying graphs that matched various motions encountered in an elabo
rate fantasy story, which was contributed mainly by another student. The adventure
game had explanations of graphing conventions as well as playing instructions.

In the high school class several of the projects were motion games. One was a
"lunar lander," where the player tries to land a space craft on the moon by aiming
and firing its control thrusters. Another was a challenging game to dock a boat in
swirling currents. Most computer projects used vectors.

One group of students did an interview study of misconceptions about motion
among their colleagues and teachers. Like many cognitive researchers before them,
they discovered that people seem to "know" many things about motion that are not
true. The point of this last example is that we treat a computational medium as a
ready resource to be used when appropriate, but not always!

One extremely interesting social phenomenon occurred at the elementary school
in which we taught our motion class. Our collaborating teacher instigated a "li
brary" in which students could place Boxer work of which they were proud. The
library grew, run essentially by students. It contained mostly games; an excellent
"Wheel of Fortune" (a popular television game) was a particular favorite. The li
brary became a social networking device in which students saw what others were

356 diSessa

capable of, and from which they "stole" ideas and code for their own use. Some
non-Boxer students were introduced to Boxer in this way, especially by means of a
tutorial in the library that was written by one student. Many times neophytes joined
Boxer-competent friends playing with their library creations after school and learned
especially when spontaneous debugging or extending occurred.

In seeing the influence of a computational medium, it is especially interesting
and important to remark on large and substantial student constructions. Some of the
above projects fall into this category, and other descriptions of complex program
ming accomplishments can be found in diSessa (1993) and Ploger and Lay (1992).
In contrast, we close this section with a "miniature" that represents an important
complementary focus-how the medium finds its way into little corners of the ebb
and flow of daily activities. During one of the lessons on relative motion at the high
school, students were broken into groups for 15 or 20 minutes to consider three
related aspects of what happens when an object is dropped from a moving support
(Galileo's cannonball dropped from the mast of a moving ship). One group had to
consider what this looks like (looking up at the dropped ball) in the moving frame
of reference and reported their results with a simulation showing a fixed black disk
that grew in size. The nice thing about the example is that there was no fuss or
fanfare about it at all. The students considered a simulation to be a completely
acceptable and unremarkable way to answer a question.

19.11 Helping the Developer/Researcher

A computational medium should be a flexible tool for everyone, not just for stu
dents. All the same issues of nontrivial tools and skills, of cumulativity, and of
ownership, personal expression and appropriation apply to researchers and devel
opers as well as students and teachers. We have described, above, some of the ways
Boxer helped us quickly produce materials that effectively supported our educa
tional goals to help students and teachers. Indeed, we feel it would have been com
pletely unfeasible to develop a full-year computer based course with only three
months development lead time, as we did, without Boxer. Here we briefly describe
three rather different uses of Boxer that helped us do our own work efficiently.

In order to collect and analyze student data from using Number-speed, Steve
Adams extended the microworld so that it saved data from all the trials students
made in working on challenges. He also developed a tool for himself so that he
could replay and review students' work while taking notes in Boxer on what they
were doing.

I developed a much simpler, but still very useful Boxer environment in which to
analyze protocols of students' work with Elmira. The environment had protocol
transcriptions organized into chunks (boxes) according to the puzzle on which stu
dents were working. In addition, I had a series of thematic analysis boxes (e.g.,
student intuitive ideas, metacognitive reports and references to real-world phenom-

Many Faces of a Computational Medium 357

ena) in which I collected notes on those topics. Most notes had links to the sections
of the protocol where the issues arose, making it very easy for me or colleagues to
review the evidence and surrounding context for any claims made in the thematic
analysis. Links among the themes could also be represented.7 We have since added
the capability to Boxer to control a video tape recorder-for example, to request
timer markings that correspond to a particular section of video and to locate any
such segments in the tape by their timer markings.

Finally, in preparing the sixth grade class, we developed one central Boxer "data
base" that contained all of our work for the course. It contained all of our
microworlds, both finished and in progress, our curricular plans and sequencing,
lists of theoretical issues, plans for foci for data collection and even work assign
ment for individuals. One notable success of this data base was in helping new
members of the group get a sense for all the things that were going on, who was
working on what, how different aspects of the project related, and what were the
important issues that concerned us.

19.12 Conclusion

We have described many of the ways a computational medium, Boxer, became
involved in teaching two courses on the mathematics of motion. We developed
microworlds for students, which combined experience with fundamental ideas with
a flexibility that could encompass teacher and student initiative in conceptualizing
and exercising those ideas. We developed tutorials and exercises for students that
contained modifiable dynamic and interactive representations. Students used pro
gramming both as a general modeling tool to explore motion, but also as a formal
and precise representation of basic definitions and constructs. They used it as a
medium for collaborative design and as an expressive medium to enhance collabo
ration more generally. Developing general tools, like Boxer vectors, not only en
hanced our ability easily to develop learning materials of all sorts, but, as well,
these tools served students directly in many ways. For example, they served stu
dents as working contexts in which ideas (like vectors) did understandable work for
them in getting objects to move in comprehensible ways. Tools and general pro
grammability also allowed us easily to incorporate sensing apparatus and other
real-world data and analysis into these courses. We emphasized how a computa
tional medium provided excellent support for student independent work. Last, and
probably least, we discussed how the medium also supported our work as develop
ers of educational materials and activities and as learning researchers.

7 In Boxer, such links are represented as "ports," which are views of any box from some
other position in the box hierarchy. Ports allow complete access to the remote data, for
example, allowing you to edit it, if need be, without having the problem of different ver
sions of a segment (e.g,. "the original" and any quotations from it) getting "out of synch."

358 diSessa

Through these examples we have tried to illustrate three general points about the
use of a computational medium in instruction. First, while we readily admit learn
ing a computational medium is not an easy task we hope that we have shown some
of the intellectual and practical power students and teachers can achieve by gradu
ally mastering an expressive new extension of externally-supported thinking. Per
haps the single most provocative claim implicit in these descriptions is that, with a
computational medium, we have managed to teach some important mathematics
of motion in an unusual but cogent form to students (sixth grade) long before they
ideas are usually encountered.

The second point we have tried to illustrate is that learning with a computational
medium is exponentially cumulative. Using programming and the general features
of Boxer in a learning experience, say a tutorial or microworld, enhances students'
abilities to use these in every future encounter with Boxer. A strong cumulativity
operates materially, as well as intellectually. Any tool that is produced may trivi
ally be included in any future production, or parts of it may be cannibalized and
extended to very different circumstances.

Finally, and perhaps most importantly, we have illustrated how a computational
medium can foster a more organic growth and change in the learning practices in
classrooms. Tools and software can enter the community in smaller, more
appropriable chunks. Every chunk, no matter what size, is open and modifiable so
as to accept innovation, and with it, the local context, style and personality of the
community and the individuals in it. The longest and most impressive line of ap
propriation discussed in this paper concerns extending Boxer to include graphi
cally and computationally active vectors. Teachers and other developers can de
velop microworlds and tutorials, or other tools of analysis (e.g., for stroboscopic
data) to their own taste with Boxer vectors. Students can (and did) modify and
extend these new creations. Students also incorporated ideas, programming tech
niques and vectors themselves into extended, personally meaningful projects.

Acknowledgments

I thank Celia Hoyles and Richard Noss for comments on a draft of this chapter.
Thanks are also due all the members of the Boxer Project who contributed to the
development and running of our motion courses.

Many Faces of a Computational Medium 359

References

Adams, S. and diSessa, A. A. (1991), Learning by cheating: Children's inventive use of a
Boxer microworld, Journal of Mathematical Behavior, 1011, 79-89

diSessa, A. A. (1989), A child's science of motion: Overview and first results, in U. Leron
and N. Krumho1tz (eds.), Proceedings of the Fourth International Conference for Logo
and Mathematics Education, 211-231, Haifa, Israel: Israeli Logo Center, Technion-Israel
Institute of Technology

diSessa, A. A. (1990), Social niches for future software, in M. Gardner, J. Greeno, F. Reif,
A. Schoenfeld, A. diSessa and E. Stage (eds.), Toward a Scientific Practice of Science
Education, 301-322, Hillsdale, NJ: Lawrence Erlbaum

diSessa, A. A. (1993), Collaborating via Boxer, in P. Georgiadis, G. Gyftodimos, Y. Kotsanis,
and C. Kynigos (eds.), Logo-like Learning Environments: Reflection and Prospects,
Proceedings of the Fourth European Logo Conference, 351-357, Athens, Greece: Doukas
School

diSessa, A. A. (1995), Designing Newton's laws: Patterns of social and representational
feedback in a learning task, in R.-J. Beun, M. Baker, M. Reiner (eds.), Dialogue and
Instruction, NATO ASI Series F, Vol. 142, Berlin: Springer-Verlag

diSessa, A. A., Hammer, D., Sherin, B. and Kolpakowski, T. (1991), Inventing graphing:
Meta-representational expertise in children, Journal of Mathematical Behavior, 1012, 117-
160

Metz, K. E., and Hammer, D. M. (1993), Learning physics in a computer microworld: In
what sense world? Interactive Learning Environments, 311, 55-76

Ploger, D. and Lay, Ed. (1992), The structure of programs and molecules, Journal of
Educational Computing Research, 8/3, 347-364

Sherin, B., diSessa, A. A., and Hammer, D. (1992), Programming as a language forlearning
physics, Paper presented at the annual meeting of the American Educational Research
Association

Sherin, B., diSessa, A. A., and Hammer, D. (1993), Dynaturtle revisited: Learning physics
via collaborative design of a computer model, Interactive Learning Environments, 3/2,
91-118

