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Abstract. The difference between sketches and paintings provides a metaphor for 
thinking about the structure of exposition in a computational medium. Drawing 
also upon Nevile's (unpublished) use of the term literature to indicate a particular 
stance in which ideas that have proved fruitful to someone at some time are made 
available to others in a dynamic computational medium, I explore the development 
of an example of such literature concerning modular arithmetic, presented in Boxer. 

21.1 Introduction 

What does it mean to "teach mathematics"? The metaphor explored in this paper is 
that of mathematics as a language of expression, like English or any other natural 
language. Early exposure is through enculturation, but refinement and expert con
trol are enhanced through explicit teaching. There is a craft of expressing oneself, a 
literature of expressions by previous writers, and the possibility of improving one 
and analysing-criticising the other. Craft and literature interact to broaden the stu
dents' awareness oftheir natural language. To learn to use any language requires a 
need to express oneself, so there is an implicit assumption that students are explor
ing mathematical ideas and experiencing mathematical thinking in domains in which 
they have something to say or to sort out. 

Mathematics teaching is currently dominated by training students in techniques, supple
mented sometimes by problem-solving. Even the notion of problem-solving varies 
greatly, from rehearsing techniques on typical "questions" (the most common meaning) 
to tackling fresh contexts and exploring new avenues, variations, and generalisations 
(less frequently encountered). It is as if we spend most of our time as teachers training 
students in the reproduction of certain sentences typical of Shakespeare or Emerson. 
Teachers and text-authors often think they are teaching students mathematical analogues 
of sentence and paragraph structures (forms of argument, tricks and conventions) typical 
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of mathematics, yet students are caught in particularities. They struggle to repro
duce mathematical analogues of specific sentences (formulae and techniques). 

Rhetoric about educational needs for the twenty-fIrst century makes much of the 
need for flexibility. Students will need to deal with radical changes in working practices 
and thinking perspectives. Yet when expertise is transformed into instruction, an expert's 
awareness disappears and is replaced by trained student behaviour. Creativity and in
sight is turned into step-by-step instruction. One has only to contemplate the contrast 
between the potential of Logo (Papert, 1980), and the myriad of Logo worksheets and 
pre-prepared procedures that have been developed by fascinated teachers eager to "make 
it easy" for their students to encounter powerful ideas. Chevellard (1985) called this the 
transposition didactique. Kang and Kilpatrick (1992) related it to Buber's 
notions of I-You and I-It relationships in which an I-You relationship of an expert's 
lived and integrated experience is transformed into an I-It relationship of a student's 
rehearsed technique. What is taught is completely transformed from what was intended. 

Exposure to good literature as conceived at the time has always been a backbone 
for natural language instruction, and in mathematics there are those who recom
mend exposing students to seminal papers, for example, Arcavi and Bruckheimer 
(1991), Barbin et aZ. (1988), Laubenbacher and Pengelley (1992), among many 
others. (For a bibliographic survey, see Fauvel, 1991.) In some cases the translation 
of a few fragments may be accessible to students, but on the whole, the styles of 
exposition and changing usage of technical terms in mathematics makes accessing 
original texts problematic in large doses. Yet exposure to literature provides ex
amples of both style and content as well as perspective. It enables students to locate 
themselves as part of a continuing process, not just as passive recipients of estab
lished fact. Literature can provide stimulus for further exploration and expression 
by students examining implications of old expressions of ideas in a modern setting. 
All of this applies to mathematics as well as it does to ordinary literature. 

Mathematical exposition can playa similar role, if it is distinguished from in
struction. The point is not so much to learn what it says, but to explore how it says 
what it does, and even what it does not say; to investigate what happens when 
variations, alterations, and extensions are attempted. To understand something, it 
helps to locate boundaries, to find out what aspects can and cannot be extended. In 
language instruction, we have text processors which enable you to focus attention 
on ideas and their expression, and to worry about spelling and grammar later. In 
mathematics, we are only just beginning to see similar media emerge (diSessa, this 
volume). Computationally expressive media do not offer instruction by forcing rep
etition, but rather provide extensions of thought, enabling students to try out small 
changes and variations, to get to know the territory. 

The notion of mathematical literature also opens the possibility of analysis and 
criticism: for example locating author intentions and influences, and relating these 
to the culture and mores of the time. Pimm (1988) offers examples of mathemati-
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cal-literary criticism, showing how Fauvel (1988) is able to shed light on differ
ences between Descartes and the Euclidean tradition through analysis of style; how 
Lakatos (1976) offers a fresh perspective on the relation between definitions and 
proofs; and how Leron (1983, 1985) employs computer science conventions to struc
tun: mathematical proofs in an approachable form. 

21.2 Tools 

Mustoe (1993) makes the point that even where software is designed specifically to 
support exploration, students in self-study mode (i.e., not in a laboratory with tutor 
and peer guidance, and stimulation) lapse into a passive mode. They tend to let the 
computer do the thinking for them. A true tool is an extension of the self: When you 
have a tool handy, you see problems through that tool, and you sometimes even 
reach for the tool before thinking deeply about the problem and whether that tool is 
most appropriate. Whereas in the past, software has only been able to check a par
ticular case or example, symbolic and graphical manipulation packages are steadily 
increasing the level of generality and abstraction that they are able to manipulate. 
With increasing powers of abstraction, there are increasing challenges to work out 
how to use screens to contribute to teaching: deciding not to use a tool is as impor
tant as deciding to use it. Furthermore, the entrancing property of screens (Nevile, 
1989; Mason, 1993), particularly electronic ones, attracting attention to the particu
lar rather than to the general (Mason and Pimm, 1984), means that the challenges 
become ever more urgent for educators to address. 

The design of tools to support mathematical thinking is intimately bound up with 
education of awareness in the use of those tools. Mathematics teachers and educa
tors have for thousands of years struggled to find a suitable means of drawing stu
dent attention to important ideas, supporting them in making sense of those ideas, 
providing contexts in which to experience their use, and providing challenges on 
which to practice techniques to mastery. Each new technology has offered fresh 
possibilities to explore, and current developments are so rapid and on such a broad 
front that there will soon be fast graphics on every desk, perhaps in every palm, and 
access to the world's libraries at the click of a mouse, with corresponding implica
tions for experts making mathematical ideas accessible to novices. 

21.3 Teaching 

How are students to be exposed to mathematics and the use of tools for expressing 
their mathematical thinking? 

• Certainly not in some teacherly fashion, subject to the transposition 
didactique, in which expert awareness is turned into instruction in tech
nique, and in the process, behaviour is substituted for awareness; 

• Certainly not simply by providing a powerful computational medium, let
ting students loose on it, and hoping that they will encounter powerful ideas. 



386 Mason 

Any attempt to teach is caught by the didactic tension (Mason, 1986), in which 

the more clearly and explicitly the teacher indicates the behaviour sought, 
the easier it is for students to display behaviour without recourse to the 
understanding which is intended to generate that behaviour. 

Neither pole is adequate as a refuge; something in between is sought, which lib
erates energy stored in the tension. Of course, every teacher has sought some ideal 
position on this spectrum, has prepared materials with an ideal format in mind, and 
with the image of students exploring and discovering, construing and learning. But 
once materials are in production, the multiple, nonlinearly-related imagined possi
bilities are turned into essentially linear actualities; much of the flexibility and dy
namic is lost in the necessity to make certain choices. Material production is as 
much selection and editing as it is creating something new. 

Rather than be caught in a simple tension between exploration and exposition, I 
try to locate a balance among six different modes of interaction, six different ways 
in which student, teacher and content can interact (Mason, 1979): 

exposition 
explanation 

exploration 
examination 

expression 
exercise 

Exploration is currently being emphasised in mathematics education. But prac
tice always lags behind ideals, and ideals tend to overstress the new at the expence 
of the old. In pushing for more student exploration as an integral part of learning 
mathematics, exposition has become undervalued. It is just as important as explo
ration, and the other ex's. In true exposition, an expositor uses the (possibly virtual) 
presence of an audience to make contact with a world of ideas, while in explanation 
the tutor enters the world of the student. My ideal form in which to encounter math
ematical ideas involves a balance of all six modes, cross-referenced and intercon
nected. Boxer as an expressive computational medium may be able to facilitate 
rapid transitions from one interaction to another, making the learning experience 
more balanced and less fragmented. 

The format I am struggling toward involves assertion of the theoretical or general 
in sufficient detail to provide a skeleton, drawing attention to key ideas. However, 
it leaves out enough detail (as in a sketch) so as to prompt the reader to specialise 
and explore in order to re-generalise with comprehension, and possibly to extend 
and vary for themself. The issue of level and amount of detail is perplexing, but I 
find it is enlightened by the metaphor of sketches and paintings. 

21.4 Sketches and Paintings 

Fish and Scribner (1990) draw attention to the importance of sketches rather than 
paintings as a metaphor for providing stimulus to students. A painting has richness 
of detail, but its completeness of detail means that the observer has to work in order 
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to see through the whole, to make contact with and examine details and yet retain a 
sense of connection to the whole; a sketch provides just enough to invoke Gestalt 
powers of closure and to initiate a process of construal (Mason and Heal, 1993). 

Mathematical sketches can consist of: 

• diagrams and animations that appear to tell a story, and that induce a state 
of surprise, a need for explanatory or connective closure; 

• statements of what is possible, bearing in mind that you don't actually need 
a manifestation in order to think about the problem. Indeed, screen mani
festation attracts attention to the doing and away from the "thinking about"; 

• statements of what is usually true as a succinct mathematical outline; 
• specialised procedures to enable the user to make relevant things happen, 
bearing in mind that most is learned in "teaching the machine" to do what 
you mayor may not yet be able to do yourself. 

What distinguishes exposition and sketch? The expositor enters a collector's state, 
wanting to integrate the apparently disparate and fragmentary, to map out the terri
tory, to weave ideas into a coherent story, whether along historical or structural 
lines. There is a desire for completeness and for accessibility. This is the painter-in
oils. The expositor draws on the presence of the audience, both for preparation and 
presentation, in order to encounter the topic in a fresh way. During presentation, 
they hope to draw the audience into their world, rather like a tour guide who points 
out special sites and sights. 

The sketcher works quickly to capture a mood, to indicate rather than summarise, 
to evoke desire for sense-making so that the viewer wants to reconstruct (imagined) 
detail. The viewer may then be moved to pursue and explore for themselves. There 
is a desire for speed and "tasting" rather than serving up a meal. The sketcher pro
vides the audience with form, offering signposts to possibilities rather than route
maps. As Faux (1987) observed, the map is not the country, though the two can 
very often be confused. 

21.5 Particular and General 

The essence of mathematics is a constant movement back and forth between par
ticular and general; what is general at one time often becomes particular later. Awak
ening students to: 

• seeing the general in and through the particular 

• the particular in the general 

lies at the heart not just of mathematics teaching (Mason and Pimm, 1984), but of 
any discipline (Mason, 1984). Providing students with particular apparatus, par
ticular software, particular diagrams and animations focuses attention on the 
particular. As noted in Mason and Pimm, electronic screens, particularly television 
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screens, emphasise the particular, and it requires considerable effort to draw stu
dent attention to intended generality. Moving from words to images used to be 
thought important; now we can offer images more directly, but there is something 
very particular about an image on a physical screen that makes generalisation more 
rather than less difficult. 

In the making of the Chinese Jigsaw domain with which I shall illustrate these 
ideas, my own attention was drawn to the screen objects, and away from general 
(theoretical) mathematical questions. To analyse the general I do not actually need 
to use a manifestation of a particular, but rather to find a notation that enables 
appropriate calculations to be carried out without actually doing them, in absentia, 
as it were. I am concerned that users, whose attention is naturally drawn to particu
larities of what is on the screen, may similarly not be supported to move into a more 
abstract notationally accessed world of general mathematical reasoning. The pres
ence of tools to manipulate and extend what is on the screen attracts attention away 
from generality even with symbol processors. 

By providing just enough detail for students to want to try to make sense by using 
their natural powers of specialising and generalising with entities that are confi
dence-inspiring for them, in a familiar and expressive computational medium, new 
life might be brought to mathematical literature. Symbol manipulation packages 
such as Maple, Derive, MathCAD, and Mathematica offer active worksheets in 
which students can invoke the symbol processor to redo calculations and try varia
tions, can activate animations and change parameters. Geometrical manipulation 
packages such as Cabri Geometre and Geometer's Sketchpad offer configurations 
that can be effectively infinitely varied to test for generality. Boxer offers consider
ably more as an embedding medium since the entire environment is active, respon
sive, and modifiable, and at no time is the user separated from the language which 
constitutes the software. 

21.6 Task Design 

An important feature of the design of tasks for students is to distinguish between 
what Tabta (1980, 1981) called inner and outer aspects of the task. The outer task is 
the behaviour, the "doing" described and sought. Such behaviour has both personal 
(psychological) aspects and collective (social) aspects. The inner task ranges from 
the purely personal (what opportunities are afforded for observing and working 
against personal propensities), the mathematical (what mathematical themes, pro
cesses, and awarenesses are experienced), the metamathematical (what more 
general forms of thinking, heuristics, and principles are exemplified), and psycho
logical resonance (what aspects of social and psychological interaction are 
metaphorically present and able to be resonated, such as freedom and constraint, 
infinity and the unknown, multiplicity of viewpoints, etc.) (Mason, 1992). 
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Boxer provides a medium in which users can express themselves textually, 
diagramatically, and computationally. However, care must be taken to distinguish 
between boxes as containers for mathematical tasks (which will merely reproduce 
current text-based practice), and boxes as modifiable tools for exploration in and 
with mathematics. The distinction seems clear in theory, but it blurs in practice with 
software, just as it does with apparatus, workcards, and investigations. 

Workcards are intended to stimulate exploration, but usually, because of the work
ing of the implicit didactic contract and didactic tension, they evoke minimal 
behaviour needed to complete the task. Inner tasks are thus avoided or circum
vented. Resource boxes in which something happens and in which structures are 
provided to make actions available (but which can also be extended and developed 
as desired) are, in my experience, much harder to construct. The transposition 
didactique arises whenever an expert attempts to instruct others in what they know 
rather than indicating some of the attractions of where they have been. 

Many years ago I built a text-based example featuring the idea of winding num
bers and rolling circles around different shapes (Mason, 1987). The basic format 
was a collection of related questions for investigation with some background infor
mation (including historical remarks) referenced to reflective comments on aspects 
of mathematical thinking. I now see this as the basis for a new form of mathemati
cal literature in a computationally expressive medium. Boxer offers real opportuni
ties for making a step forward by being able to integrate comments and references 
with interactive exploration. 

21.7 Chinese Jigsaws: An Exemplary Domain 

The dimensions being explored are: 

• sketch vs painting; 
• offering generality as fodder for specialising and direction for 

re-generalising; 
• forms of commentary. 

One place to start is with the fairly general: 
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Figure 1. Chinese Jigsaws. A number of objects are provided, at the vertices of some con
figuration: Each lozenge represents an object, and to each line there corresponds a specified 
symmetry of each of the objects on it. A move consists of choosing a line, and then acting 
each of those symmetries on the corresponding object. The task is to return all the objects to 
some standard position. 

This is far too general to be tractable, perhaps even to make much sense of. To 
make a start, perhaps guided by memory of traditional puzzles, lozenge objects can 
be replaced by coins or cups, which have two states and the two-dimensional con
figuration can be reduced to one dimension: 

-0-0-0,-
Figure 2. Flipping Cups. Three cups are in a line, all upside-down. The challenge is to get 
all three the right way up by flipping two-cups at a time. 

This well known puzzle (Anderson, 1990) can be considered and easily dismissed. 
It is often given to pupils, and it even appears on cereal packages. When people 
tackle it, they usually become frustrated at not being able to succeed at what ap
pears at first to be so simple and then they often stop work. If they attend to the 
patterns they can achieve, they can develop a sense of why they are not succeeding. 
An algebraic approach might observe that the parity of the cups is never altered by 
the moves, or might label each of the three basic moves (e.g., L for flipping the left 
most two cups, R for the rightmost, and 0 for the outside two), and then discover 
that there are connections between compound movements (e.g., U = R2= 0 2 = do
nothing, LR = 0, RO = L, and OL = R) which is the structure of the Klein Group. 
More importantly, any sequence of moves is reducible to just L, R, or 0, or do
nothing, and since none of these succeed, the original task is impossible. 
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The puzzle can also serve as the starting point for development in a number of 
different mathematical directions. Yet how does one indicate these directions with
out making an oil painting? 

The classic Logo philosophy (Papert, 1980) is to instruct the computer to do 
things, but without being caught up in problems of syntax and overhead of lan
guage-dominated thinking. In Boxer, one manifestation of the puzzle both enables 
the user to experiment immediately, and to extend and vary the conditions. 

F1ippi"-CIl~ 

The cups box shows three cups, not all in the same orientation, ] 
You are only permitted to .flip two cups at one go (one in each hand), 
Can you, using the three .flips in the menu, get all the cups .facing up? 
,~~==----------====~------======--------------------------/ 

~ r-o ("tv] 
Lcp GJ CD J :::;' S .. 

.flip g 
l,.~:) 

.flip g 
l,.;":) 

'~~-----------------------------------------------------------' 

Figure 3. The Flipping Cups game in Boxer. 

Note that the puzzle is essentially the same as the one posed above (Figure 2), but 
attention has been drawn to a central out-of-place cup as a common format to the 
puzzles that follow. The instructor in me proceeds by explicitly suggesting: 

tou can increase the number o.f cups by inserting data-boxes in the cups windo~, 
You can .flip as many cups at once as you put in the data box a.fter '.flip' 
You could also require that only consecutive cups are .flipped, 
~b------------------------------------------------------------/ 

In this manifestation, the user can readily add more cups, and use more hands (i.e., 
flip more cups at one time), or restrict themselves to certain combinations of cups. 
It is not that the software is programmed to deal with a more general situation, but 
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rather the tools provided make such extensions trivial. Of course the student would 
have to be sufficiently familiar with Boxer to recognise these possibilities. They 
can also add their own comments, and make whatever developments their familiar
ity with Boxer will permit. 

Boxer makes it easy to provide ports from anywhere to a box of comments which 
can be accessed as a whole, or in part. Furthermore, users can add their own com
ments as an aid to themselves and to others, either at specific locations, or in a 
common comments box. 

I would like to find some better way to indicate possible directions of develop
ment other than preparing them in advance, or offering suggestions. Perhaps how
ever, this is something which best arises in and from interaction among students, 
software, and teacher. The only difficulty with such an approach is the need to 
support teachers in learning to work with students in this way. Extensions, varia
tions and explorations develop out of interaction, arising from teachers' awareness 
in sensitivity to the moment, rather than being determined in advance as they are 
with workcards and textbook schemes. The temptation to prepare for all possibili
ties, to provide the student with what the teacher or student may not think of, is 
exactly the force which produces the transposition didactique and ruins so many 
innovative teaching ideas when they are presented to teachers or to students. 

There are other aspects of the flipping cups which could be altered. With the 
original general situation in mind, re-generalisation and variations are possible. 
What if the cups were in some two dimensional array (as in Figure 4)? 

000 
000 
000 

Figure 4. Flipping Coins. There are 9 coins in a three by three array. The centre coin shows 
tails, the others heads. You can flip all the coins in any row or column, and the aim is to get 
all the coins the same way up. 

What if the cups had more than two states? 



Exploring the Sketch Metaphor 393 

In place of cups, consider clock faces, where each 'flip' of the clock advances the 
hand one position (Figure 5). 

~ Ia-rd-_ .. .j 

C\st~ CSte~ lst~~ lste~ (Jst;) You can double-click 

"'" ..... ..... ... .. .... on . step' to a.dvance 

8~[QI~ 
the clocks on that line: 
Can you get all the 
clocks reading the same? 
Try it without 
using diagonals . .... 

8~[Q]~ 
lru can also change the 

hours on a. clock using 
set-mod'Ulus ..... 

initialise 
set-modw.us 2 :;3 5 

8~~~ 
reset-moduJ.i 4 
advance eleme'nt 2 2 
n. .. 

n. .. 

Figure 5. Clockfaces. 

Here the step buttons activate the corresponding row or column, and the \step and 
/step buttons activate the corresponding diagonals. Again this situation may be too 
complex to analyse immediately, so why not simplify matters by making all the 
clocks the same: 

/,reu;iiI~e-=r;.::L_________________ I/_trllCtill~ 

Figure 6. 

The task is to get the 
hands at a1 olocks in 
the same position 

Version 1 
Using only row and 
column buttons 

Version 2 
Using row, column, and 
one dia.gonal 

V@rsion 3 
Using roW', colUJrm, and 
both diagonals. ,. .. 
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The clocks could be replaced by objects with more complex (non-abelian) sym
metries, which is in fact where the idea started. The origin of the name Chinese 
Jigsaws was a Chinese child's toy consisting of nine cubes that could be organised 
in a three-by-three array so as to display one of six different pictures. I discovered 
that once one picture was achieved, the others could be found by rotating each row, 
or each column about a corresponding axis. 

Figure 7. An array similar to the Chinese child's toy that was the origin of the Jigsaws 
puzzle. 

Recently, I came across a reference in Suninyi (1993) reporting that Gyorgy Haj6s 
posed a related question in 1969: 

A cube is placed on each square of a chessboard. The faces of the cubes are 
congruent to the squares of the board. Each of the cubes has at least one 
black face. We are allowed to rotate a row or column of cubes about its axis. 
Prove that by using these operations, we can always arrange the cubes so 
that the entire top side is black. 

According to Suninyi, its origin was one of Haj6s' sons who liked to play with a 
picture cube puzzle like the Chinese one described above. An older brother teased 
him, spoiling the picture by rotating a row or column, and this inspired Haj6s to 
pose his problem. 

21.8 Aspects of a New Literature 

Posing problems is an ancient and popular art. Providing sufficient sketch-like 
commentary to inform and guide without being oil-paintingly complete is not so 
common. The current version contains commentary linked via ports or locally situ
ated comment boxes to specific points where difficulties may arise. 

Sample Commentary referenced within the boxes: 

In mathematics, it is often the case that instead of showing how to do some
thing, it is worthwhile to show that it is impossible. When exploring, it 
takes confidence in one's own intuition, one's sense of what is going on, to 
reach the conjecture that what you are trying to do is actually impossible. 
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When there are several operations available, it is useful to check whether 
the operations commute, because that can simplify the range of possibilities 
considerably. 

When trying to analyse the effects of different moves, try to find some qual
. ity which is left unchanged by those moves. 

When stepping back from work on a particular case and seeking a general 
approach to similar problems, it is often helpful to adopt a notation which 
reflects the important aspects of the operations, and suppresses the unimpor
tant ones. For example, denoting by Ri the action of advancing each clock in 
row i by one position, and correspondingly by Dj and by Cj for the diagonals 
and columns, then sequences of these symbols can be used to denote the 
effect of them as operations. 

It is rare to finish a mathematical exploration. Usually ones stops work, with 
at least some conjectures (together with supporting evidence), and prefer
ably with some arguments to convince a sceptic that your findings are valid. 

It is wise, when taking a break, to record current conjectures and any lines of 
investigation you have in mind, as they soon disappear from memory. 

Sample Assertions referenced within the boxes: 

Since there are 9 clocks but only 6, 7, or 8 operations, it is reasonable to 
expect that there must be some conditions on the clocks if they are all to be 
put into some pre-specified state. 

The 3-by-3 array of clocks (all with the same modulus, and starting with all 
clocks showing the same 'time' except the middle one) can only be forced to 
have all hands the same if the middle hand shows a multiple of three. Even 
then it is necessary to use one diagonal. 

Advancing all three rows advances all hands by one position; so if all the 
hands can be put into the same position, they can be put to any position; 
therefore we might as well assume they all return to the common starting 
position, which might as well be 0 or 'twelve o'clock.' 

Since the row, column, and diagonal operations all commute, it is possible to 
write down equations for each clock that express the desire that they all change 
by 0 (except the centre one). Those equations show that the centre clock must 
start at a multiple of three. One consequence is that if the clocks have only 
three positions, then it will be impossible to get them all to read the same. 

The purpose of these assertions is not necessarily to be clear, but rather to signal 
directions for further development. Assertions like these may, of course, intimidate 
rather than stimulate, but being in boxes that have to be opened to be read, there is 
less psychological weight attached, since they can literally be ignored. 
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Sample Suggestions for extensions and variations include: 

How can the parity argument for flipping cups extend to more clocks? 

For which numbers of cups c will h hands be able to convert a row of upside
down cups to all right-side up? 

In each case, what proportion of the possible configuration-states are 
accessible from a given starting position? 

What is the role of the centre clock in the 3-by-3 array? 

Replacing clocks with dice and, more generally, objects with complex 
symmetries; 

The rotating table problem! (Gardiner, 1979; Laaser and Ramshaw, 1981); 

If different clocks have a different number of positions, under what 
conditions can they be aligned? 

The more general problem with different numbers of hours in each clock is not 
fully resolved. Even in the case with identical clocks there are questions about how 
many different configurations of hands cannot be transformed into each other. 

21.9 Reflections 

The outer task in individual cases is to align some cups or clocks. Inner mathemati
cal aspects include recognising that some tasks may be impossible, and generating 
arguments to prove impossibility through locating an invariant; using modular arith
metic; use of notation to encapsulate actions; !Jse of sequences of symbols (words) 
for multiple actions; experiencing the ideas behind Z-modules, leading to group 
theory and ring theory. Meta-aspects include the role of imposing further or fewer 
constraints in order to appreciate what makes something possible or impossible; 
logical argument; freedom and constraint. 

There remains an abiding issue. How does the teacher encourage students to use 
the tools to explore mathematically? It is compellingly attractive to become en
grossed in what the teacher-author sees as particulars (particular cases of a general 
structure). Students do not naturally pause, stand back, and look for principles com
mon to several examples. They need support to recognise examplehood (Mason 

1 You encounter a circular table with four symmetrically placed doors. When all the doors 
are closed, you may ask for any two to be opened. This reveals a tumbler in each, which 
may be either up or down. You may invert either, neither, or both tumblers. When the doors 
are closed, then if the four tumblers are all up, or are all down, a bell rings; otherwise the 
mechanism rotates so that you no longer know which tumbler is behind which door. Can 
you make the bell ring? Ahrens and Mason (unpublished) determined the number of hands 
needed as a function of the structure of the group acting on an arbitrary number of 'tum
bIers' with p possible positions. 
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and Davis, 1989), to appreciate that it is possible and desirable to look through the 
particular to a generality which is being exemplified. 

How can students be supported in seeing the general through the particular rather 
than merely looking at the particular? My conclusion is that this process is most 
effectively encountered and adopted by being in the presence of others for whom it 
is natural, and who are sufficiently aware of their own awareness that they can 
choose to be explicit, indirect, or implicit in drawing attention to it, as seems appro
priate in the situation. They need to be in the presence of experts manifesting im
portant awarenesses such as seeking invariance and using notation. Thus teachers 
serve as role models for enculturation (Vygotsky, 1978), and act to scaffold-and
fade (Bruner, 1986; Brown et al., 1989; Love and Mason, 1992). 

Popper (1972) described the body of mathematics as stored in libraries as a third 
world of objectivity. There are many pointed questions to be asked about the objec
tivity of such a world. But in any case, it is currently a dead world, static and 
unwelcoming. By providing interactive mathematical literature in a computationally 
expressive environment, there are possibilities for making mathematical ideas a 
living reality for many more students than is currently the case. They could get 
access not only to ideas and techniques, but to different styles of presentation, and 
different styles of doing mathematics and of mathematical thinking. They could 
participate in a growing cultural heritage that would constitute a living, dynamic 
world of experience, like the one experienced by experts. 
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