3 Collaborating via Boxer

Andrea A. diSessa

Collaboration, as an educational strategy in mathematics or
sclence teaching, is usually thought of as arranged by creating
the proper social organization and spirit in the classroom. In this
chapter | examine how collaboration may be supported by
material means. | present several case studies of the use of the
computer system, Boxer, in collaborative modes, and 1 identify
the reasons Boxer seems especially good at supporting
collaborative work.

Introduction
Collaborative learning is a watchword in contemporary educational

reform, especially in the United States of America, Socially and
collaboratively oriented images like “a community of learners” (Ann
Brown and colleagues) or “cognitive apprenticeship” (J. S. Brown,
1989) have spread like wildfire. Vygotsky and other social theorists
have a strong beachhead in thinking about classroom learning.

In this chapter | will not argue for or against collaborative learning.
Instead, I accept collaborative strategies as part of a balanced
repertoire that we need to understand and enhance in the pursuit of

educational goals.

In seeking to enhance collaborative modes of instruction, the most
obvious parameter at our disposal is the social organization of the
classroom and of classroom activities. | focus, instead, on a less
obvious but perhaps no less important issue, the nature of the
material basis for mediating collaboration. Written language, of
course, may be the best example of this, but technology is a more
malleable and redesignable material substrate, hence worthy of
particular consideration. Even given a focus on technology, there are
more or less obvious things to which to attend. Network
communications systems and explicitly collaborative software are

69

Technology in Mathematics Teaching

among the more obvious foci. Again, my aftention is in a less
obvious, but arguably not less important direction.

Boxer is the name of a flexible, general purpose computational
system designed to serve the needs of students, teachers and
educational materials developers. Boxer has all-the-time accessible
resources for text and hypertext editing, for dynamic and interactive
graphics, for complex data handling and, centrally, for programming.
Although I shall show and talk about some of Boxer’s features,
readers are referred to other articles for more detailed descriptions
ez, diSessa and Abelson, 1986; diSessa, Abelson and Ploger,
1991).

At the top level, Boxer's goals are overtly social. We want to create a
genuinely new and powerful medium—like written text only
extended by essentially new capabilities computers can add. We
would like to see this medium adopted by as broad a group as
possible as the basis of a new literacy that can better foster,
especially, mathematical and scientific thinking (diSessa, 1990).

At the next level, however, Boxer does not have on its surface any
particularly collaborative features. Instead, Boxer was designed with
an eye toward (1) learnability and comprehensibility, and (2) general
expressiveness. Yet we have discovered, somewhat to our surprise,
that some of our best successes have come from collaborations
mediated by Boxer. This chapter presents and seeks to understand
some of our early collaborative successes.

In retrospect, Boxer's success as a collaborative medium should not
have surprised us. Our analysis here suggests that the same
characteristics of Boxer that account for its comprehensibility and
expressiveness also account for many of the ways in which it is a
good collaborative medium. As with natural language, written or
oral, collaborative structure need not be explicitly visible to be
effective. You cannot see the fundamentally collaborative aspects of
language in syntax, grammar or lexicon

70

3 Collaborating via Boxer

A series of case studies follows. After the first case history, I present
an analysis of Boxer’s characteristics that help explain what
happened. Further examples use and extend this analysis.

First course

The first organized Boxer course (a summer course for students age
13-16 on statistics) ‘was, not unexpectedly, somewhat ill-prepared
(Picciotto and Ploger, 1991). The software implementation at the
time was incomplete and buggy. Machines crashed frequently and
their 16 MHz 68020 processors (less than half the speed of entry-
level Macintoshes now) fairly crawled. The teacher we recruited was
superb and experienced with programming in BASIC and Logo, but
he had not taught a statistics course before with any technological
help, and he had received almost no Boxer training. There was no
Boxer documentation, and we had had almost no experience teaching

Boxer to anyone. To make matters worse the cou

rse was only six
weeks long (only

half the time each day devoted to Boxer), so we
had little time to recover from false steps; and students in the course

had an almost unmanageable range of expertise, from “hackers” to
essentially computer-naive individuals,

Planning for the course initially was faulty as well. Buoyed by
perhaps overoptimistic expectations with little counteracting
experience, the Boxer post-doctoral researcher helping organize the

course convinced the teacher to have the students implement every
tool they used, from scratch.

In the third week, the course bordered on collapse. Even the students
who were experienced in programming had failed to implement a

workable version of the very first statistical tool assigned by the
teacher. It was time to re-think.

71

Technology in Mathematics Teaching

Jumping ahead, by the end of the course each of four teams of two or
three students had produced a fine programming project that
illustrated and elaborated statistical principles from the course. Two
of the four project groups contained computer-experienced students
who, not unexpectedly, created fairly impressive products. For
example, one group created a tool that generated “bar and whisker”
charts showing confidence intervals on samples drawn from
specified populations. The program did not rely on numerical charts
or other “tricks,” but used an internal simulation of sampling to
generate reliable approximations to rather fancy statistical formulas.

Yet even the least sophisticated students also produced excellent
working program-projects. One group of three, ‘who, among them,
had had only the barest prior experience programming BASIC,
developed an excellent pedagogical simulation. They developed a
generalization of the standard science museum display of the normal
curve emerging from balls dropped into a triangular array of pegs,
collecting in bins at the bottom. Their simulation represented
sequential samples of binary values (yes, no) from a selectable
distribution (say, 55% of the population say “yes”) on some polied
issue. A “yes” response corresponded to a move downward to the
right, and a “no” corresponded to downward to the left. The
simulation could be single stepped, allowing process explanations “in
slow motion.” It could also be run one batch (say, 16) samples at a
time (say, producing one “ball” in the “7 yes” bin), or in multiple
batches to show the growing histogram distribution. This program
collected and sorted numerical data internally as well as showing it
graphically.

Although a sample of four projects is scarcely definitive data, our
prior experience with summer programs of this sort using Logo were
rather different. Many groups failed to produce the quality of projects
demonstrated by this class. Even worse, projects combining hackers
with less computer sophisticated students were typically dominated

72

3 Collaborating via Boxer

by the hackers to the point that other students completely lost
ownership of the computer aspects of the project. Only hackers could
run and explain their group’s program.

Although we were not prepared with the kind of data collection one
might have hoped for, we had both the expert observations of the
teacher and videotaped exit interviews of students concerning their
projects. The teacher also believed these achievements were clearly
beyond what he had experienced before. The video tapes, including
one narrated by a student who was nearly computer-naive beginning
the course, showed excellent mastery of the project programs,
including debugging on the fly and expert perusal and explanation of
the program’s internal structure.

How had the course been turned around from near disaster to unusual
success? In a word, code-sharing saved the day. After bailing out
from “every programmer for him/herself,” the teacher had begun
bringing some central program-tools into the class to give to
students. For example, he programmed a simple statistical calculator
that had several essential statistical functions ready at hand. Graduate
student observers dropped in other tools, e.g., 8 MEMBER? primitive
(is X a MEMBER of set Y?) and a simple sorter of numerical data.
Students too began contributing to this pool of tools, which other
students borrowed.

The transition to a tool-building and sharing culture was not as
simple as project members and teacher priming the pump. Some
students initially thought borrowing code was cheating. Others kept
code they had received private, as if it were theirs to hoard, until this
inconsistency was publicly pointed out. Still other students persisted
in writing deliberately inscrutable code with great pride to the end of
the course.

73

Technology in Mathematics Teaching

So, clearly, sharing was a cultural construction and achie?rem_ent. at
least in some measure. But, did Boxer have a role in fostering it? We

believe Boxer did have an important role.

ce, after five good years of further experience, we

In the first instan ;
tly to be a powerful influence

have found code sharing consisten
Boxer classes. It is, for example, muc}& more prominent than in any
of our many years working with Logo. Continuing examples below
help rhake this point. More profoundly, when we look to see why
sharing in Boxer works well, it seems some of Boxer’s structural
innovations are at the root. Here we list four, which we elaborate and

extend in other cases, below.

(1) Visibility—Boxer is designed to allow students 1o see all aspects
of the system as directly as possible. A good example is variables,
which are visible and manipulable boxes containing a value. When a

variable changes, the result automatically appears on the screen. In
contrast, no wide-spread language has a notation for the Sact of a
variable having a certain value. Instead, if variables are shown at all,
they are shown in statements that command their existence
(declarations) or change a value (“set” or “make”). Not only can you
se¢e more structure in Boxer (see also below), but you can
dynamically see how programs change their environment. In terms of
learnability, the idea of variable, a well-documented problem in
children’s learning of programming, ceases being a barrier. In terms
of sharing, seeing what another’s code does and how it does it is
much easier. Figure | illustrates some aspects of Boxer visibility.

3 Collaborating via Boxer

iil‘ color tltl'.-i'l.'l

-)

flowar

change color red

Figure 1. All aspects of Boxer are rendered visible on the computer screen.
In this case a program, Elower (shrunken, to hide its contents), and three
variables that it uses are concretely present on the screen. A user may
change a variable (e.g. , size) by simply editing its contents (e.g., size
was changed from [to 2 and a new larger flower is produced by flower).
If color is changed by a programming statement, the colox variable will
visibly reflect the change.

(2) Pokability—Variables can be set by hand simply by editing their
contents, as well as by program control. More importantly, programs
themselves can be poked in bits and pieces to see what they do.
Concrete stepping (executing bits of a program one at a time) is
trivial and frequently used in Boxer to understand a piece of code.
All a user has to do is point to each line in sequence and execute it
with a keystroke or mouse click. Figure 2 shows the result of opening
flower and stepping one of its parts, petal.

75

Technology in Mathematics Teaching

ol

[flowar] S
set-pen-color color :
repiat petals |
petal
right 360 / petals | [!
g i
Entall 1
1
Tepeat 2 lside '
ct %0 :
I
i
]
]
I
]

e g
- 1
Bize color petals
2 5
1

Figure 2. Opening flower reveals ils code. Pointing to petal and
double-clicking the mouse shows petal s effect. Note we have also opened
the subprocedure petal to inspeet its code.

Poking and interpreting the results of a poke is made even easier in
Boxer because of another of its characteristics. It is easy to arrange
that both code and the output of that code are simultaneously visible
on the screen. This makes for very easy association between, say, a
program step and the effect it produces. One clicks the former and
simultaneously watches the latter. In contrast, for example, it is
unusual for code (script) and its effect to be co-present in Hypercard,
and this is impossible, in fact, in most Logos, where code only
appears in a separate editor or on the “flip side” of the graphical
locus of effects of that code. Figure 2 illustrates also how easy the
co-presence of procedures, variables and graphics can make
interpreting how a procedure works.

(3) Structure—Boxer provides a natural and powerful visual
structure to organize code. One uses boxes inside boxes (inside
boxes) to organize hierarchical code. Subprocedures may be defined
locally in any box, just where they belong, at any level of the

76

3 Collaborating via Boxer

hierarchy. This provides a much more expressive presentation for
program structure than the typical list of procedures. Programmers
don’t have to program so as to communicate with better organized
structure, but Boxer provides resources that allow this. We have
some reasonably well-studied cases of student programmers
achieving breakthroughs in programming complexity by mastering
the expressive possibilities inherent in Boxer organizational
resources (Ploger and Lay, 1992).

Boxer also provides a natural and intuitive way of perusing complex
code—shifting focus, suppressing or displaying detail as needed.
Boxes can be expanded or shrunk, or they can be “entered” by
expanding to full screen. This makes for an easy inspection of
program structure, allowing students to keep the screen as simple as
possible, but exposing as much context as desired (within limits).
Figure 2 shows both hierarchical structuring of £lower and easy
perusal via successively revealing substructure. The transition from
Figure 1 to 2 involved opening shrunken boxes £1ower and petal;
side remains shrunken, to be opened at need.

(4) “Chunking” into visible, manipulable units—Because of Boxer’s
structuring, it is fairly easy to arrange meaningful chunks that appear
as complete, manipulable units on the screen. So a complex program
with many subprocedures, may appear simply as a small black box
that can be cut out as a unit, transported and pasted in an appropriate
Place in another program. Well-designed units “travel” more easily
in Boxer than in less concretely organized kindred languages. Figure
3 illustrates that flower’s variables may also be encapsulated
inside £1ower, and the whole unit simply cut and pasted into a new
context.

Technology in Mathematics Teaching

flower

set-pen-color color

repeat petals
petal
right 360 / petals
Dol
petal size color petals

(e)

Figure 3. Flower and all its subprocedures and variables
constitute a visible and functional chunk-that may be cut from
an old context and pasted into a new one.

—Doit

“Travel” is a very apt metaphor for moving things around in Boxer.
Boxer's very spatial presence of boxes and text inside of other boxes
is not limited to code, but, in fact, organizes every “place” in which
users interact in Boxer. So, a very concrete first step to borrowing
code is literally to cut it from its old place of use and paste it into its
new place, never opening the old code that is borrowed nor boxes
containing code in the new context. That latter step is only necessary
if processes from both contexts need to be interleaved. Our next case
study provides an excellent example of this stepwise process.

We were not in a position to document in detail how sharing worked
in this first Boxer class. But the class’s success first alerted us to the
power of sharing in Boxer and began the analysis that pinpointed
areas such as those listed directly above. We could see more directly
how things worked in examples below.,

78

3 Collaborating via Boxer

Steve’s Graphing Adventure Game

Four years ago we gave a full year-long class on physics for sixth
graders, age 11 and 12, based on Boxer (diSessa, in press a). Two of
the students, Steve and Bill (pseudonyms) produced an impressive
program as a final project. It was an elaborate graphing adventure
game in which players were invited along on a fantasy journey in
outer space. The hero of the fantasy was confronted by a series of
challenges involving motion, and the player had to select from
among a set of 'S position, velocity and acceleration graphs the one
that indicated a motion that would extricate the hero from his current
predicament. If you selected the correct graph, you advanced to the
next level of the adventure. If not, you would be scolded for selecting
the wrong graph (with an insulting but enlightening description of
the motion represented by your selection), and you would be sent
back to level one to start again. Level five of the challenges was,
itself, an independent game of “space invaders,” shooting invading
aliens with three levels of difficulty.

The program itself was stunning in size and complexity for sixth
grade students. It consisted of approximately 500 boxes, with file
size over 100 kilobytes. The program stored and displayed dozens of
graphs, contained a textual introduction and help with reading
graphs, produced interactive text and dynamically changing menus
according to the current game context, and it had a cumulative
scoring subsystem. The story-line and interactive text was

marvelously inventive, filled with typical sixth grade humor. (See
Figure 4.)

79

Technology in Mathematics Teaching

j--:-l- im-outar-apsce

___________________ -

pee sleratlon

»
*

time

i!tnrr-llu- IH!HI:I'I

-- Are you wire you dida't
The [irst problem is to get past the arink to such coflfea?
guard-poet . Chooss tha graph that that Your feot is tap dancieg
shosen that you spesd through the gate. on the pedall You swerva
Choose acclll for scoelarationl into the guard post. and...
Chooss accill for scoslersticnd o

Chooes wellll for spesdl

Chges wvallil fer lpa“-‘l?

The-story m
1 wan frassdl The cue cards wers writben wrongl
I dids't mean to swsar of the live comsercial for
#.73562 Llives cat foodl®

It was like & dream come trusl VYeur C(avorite star

wal comlng to H' for helpl ‘Ikdskigl® You wers

weking mu *Iglvice: Bloogeyl Pni ealpe dnpl:n

lﬂi:l.rll.:l:l TH1S 15 KOW A GRAPH I8 LAID O Instruct lans

Figure 4. Part of Steve and Bill's graphing adventure game (only one of five
challenge graphs are shown). Story-line poses a challenge. Answer
provides feedback (in this case, from selecting an irregular graph for a
smooth motion). The-Story sets the scene and stepS-aliens is an
“arcade” game one can enter and play afier solving four graphing
challenges.

How did Steve and Bill manage such an elaborate production? First,
Steve was an intent and good “hacker.” He was the most dedicated
programmer in the physics course, but not by a very wide margin. (In
the first half of the course, several other students, including one girl
seemed as competent and interested.) Steve did, in fact, do almost all

Bi)

3 Collaborating via Boxer

the programming for the project, but it seems clear various modes of
collaboration and code sharing helped tremendously.

Bill produced essentially all the interactive text for the game and, we
believe, he provided the basic form as well. Excellent synergistic
collaborations between students with complimentary talents cannot
be claimed as Boxer successes, except to this extent: Boxer’s
visibility and inspectability seem to help ordinarily less involved
students keep a general understanding of, and feelings of ownership
toward, Boxer programs. Indeed, there are many aspects of
producing a typical Boxer program, including box layout (user
interface design) and hypertext editing, that involve little more than
the skills one learns in the first few days of Boxer experience. These
can be manifestly important contributions while still not requiring
exotic programming skill. We mentioned the surprisingly good
collaboration between expert and less expert programmers in the
above case study, and we add others below.

There were other collaborative factors. On inspecting the game’s
code, 1 came across some telltale signs. (See Figure 5.) I found, for
example, some documentation and instructions for a graphing tool
that was obviously unfinished (it contained notes to the author about
features to be added and other unfinished and undesigned aspects of
the tool). This had been brought into the classroom by a graduate
student. Steve saw its value and “borrowed” it.

What Steve took from the tool was quite interesting. First, he reused
the basic spatial organization of having a separately named graphing
“turtle” in each graph box so as easily to manage multiple graphs.
Steve obviously had added new graphs using the same paradigm as
the tool he borrowed. Second, Steve used the axis drawing part of the
tool. Third, he took the idea of storing graphical data as lists of

81

Technology in Mathematics Teaching

numbers that was the basis of the graphing tool. On the other hand,
Steve left a lot of the tool behind. Much of the working structure was
simply deleted from his world, including the basic routine to plot
points. Instead, he wrote, his own, rather inelegant graphing routine.
Either he felt he did not need to borrow that, or he felt he needed
something slightly different, or both.

[awas]

change 11 item 1
change 12 item 2
change i3 item 3 hiscory
change 14 item 4 history
change 15 item g history
7
B
9

history
history

changa 16 iltem 6 history
change 17 item 7 history
change 18 item 8 hiatory
change 1% item 9 history
change 110 item 10 history

—HBalT
[grphervi#z] [grphervi] [grphervi|

isnrar !grphtrlll

1T

=Dl {5
reset-history 'nddi IdlE!ll

e —— i l—:n:.. —eir
[- xplaine r]

This is a generic graph that can be used
in many different microworlds.
Simply delete the graphice box and sprite,
and yank it back in your microworld.

R

grpherv2iz|

i-gzphnrai l?]

Figure 5. A small part of the code from Steve and Bill's program. It mixes
original code with that from a "professionally” written Boxer graphing
program at fine-grain scale. The variables at top and qwas are part of
Steve's (inelegant) rewrite of the actual graph drawing function. On the
other hand, Steve borrowed the idea of storing graphs as lists of numbers

82

3 Collaborating via Boxer

thistery), and several other ideas and functions (e.g., make-axes). The
bottom two rows contain pieces from the pirated graphing program that
Steve did not use, but neglected to delete.

All in all, Steve’s borrowed and new code and their articulation show
that he rummaged selectively for ideas as well as code components
and had little difficulty joining his own ideas with those of others.
Visibility, pokability, structuring resources and clear unit boundaries,
we believe, played essential roles in allowing the construction of this

complex program.

There is one additional collaborative aspect of this construction that
is easy to overlook. Almost all the features of Boxer that allow
excellent collaboration and code sharing in general apply to
individuals, as well. Good moduldrity and structure allow easy
combining of past work with present. All the inspectability of Boxer
helps programmers regenerate and extend an understanding of their
“gld” code. Thus, many of the good collaborative properties should
show up in individual programmers’ combining and extending their
own work into very complex creations.

Steve and Bill's graphing adventure game had an excellent example
of this. Level five of the game, as we mentioned, was an independent
subgame that Steve had, in fact, finished as an earlier, independent
project. To first approximation, Steve had simply and literally cut
this game out of its original context and pasted it in the middle of the
graphing adventure game. (It is step5-aliens in Figure 4.) All
the working structure of the game—menus, graphical display and
hierarchical code—came, intact, in a working visible unit. Steve and
Bill only needed to find an appropriate place in the adventure game
to add the old game. Contrast this with systems that require linking
code by splicing it into the thread of activation, within the loops and

eddies of the “main program.”

Trivial to perform and easy to conceptualize joining of old and new
code is a vital first step. But then customizing and refining are

83

Technology in Mathematics Teaching

equally important. Given that the old game was played squarely in
the midst of the program structure of the new game, interlinking is
made casy. For example, Steve and Bill “locked” the invaders game
box by adding a command that instantly reshrank the box if someone
tried to enter it before successfully completing the first four levels.
(Boxer contains easy hooks to activate code on a user’s entering,
leaving, or changing a box.) This relied on a hidden global variable
that kept track of the player’s progress. Indeed, on exiting the game,
Steve and Bill had a small segment of code to neaten up the space
invaders game for a new player and to pass on the score the current
player had achieved, upon which some of his/her future fortunes
would depend.

Steve put most of his linking code exactly where it belonged. For
example, the “triggers” that activated an entry and exit from his
aliens box were placed in that box. Strongly associating code with
place makes an excellent modularity principle in Boxer’s overall
structure. It is especially powerful on modifying and extending for
new and more elaborate contexts.

The Feople Mover

Among the nice pieces of video data we have from our year in sixth
grade with Boxer is one that shows, from start to finish, a two hour
programming project undertaken collaboratively by three students.
The project was to program a “people mover’—a moving walkway
such as found at airports—so that one could experiment with
different speeds and directions of walking and walkway motion. Our
intent was to create an engaging and programming-mediated
encounter with some of the basic ideas of relative motion. Students
did learn a fair amount about relative motion from this exercise, in
interesting ways. The point | make here is only to note some of the
things we learned about Boxer-mediated collaboration from this
video.

84

3 Collaborating via Boxer

One of the students in the group was an exceptional Boxer
programmer who had been using Boxer for the better part of a year.
He, naturally, contributed substantially to the success of the group.
But so did the others. In fact, about a third of the time the other two
collaborators worked without him, and it is notable that the work
continued nearly seamlessly through his departure and return. This
was excellent indication of joint ownership.

Of the two non-experts, one had had Boxer experience. The other
was a complete computer neophyte. One substantial point about
collaboration is that even the neophyte contributed significantly.
Some of his contributions, in fact, were critical to the project; they
concerned how to computerize (in arithmetic) some of the group's
intuitive ideas about relative motion. The important point about
Boxer is mainly that the student understood enough of what was
being programmed, and how, that he could make productive
suggestions without prior programming experience.

The more general point, which we could see in all of the students’
interactions, is that Boxer provides an extraordinarily rich and direct
visual presence. Students can not only see a lot on the screen in terms
of program structure (e.g., where the pieces are that accomplish
various tasks) but also they can see how things operate. As noted
previously, Boxer is nearly unique in allowing one to see at the same
time the effect of a program and the programming structure that
causes those effects.

Visible variables and pokable code allow easy access. This is
familiar from “long distance collaborations” (participants not
working at the same computer) described in the case studies above.
The novel thing we could see in this context was how much the
screen served as a place to point and explain, like a super
(interactive) blackboard for students to coordinate their ideas and
actions, make visible and articulate their contributions. We have
noticed in other videos of joint programming how much a
contribution the Boxer screen makes to a wide and effective
communicative channel (diSessa, in press b). Talking, alone, is less

85

Technology in Mathematics Teaching

effective. Boxer expressiveness thus manifests itself also in real-time
interaction effectiveness as well as in “asynchronous” collaboration.

Vectors

For our sixth grade class and subsequent high school courses on
physics, we developed an extension to basic Boxer. In effect, we
added vectors as a basjc data type. With the addition, one makes a
vector by pressing a key, like ordinary boxes. Vectors appear as
interactive graphics boxes containing an arrow that one can resize
and reorient using the mouse. Vector operations were also added.
One can add two vectors and see the resultant, one can tell a sprite
(Boxer's mobile graphical objects—Ilike a Logo turtle) to move along
a particular vector, and one can name and change a vector like other
Boxer variables. In addition, all graphics boxes in Boxer can be
“flipped” to reveal a non-graphical presentation. In the case of
vectors we chose to show the vector’s numerical components on the
flip side. These could be manipulated directly or by programming
commands as an altemative to direct mouse manipulation of the
vector arrow in the graphical presentation.

The sample microworld in Figure 6 is a simple construction using

vectors. Vel (velocity) is shown in graphics presentation, and acc
(acceleration) is flipped.

86

3 Collaborating via Boxer

'Eroll.o Mimslans - Flight ko the Meen]

-

e S
Ll
II Il rasal
: i Miamicne °*
L]
(] introdaotlon
1 prastice
! g sarth-orbit
:. dsstinatlop-soon
i []
0
I
i
1
i
i
=t e mmo R EamiI o S e B oo J
i incyemant wal acso
Fove wal
make-don

va [misston-inscrustiond

In thinm gums,you'rs golng to bs flylng &
apadeshlp by controlling ite weloclty snd
‘soceleration wectors. Take & look In the bBoxes
named *Elck® and “go*. Thess are all ths
programming there Ls for chis mlerowerldl

When you'rs resdy, szeouts ‘practios’ [rom tha
‘mignlocne” many to BLAFL.

e

|-

Figure 6. An exercise microworld using Boxer vectors. Vel shows a vector
in graphical presentation so that the vector arrow can be directly
manipulated in real time while the simulation is operating. Rce is a vector
that has been "flipped” to show coordinates. Tick is the complete program
that moves the spaceship "each tick of the clock" according to velocity vel
and acceleration acc, leaving dots along the way.

Vectors provided extraordinary resources for our whole teaching and
learning community. We developed many tutorials and exercise
microworlds out of vectors. The flexibility they afforded us is
illustrated by one occasion in our high school course. We had had
students take stroboscopic pictures of balls tossed and dropped in the
air, scanned them in, and were prepared for students to study these
motions analytically by driving sprites around over the images.
Unfortunately, the lessons on two dimensional kinematics were not
going as well as we had expected. We decided to scaffold the
students’ analysis with a tool that suggested how one should think
about the motion and what results one might get. Using vectors we

87

Technology in Mathematics Teaching

spent about an hour as a group designing and implementing the tool,
which was used successfully the next day in class. To emphasize the
flexibility and ease of modification Boxer-plus-vectors provided, we
note that one student suggested yet another, different type of
analysis; with the teacher's help, he succeeded in modifying the
supplied tool.

Vectors infused the course more generally. We used simple vector
programs to define and illustrate basic kinematics terms, a role that
would ordinarily have been taken by algebra (diSessa, in press a). In
addition to exercise and tutorial microworlds, vectors spread to
students as a central part of personal projects. It is rare that
intellectual tools, like abstract vectors, can be concretized to the
point that they provide such obviously helpful support for student-
initiated activities.

Along with the general properties of Boxer programming that made
vectors successful contributions to this community, this example
illustrates one key property that, as far as we know, is unique to
Boxer. Namely, Boxer vectors were complete, self- contained
interactive objects, with their own mouse interface, and yet they were
as well first-class programming data objects that could be used in
student or teacher extensions in the same way other built-in Boxer
objects could be used. Vectors could be named, changed by
programming statements, supplied as inputs and returned as outputs
of programs. This dual citizenship—as simple screen-interactive
objects and also as full-fledged, extensible computational
entities—meant easy learnability and near-complete adaptability for
students’ and teachers’ particular needs. As such, they are powerful
tools that can grow effectively in particular collaborative

communities to serve local purposes.

Qg

3 Collaborating via Boxer

A Class Box

The last case is a very simple but potentially powerful collaborative
product. It relies on Boxer’s simple, perusable spatial structure, easy
composition of complete working units, and the ease with which text
and hypertext annotation may be added. The teacher of a high school
class using Boxer to teach about infinity and fractals decided to
produce a class box. It contained:

a) all the tutorial materials the teachers had developed, in Boxer,
to teach both Boxer and the mathematics of the course, including
the exercises he assigned;

b) teacher comments on how students did with various materials
in the course, including successes and difficult points;

c) all of the students’ final projects, each in a mutually agreed
standard form, which had working programs, textual explanation
of mathematical analyses, and demonstrations, The students
worked in groups of two and three, and the final projects of this
particular class were visually impressive, artistically presented
and generally mathematically cogent.

Figure 7 shows the top level of the class box, and Figure 8 shows an
example of student work.

89

Technology in Mathematics Teaching
[fntiniey]

r
This Is the "class book' created by Henri Plociotto and his stodents

for & 10 weak olase on Infinity at the Urban High Schocl, Ban Francisoo.

It gontalne the lesarning materlals Henel wrotw, hle commentary on students

work, and the final projects of all studests [studest=fractals).

{bblil‘ =lensonws
~ —— o)

Bopa tuteriala, & very asall fractlion of the courss, amnd
perhaps 15% of tims at the cesputer,

Understanding of irput grew. Understamding of output and
BUILD resalosd ahaky for soms, but not in a paralysing way.

[input -and-sutput]

ik

[sum-of-sguares] bulld-intre]

e

{zhaos] [fract

sxanples latudent -Eractalal

Figure 7. A "class box"” containing all of a teacher's prepared materials and
student projects from a class on infinity. One box is opened to show some
teacher commentary on how his tutorials worked.

_[-_ni. Tghigkianspgeatuverya-]

ey S NS, oy

Figure 8 A sample student project. Typically, students included a complex
graphic and some mathematical analysis, say, computing its fractal

o0

3 Collaborating via Boxer

dimension (not necessarily an integer), total area or path length. In the
wrong box, the student here explains a prior failed attempt at this design.

In addition to providing a motivating and informative class product,
such a hypertext document provides excellent dissemination of
instructional ideas to other teachers. Seeing student work is an
excellent source of ideas and calibration of expectations.

The Future—Community Boxer

Boxer was not designed with collaboration explicitly in mind.
However, we have seen after the fact that many of Boxer’s
learnability and expressiveness properties contribute to excellent
code sharing, and to asynchronous and synchronous collaborations. |
have traced Boxer’s success in supporting collaboration to properties
such as:

* A high degree of visibility of all Boxer structure, which allows
collaborators to see what each other has done and is doing.

+ The easy capability to activate any part of a Boxer program and
observe what it does.

+ An expressive spatial and hierarchical structure, which allows
one to “put things where they belong” and peruse complex
products top-down, successively revealing details at need.

» The possibility to pack complete functional systems into a
visible unit that can be easily transported to other contexts.

At present we are considering extending Boxer to better allow
multiple machine collaborations. Our goals are straightforward. We
want to provide generic multi-machine collaborative support in the
same way Boxer now provides general facilities for programming,
personal or small group work, microworld and tool building. We
want users to design and modify their own collaborative structures in
the way Boxer users now develop, share and modify traditional
Boxer materials. The means toward this end are also relatively clear.
We intend to expand Boxer’s current spatial metaphor and its sharing
and hypertext structures across network connections. Users may

91

Technology in Mathematics Teaching

“inhabit” the same Boxer space or share substructures arranged to
support many forms of collaboration.

Notes

I It is worth noting that the structure and presentation of Logo
programs, per se, have not changed essentially at all through the
years, even while the programming environment has been enriched
with text processing (LogoWriter), better file and other organization,
and (especially with Microworlds) ready tools such as a paint tool
and prefabricated buttons. It is the program structure and
presentation, however, that we argue is the root of Boxer's

collaborative spirit.

92

2 Collaborating via Boxer

Acknowledgment

This paper is based on an earlier version that appeared in P.
Georgiadis, G. Gyftodimos, Y. Kotsanis, and C. Kynigos (eds.),
Logo-like learning environments: Reflection and prospects,
Proceedings of the fourth European Logo conference, Athens,
Greece: Doukas School, 351-357. The work described was
supported, in part, by the National Science Foundation, grant
numbers NSF-MDR 88-50363 and NSF-RED-92-52725. The
opinions expressed are those of the author and not necessarily those
of the NSF.

References

Brown, J.S., Collins, A. and Duguid, P. (1989), 'Situated Cognition
and the Culture of Leamning', Educational Researcher, January-
February, 32-42

diSessa, A. A. (1990), ‘Social niches for future software’, in M.
Gardner, J. Greeno, F. Reif, A. Schoenfeld, A. diSessa and E.
Stage (eds.) Toward a Scientific Practice of Science Education,
Hillsdale, NJ: Lawrence Erlbaum, 301-322.

diSessa, A. A., (in press a), ‘The many faces of a computational
medium’, in A. diSessa, C. Hoyles, R. Noss, with L. Edwards
(eds.), Computers for Exploratory Learning, Berlin: Springer-
Verlag.

diSessa, A. A. (in press b), ‘Designing Newton's laws: Patterns of
social and representational feedback in a learning task’, in R.-J.
Beun, M. Baker, and M. Reiner (eds.), Dialogue and
Interaction, Berlin: Springer-Verlag.

diSessa, A. A. and Abelson, H. (1986), ‘Boxer: A reconstructible
computational medium’, Communications of the ACM, 29 {9,
859 - 868.

diSessa, A. A., Abelson, H., and Ploger, D. (1991), ‘An overview of
Boxer’, Journal of Mathematical Behavior, 10(1), 3 - 15.

93

Technology in Mathematics Teaching

Picciotto, H. and Ploger, D. (1991), ‘Learning about sampling in
Boxer', Journal of Mathematical Behavior, 10 (1), 91-101.

Ploger, D. and Lay, Ed. (1992), “The structure of programs and
molecules’, Journal of Educational Computing Research, 8 (3),
347-364.

%A

	diSessa_article1
	diSessa_article2
	diSessa_article3
	diSessa_article4
	diSessa_article5
	diSessa_article6
	diSessa_article7
	diSessa_article8
	diSessa_article9
	diSessa_article10
	diSessa_article11
	diSessa_article12
	diSessa_article13
	diSessa_article14
	diSessa_article15
	diSessa_article16
	diSessa_article17
	diSessa_article18
	diSessa_article19
	diSessa_article20
	diSessa_article21
	diSessa_article23
	diSessa_article24
	diSessa_article25
	diSessa_article26
	diSessa_article27

