
Interactive Learning Environments
2003, Vol. 00, No. 0, pp. 000–000

Issues in Component Computing: A Synthetic Review?

Andrea A. diSessa, Flavio Azevedo, and Orit Parnafes
Berkeley Boxer Project, Graduate School of Education, University of California,
Berkeley, CA, USA

ABSTRACT

This paper provides a review of the rhetoric behind the component movement in educational
software, and a critical analysis and synthesis of issues underlying the movement. We draw on
case studies of several significant recent component projects in order to assess claims and to
uncover and examine issues that are less often considered. While our empirical base cannot
definitively answer all the questions raised, we hope to bring some clarity and some empirically
based judgments to bear on how a promising technological innovation can best serve
educational ends.

Our study led to a focus on three critical issues: (1) the nature of the environment in which
components are configured and used; (2) the extent of modifiability that is necessary for
effective re-use of components; (3) how the work of designing components and component
configurations is distributed among people with different competencies.

INTRODUCTION

Over the last decade or more, accelerating in the last 5 years, a potentially very

important technological trend has grown in the development of software – a

trend reflected vividly in the work of many creating software for educational

purposes. Broadly speaking, this trend aims at developing many smaller

pieces of software, in comparison to traditional practice of creating large (in

many cases, huge) and essentially monolithic programs or applications.

DISESSA-2

?This work was supported by a grant from the National Science Foundation, number REC-
9973156, to Andrea A. diSessa. The conclusions and interpretations drawn here are those of the
authors, and not those of the NSF. The PI of the sponsored work reported here has a financial
interest in PyxiSystems LLC, which is the owner of the Boxer software.
Address correspondence to: Prof. Andrea A. diSessa, Graduate School of Education, University
of California at Berkeley, EMST, 4533 Tolman Hall # 1670, Berkeley, CA 94720-1670, USA.
E-mail: disessa@dewey.soe.berkeley.edu

1049-4820/03/0000-000$16.00 # Taylor & Francis Ltd.

‘‘Component software,’’1 according to the rhetoric of advocates, has a number

of advantages:

� Re-use: Smaller functional elements means components should be re-

usable in a number of contexts. In contrast, large applications are an all-or-

none proposition, and potentially useful pieces of them – say, a nice

graphing module as part of a physics simulation – are not separable from the

main application and cannot communicate with other software, such as a

new simulation. A new application that requires graphing must ‘‘reinvent

the wheel,’’ which wastes time, money, and, likely, sacrifices quality.

� Rapid Development: With a library of prefabricated components, develop-

ment can proceed much more rapidly, and at a higher semantic level. For

example, one does not have to think about how a graphing module should be

implemented; just take an off-the-shelf component that does what is needed.

� Economics: Re-usability and rapid development would seem obviously to

contribute to lower development cost. New social structures (below) may

also contribute to reduced cost by allowing educators to do a fair amount

‘‘development’’ on their own.

� Accessability: While not necessarily the case, component software is often

linked to Internet strategies for distribution. Small components can be

quickly downloaded from the Web. On-line libraries pool the efforts of

many developers.

� Adaptability: With the level of programming moved upward toward

familiar semantic elements, it may well be true that re-arranging and

reconfiguring components is an easier task than ‘‘programming’’ usually

connotes. Subpopulations involved in education, even schools or individual

teachers, may change and adapt component software to their local

circumstances. Although not widely appreciated, local adaptability is a

fundamental attribute of good and likely-to-be-successful innovation.

� New Social Structures of Production and Consumption: Production can be

more distributed with regard to (1) level of technological expertise (non-

programmers can become more involved) and (2) institutional affiliation

(development does not need to happen all at the same physical location)

compared to traditional models of software development.

1In order to encompass a range of educational work, we use a deliberately encompassing
definition of ‘‘component’’ – a reusable unit of code with specified embedding and connecting
protocols. A prototypical component in the work reviewed here also has an associated visual
presence, typically a screen region with its own IO properties.

2 ANDREA A. DISESSA ET AL.

With the exception of the last, new social structures, all of these

characteristics are fairly prominent in the public rhetoric of advocates of

component computing. The first three are nearly universal claims. Re-use is

listed first for a good reason; it is a cornerstone property that forms the basis

for several other claims, especially rapid development and economics. The

fourth claimed advantage, accessibility, seems only slightly less prominent.

The expectation that putting components together is not only faster, but also

technically easier than building components is an implicit foundation for several

of these claimed advantages. Roschelle, Pea, DiGiano, and Kaput (1999) use the

analogy of a home entertainment setup, where few can create components such

as amplifiers, receivers and speakers, but everyone can hook them together to

construct a suitable system. The expectation that configurations should be easy

to change, as well as to produce, provides adaptability; users and other less

technically oriented individuals may be able adjust pre-made configurations

independently. If experts are needed to adjust a system, still they may be able to

do it much more easily. For reference, we call this property ‘‘easy

configuration,’’ and treat it as a part of adaptability, although it might well

appear explicitly in a longer list of core claims concerning components.

‘‘New social structures’’ has been less often cited as an advantage in

component computing, at least until a few years ago. However, it has been

implicit in the way many real-world projects worked, if not in their rhetoric. In

any case, we feel this is an important part of the possible advantages of

component computing. All of the projects featured in our study offer

important lessons concerning new social structures.

Easy configuration is a part of a theme of ‘‘democratizing technology’’ that

one finds frequently expressed in discussions of component computing. The

theme is often explained in terms of social factoring. Social factoring

specifically involves the expectation that programmers or other technology

experts apply their special skills in producing components, and educators will

apply their expertise in assembling and using component systems (see EOE,

undated; Roschelle et al., 1999). Together, easy configuration and social

factoring underlie many intuitions about new social configurations.

EMPIRICAL AND ANALYTICAL STRATEGIES

In this section we describe the empirical basis for our synthetic comments, and

something about how we came to think about the diverse issues involved in

ISSUES IN COMPONENT COMPUTING 3

component computing. Naturally, our project team read widely in the realm of

educational component computing, and somewhat less outside of educational

circles. Component computing seems to have different properties outside

education (stemming from, e.g., less standardized and stereotyped require-

ments for education, the multi-disciplinary expertise needed in education,

limited financial resources, etc. See Spalter, 2002). In any case, our focus here

is specifically educational uses.

Empirical Strategies
The most important empirical work we did involved constructing fairly

intimate case studies of three current projects that were accessible to us: The

E-Slate Project (University of Athens, and CTI; Greece; www.cti.gr/RD3/

Eng/EduTech/); The ESCOT Project (SRI International; www.escot.org/), and

the Educational Object Economy (www.eoe.org/). In addition, we used some

of our own experiences with component computing, ‘‘we’’ being the Boxer

Project at the University of California, Berkeley (www.soe.berkeley.edu/

boxer). All of the projects include a significant focus on K-12 mathematics

and science instruction. The EOE and E-Slate are substantially broader in their

overall content focus, and, at the other end of the spectrum, ESCOT is highly

targeted at middle school mathematics.

Obviously, we are most familiar with our own project work. In addition,

Boxer is the oldest of the projects here considered, which means a more

extensive and diverse base of experience. These two facts mean that our own

experience may appear somewhat more prominently in some analyses and

judgments compared to that of other projects. However, we tried hard to retain

an objective balance of views – including separating off more ‘‘editorial’’

comments in a sidebar article (The Boxer Project’s Perspective on Component

Computing).

In preparing case studies, we relied on the following sources of data:

� Reading – Including websites, papers from the projects, and internal

documents that were made available to us.

� Visits and joint meetings – When feasible, we visited projects, including

sites where their products were used, attended working meetings, and

engaged in informal discussion with project members. Different projects

were differentially accessible, given that one project is located in Greece

(although we managed one intensive ‘‘site visit’’ and a shorter, more recent

visit), and one project is nearly completely distributed.

4 ANDREA A. DISESSA ET AL.

� Examining products, mainly those accessible on the Web.

� Engaging users in discussions.

� Discussions with outsiders who had experience with the projects and their

products.

In planning our work, we hoped to concentrate on teachers and their

experiences with component computing. Unfortunately, several factors inter-

vened. First, component computing is still an emerging technology, and

school sites where it is used are fairly rare. In addition, the sites that exist are

widely separated geographically, and we could not travel to many of them.

Some visits were possible, and electronic communication helped fill in.

However, overall, we were less successful in engaging teacher perceptions

than we had hoped.

In addition to our study of component projects, we organized a Web-based

survey concerning issues that emerged in our work. The survey was small and,

by design, involved mainly experts and those now using components in K-12

educational work.

The case studies, or profiles, that resulted from our work are available on

the World Wide Web (Azevedo, 2001; diSessa, 2001a, 2001b; Kynigos &

Friedman, 2001; Parnafes & diSessa, 2001). All of the profiles can be found at:

http://soe.berkeley.edu/boxer.html/webcomp/reports.html. In order to keep

this article manageable in length, we do not report details of data or inter-

pretation here that are reported in the profiles. The Web survey has not yet

been reported separately.

Analytical Strategies
Our primary analytical strategy was systematically to collect, group, and

sort for importance issues having to do with component computing. So, for

example, we kept a database of issues as these were encountered, and

sought to develop a better sense of those issues, how they played out in

various contexts, and any resolution that we could see, given our empirical

data. The database itself does not find explicit representation in this

synthesis, except that we used it to make sure that important items we had

encountered were not left out. Issues we considered fall, broadly, into two

classes:

� issues concerning the social patterns of production and consumption;

� issues concerning the technology.

ISSUES IN COMPONENT COMPUTING 5

The first two main sections, following this one, concern these two classes.

Questioning the validity of the ‘‘core claims’’ listed above, constituted an

important sublist of issues, which we treat later in its own section.

Student learning is an important part of patterns of production and

consumption. The bottom line for many involved in educational computing is,

after all, whether students learn more or better through the technology. On the

other hand, we dealt only with a small number of very different projects, each

of whose work depended on many particular factors (the insight of developers

in designing good learning activities; the quality of teachers; the preparation

of students, etc.), and each of which focused on different curricular areas. So,

comparative evaluation of learning was not possible.2

Models
One of the most challenging aspects of our work arose from the incredible

diversity of ways of going about doing ‘‘component computing.’’ The projects

we studied were very different in their social organizations, in their

technology, and in the relations with the world of education. How, then, can

we approach generalities about component computing, without unreasonably

suppressing special features of these projects? A partial solution is to talk

about the projects, not in terms of individualities, but in terms of ‘‘models’’

that are intended to be abstract or ideal types. The models we chose to develop

are not prototypes of some full specification of a way of going about doing

component computing, for example, simplifications of what any of our studied

projects actually did. Instead, these models are deliberately partial

specifications, a collected set of attributes that ‘‘naturally’’ go together, and

which have substantial and fairly uniform consequences across projects that

might implement that particular model.3 As in any modeling enterprise, there

is no guarantee that one can find insightful models of this sort, nor that, once

found, assumptions made about them are valid. Nonetheless, models helped

our thinking about and communicating our findings.

2For convenience of readers, we provide some entry-ways to projects’ individual studies of
student learning: For E-Slate, see Kynigos and Yiannoutsou (2002). For ESCOT, some study of
student learning was done by the Math Forum’s (www.mathforum.org) internal evaluation
process. However, we are not aware of published results. Boxer has done a great deal of micro-
analysis of student learning. For some overviews, see diSessa (1995, in press).
3In as much as they are partial specifications, this type of model differs from prototypes,
caricatures (Hoyles, Noss, & Sutherland, 1991), or composites (Wenger, 1998), which
constitute relatively complete specifications of a realizable, if idealized, type.

6 ANDREA A. DISESSA ET AL.

One of the advantages of models as partial specifications is that they have a

‘‘mix and match’’ character. That is, a real project might be well characterized

by several of these models, not just one ‘‘closest match.’’ This allows, in

principle, better coverage of the whole space of possible ways of doing

component computing, and it allows us to extrapolate to ways that are not

directly represented in our data, yet might be particularly ‘‘good combina-

tions’’ of the strengths of different projects.

We offer here a preliminary taxonomy of models. Some issues we discuss at

length later are exposed in a preliminary form here.

1. The educationally adapted model
The prime characteristic of this model is serious and consistent attention to

the educational use of components. This may entail (a) explicit descriptions

of pedagogical use and style, (b) linking to established curricular topics or

standards, (c) involving pedagogical experts in development, (d) attention to

issues of real-world use by teachers, and (e) built-in or add-on assessment.

Note that projects with very different philosophical orientations might still

be described as ‘‘educationally adapted.’’ Each of our profiled projects

aimed at being educationally adapted, but in very different ways.

2. The rich container model
Although the motivation for this model is to attend to some social and

educational issues, it is defined by a technological issue. The technological

issue is the richness of resources in the ‘‘container’’ environment. The

container environment is the ‘‘place’’ where components are assembled

and presented to users. While containers are typically viewed mainly from

the developer’s perspective (where the name ‘‘authoring environment’’ is

appropriate), the perspective relevant to rich containers involves resources

that are available to all, developers and users alike. The rich container idea

is to embed components within a broadly flexible environment with

substantial resources of its own. In this way, any user or developer will

have a lot of generic resources (text processing, hypertext, perhaps even

programming) available from the container so as: (a) to fill in needs that

components do not supply; (b) to allow easy interconnection and

reconfiguration of components; and possibly (c) to allow easy modification

and adapting of components. The rich container model aims mainly to give

general computational resources to less technologically sophisticated

individuals, including teachers and students, so that they can carry out tasks

that otherwise would require specific design and implementation by

ISSUES IN COMPONENT COMPUTING 7

experts for any particular application. The issue of what technical con-

tributions can or should be expected of less technologically sophisticated

individual, and what benefits accrue from that, is a critical issue that we

will consider at some length. A rich container is a partial solution to the

problem of appropriate technology in the case that technical contributions

by teachers and students are judged valuable.

3. The co-development model
User participation in design and construction of component-based

educational software has many possible advantages, including (a) to offer

face-value validity of products for the eventual audience, (b) a larger

developer pool, and (c) the possibility of serious adaptation to local

circumstances and concerns. There are, however, many different ways to

engage in co-development. In addition, there is a fairly widespread distrust

that many teachers can participate effectively in the design of technology.

Thus, co-development is implausible to many, especially when teachers

play roles beyond simply testing and providing feedback. Each profiled

project undertook a different form of co-development. We will develop

more refined distinctions in a taxonomy of different co-development

models (in the section on social configurations). The various roles assigned

to different communities – that is, different definitions of social factoring –

account for a substantial part of the variation in these models.

4. The toolset model
An obvious assumption, and explicit commitment of many, is that generic

components (like a graphing component), should evolve, but then

standardize in order to serve all similar uses (e.g., all graphing needs).

The toolset model is based on a slightly different idea, that the ideal

component for a particular purpose (e.g., physics of motion, or biological

simulations) will, necessarily, be adapted to its particular context of use.

Thus, while generic components may be useful, they will need to be

adaptable, and developers will need to make adaptations before a set of

components (a toolset) will readily serve a particular need. In addition to

adapting components to particular uses, toolsets might imply fairly strong

co-configuring of components to make sure they work together well in the

particular context. The toolset model interacts strongly with the social

issue (one of our three critical issues) of who gets to develop and modify

software. Just as the rich container model is a partial solution to the

problem of technology access for non-specialists, the toolset model is a

8 ANDREA A. DISESSA ET AL.

partial solution to the problem of appropriate technology in the case that

components systematically need substantial adaptation to contexts of use.4

The remainder of this report will consist of (a) an essay on advantages and

disadvantages of various social configurations; (b) a review of the technology

used by each project; (c) an essay of our choice of three most crucial issues facing

component computing; (d) a review our general finding concerning the ‘‘core

claims’’ of component computing, and (e) summary and concluding comments.

SOCIAL CONFIGURATIONS IN THE PRODUCTION

OF COMPONENT SOFTWARE

How people collaborate in the production of software and how software is

selected and drawn into educational practice constitute a critical family of issues

that are easily marginalized within a technologically-oriented movement such as

the component movement. Like most people involved in the component

movement, we believe a good component-based product, like any other

technology-based educational product, is likely better served by a collaboration

among people having various expertise, including technical, educational and

design-related expertise.5 From the earliest days of educational computing,

developers sought to involve those with educational expertise productively in the

process. Still, there are better and worse ways of organizing collaboration, and

any collaboration may be difficult to manage. Collaboration between

educational and technical people may be difficult for many reasons, including:

� Divergent views: Different people, especially if they hold different kinds of

expertise, may have different values, priorities and ‘‘lenses’’ to view ‘‘how

things should be done,’’ and, particularly, what constitutes high quality and

the likelihood of achieving that quality in a particular case.

4The toolset model is very similar in motivation to the product line view of enterprise software
development (Clements & Northrop, 2002). Emphasis on community practices in that view
parallels in some degree our highlighting of social configurations.
5Collaboration among communities is not universally advocated as a best method for
developing educationally adapted software. The Education Division at MIT, which ‘‘fathered’’
the MIT’s Media Laboratory’s educational work, was founded on the presumption that creating
a new cadre of interdisciplinary experts is better than interdisciplinary collaborations in many
ways. Echoes of this idea appear when we talk about what it takes to allow teachers to be good
technology-developing partners.

ISSUES IN COMPONENT COMPUTING 9

� Social hierarchy: Whether institutionalized or not, differential power and

authority may develop in collaborations. Technologists tend to have high

status (or, in a self-fulfilling manner, assume they have high status) compared

to educators, especially teachers. Degrees, salaries, assumptions about

articulate argument, and so on, can systematically favor some participants

over others.

� Community-specific practices: Participants in collaborations usually retain a

main affiliation with their ‘‘home’’ community. Patterns of practice, rewards

and sanctions, and so on, all differ, which can cause subtle or explicit

misalignments. For example, technologists gain approval in their community

for designing and making systems; long periods of waiting for feedback from

educational field trials, may cause at least tension, if not disruption.

All of the projects we profiled explicitly advocate one version or another of the

co-development model, in which teachers or other educators join in the work of

development. On the other hand, we found a remarkable and fortuitous diver-

gence in how these projects went about collaborating. We next schematize these

ways of collaborating by introducing partial specifications, models, specifically

with respect to how collaboration is organized. These models constitute an

empirically motivated taxonomy of submodels of the co-development model.

All of the projects seem to have managed workable collaborations, in some

cases rather remarkable ones. Behind the scenes, our impression is that a huge

amount of effort and cleverness went into achieving their results. What we can

manage here is only to expose the tip of the iceberg with respect to the ‘‘black

magic’’ of successful collaboration in the production of component software.

In component computing, as in other educational matters, there is often an

abundance of optimism with respect to collaboration, but less outright success,

and still less articulation of how good collaborations can be managed. In that

context, it is especially important to develop a balanced view of the strengths

and weaknesses of various models of collaboration.

The Integration Team Model
The integration team model combines members of different communities in

relatively small, product-oriented design groups.6 Most typically, technolo-

gists (such as programmers or software designers) and educators (typically

6The idea of integration teams is quite old, going back at least to the 1970s work of Al Bork at
the University of California, Irvine.

10 ANDREA A. DISESSA ET AL.

teachers) collaborate. As other co-development models, this configuration is

guided by the assumption that teachers and educators may have a much larger

role in designing component computing software than typically assumed, and

that they should add their educational point of view to the development

process. Social factoring is prominent within the integration team model: It is

assumed that teachers draw on their own teaching practices, bring con-

siderations of pedagogy, curriculum, classroom and school reality, and

contribute their pedagogical ideas. In turn, technology experts guide

achievable design, and usher designs into suitable electronic forms. Such

collaboration is claimed to produce higher quality and more educationally

adapted activities and supporting software. Among our profiled projects,

ESCOT advocated and used the integration team model.

Opportunities

The involvement of educators and teachers in design should promote meaning-

ful connections to school reality and to the curriculum. Activities should better

match teachers’ and students’ needs. Products are enriched by the contribution

of multiple and different perspectives. Moreover, professional growth, broadly

conceived, may be enhanced. That is, integration teams promote a dialog

between teachers and technology developers so both sides better understand

each other’s perspectives. Technology developers get a good acquaintance with

Fig. 1. Integration teams are small, product-oriented groups composed of members of different
communities, notably technologists and educators.

ISSUES IN COMPONENT COMPUTING 11

educational considerations, which may enhance their ability to develop better

educational software. Teachers get the not-so-common opportunity of

participating actively in innovative, likely-to-be reform-oriented technological

design, and become better prepared to offer technology-adapted suggestions.

Difficulties and Limitations

The promising characteristics of this model do not preclude most of the

generic difficulties that characterize ‘‘cross-cultural’’ collaborations. In our

empirical work, both divergent views and hierarchy (see descriptions, above)

were fairly prominent,7 at least in the eyes of some participants. Some

teachers found it difficult and sometimes intimidating to participate as equal

contributors in a technology-based development process. Technological

developers involved with educational implementation often have, in addition

to technical competence, considerable experience with instructional design

and in mathematics and science as well. This may put teachers in a weaker

position in which they do not have authority in technology-related issues, but

neither can they act with clear authority with respect to content and

educational issues. Especially at the beginning stages of teamwork, teachers

may feel intimidated and thus less able to contribute, even where their view is

especially valuable. Over longer periods of time, different perceptions may be

bridged and merge into a productive team effort. The ESCOT project reported

difficulties in their first year of integration teamwork, but redesign of team

relations and accountability made things much better – in fact, they reported

that later integration teams ran excellently. Our independent view confirmed

significant improvement, but many issues, especially issues of hierarchy,

remained salient in some participants’ views. Overall, these results anticipate

one of our general conclusions concerning collaborative models: that

managing collaboration is as or more important than which basic model of

co-development is chosen. Some details of our observations concerning the

ESCOT project can be found in Parnafes and diSessa (2001).

The Two-Legged Model
The two-legged model implements collaboration between two main

organizations: a technical development team and an education research team

7In contrast, we saw little indication of systematic conflict in community practices (the third of
our three general loci for problems in collaboration). Perhaps this is because of the limited
duration and very focused work of integration teams we observed.

12 ANDREA A. DISESSA ET AL.

(Kynigos, 2002). Once again, social factoring is assumed. The technical

development team focuses mainly on component software design and

development, and the education research team drives the educational

considerations of components, activity design and formative trials. Cyclical

development is a good method for this model, where the software is co-

designed by the two teams working in conjunction, and tried and tested by the

educational team as early as possible in realistic situations. The E-Slate

project implemented a two-legged model.

Opportunities

This model may be particularly easy to start up. Separate teams may already

exist – such as within universities or research and development institutes – so

forming the model may be simply ‘‘gluing together’’ already functioning

teams. Each team enjoys community-specific coherence of goals, shared

beliefs and language, and therefore collaboration within a team should be

relatively easy and smooth. Educational research participants do not need to

get their hands dirty with highly technical tasks, and they are liberated to focus

on educational issues such as learning research, working in classrooms with

teachers, organizing teacher communities and developing activities from

given components.8 Technology development participants also focus on the

things in which they are expert. They get input from the educational team and

try to address the educational teams’ needs in developing and refining the

component software. The basic social factoring idea applies to the two-legged

model: Presuming good collaboration and mutual understanding between the

Fig. 2. The two-legged model involves systematic interaction between two different teams,
typically oriented toward technology and educational matters, respectively.

8In the E-Slate project, the educational team also took on substantial responsibility for
educational aspects of technology design, including advocacy of basic system properties, such
as easy scriptability. We suspect, but cannot know, that this level of participation in technical
matters would be exceptional across many implementations of the two-legged model.

ISSUES IN COMPONENT COMPUTING 13

teams, the development process can be efficient since each team is

concentrating with what its participants do best.

Because the technology team works in an almost ‘‘business as usual’’

mode, this model may be particularly apt for larger software development.

Among our profiled projects, the E-Slate two-legged model did, in fact,

manage by far the largest software development. Infrastructural software

(such as E-Slate or Boxer, as systems) may require the coherence of a

specifically technological team, and may benefit less from educators who are

not deeply steeped in the constraints and affordances involved in large systems

design.

Difficulties and Limitations

Coordinating two big organizations that ‘‘do their own thing’’ is never an easy

task. Generally, then, misalignments of community-specific practices may be

prominent in two-legged designs. This contrasts with the relatively sparse

appearance of such misalignments in the integration team model. Among

these, difficulties in time coordination were highlighted in reports we got from

the E-Slate project. Educational and technological processes have different

natural time-scales and different modes of operation. Interruptions of one

team’s work to accommodate needs of the other can be destabilizing. For

example, one cannot tell a development team to wait for a year while

formative trials assess the educational affordances of an existing implementa-

tion. In complementary manner, the educational team may have trouble

keeping up relations with schools and teachers while development undergoes

inevitable delays and buggy prototypes.

Looser coupling between educators and technologists, compared to

integration teams, has its disadvantages as well as advantages. The fact that

participants are more insulated within their home communities means mutual

understanding may be more difficult to come by. Discoordinations such as

educators making unachievable demands and developers producing general

resources that are not crafted specifically enough to serve educational need

may be more common than with some other models.9 Relative cultural

insulation may mean more difficulty managing day-to-day relations and

negotiating longer-term goals, and the intimate cross-fertilization of designs

typical of integration teams is reduced. Long-term professional development

9See discussion of the ‘‘lemon tree’’ phenomenon in Kynigos and Friedman (2001).

14 ANDREA A. DISESSA ET AL.

that crosses disciplines is also likely reduced. Consult Kynigos and Friedman

(2001) for details of our empirical observations of the E-Slate project, and

Kynigos (2002) for additional discussion.

Member-Sustained Community Model
A member-sustained community brings together individuals with varied

backgrounds, such as teachers, developers and researchers around the task of

developing and distributing educational software components. The key idea is

a symbiotic bartering of expertise. Developers distribute and get feedback on

their creations; educators can download components, and they provide a

service to other educators in documenting the educational properties of the

software. Others have used the term ‘‘knowledge network’’ to describe this

organization: ‘‘[An] Internet-based community of experts – teachers,

researchers, developers, and others – that self-organizes to publish, share,

find, critique, and improve software resources and associated materials’’

(Roschelle, Pea, et al., 1999, p. 2).

Social factoring is generally assumed. A teacher participating in such a

community need not understand anything about technology design or

implementation. Rather, she or he may use an available component, contribute

evaluations or descriptions of effective use, suggest educationally relevant

modifications to the component, or suggest a new component altogether. The

Web site library serves a much more important function than simply to hold

components or software; it is a medium of intellectual exchange, and must be

Fig. 3. A member sustained community involves different people with different interests and
expertise, all participating in a symbiotic relationship that is typically mediated by a
Web-based library or exchange center.

ISSUES IN COMPONENT COMPUTING 15

designed with that in mind. Documentation of both educational and technical

properties (including evaluations) are vitally important. The Educational

Object Economy (EOE) first conceptualized and implemented this model.

‘‘Economy’’ refers to the ‘‘bartering of expertise’’ of which we spoke. In the

considerations here and below, it important to note that we refer mainly to the

original model of operation for the EOE organization, which now operates

under substantially different models featuring smaller, more local commu-

nities. In higher education, the Merlot Project (www.merlot.org) adheres to a

member-sustained community model.

Opportunities

This model requires minimal financial and organizational commitment since

the community of interested people should maintain and develop it. Member-

sustained communities are a natural way of combining different expertise (a

form of co-development) with minimal organizational overhead. Member-

sustained communities also provide an opportunity for people with different

expertise and points of view to contribute and engage in a dialog, and they

appear to be naturally scalable.

Difficulties and Limitations

The loose organization that accounts for this model’s ‘‘low cost’’ – even looser

than the two-legged model – also seeds a number of difficulties. Lack of strong

central management and goal-setting can lead to chaotic development of the

group and its resources. For example, we observed that ‘‘coverage’’ in terms

of components of the EOE is uneven, with a lot of redundancy in some areas,

and lack of coverage in others. Quality, which is supposed to be kept up by

community critique, may wane if the participants are not up to, or are not

interested in critical assessment. Furthermore, without management, the

balance in the community may be less than ideal. In particular, since

technology is prime currency, technologists tend to dominate. We observed in

the main EOE collection that components are many; educational commentary

is sparse. Once tilted, new members and contributions tend to perpetuate the

imbalance. Educational adaptation of offered software, supposedly ensured by

educators’ contribution, suffers.

On-line communities are simply difficult to manage and keep up. This

problem is exacerbated by the fact that teachers as a group tend to be isolated

in current practice, and often lack both interest in, and skills to understand how

to use and critique software. Their primary job is to teach, not to provide

16 ANDREA A. DISESSA ET AL.

feedback or to help others learn pedagogic concerns. Generation of good

software ideas by ‘‘average teachers’’ is rare.

Unless the community actively uses and critiques components, and unless

developers are responsive, re-usability may suffer. With limited commitment,

developers are likely to post components and be done with them. Re-usability

in new combinations is minimal in the current EOE library due in part to: (a)

inaccessible code; (b) a general tendency not to document code; (c) no strong

cultural impulse toward re-use. We hasten to add that the EOE technological

base (mainly black-box Java applets) does not foster re-usability; hence

limited re-use may not be inherent in the member-sustained community

model.

For details concerning our observations relative to this model, see the EOE

profile (Azevedo, 2001). As mentioned, newer practices of the EOE, which we

did not profile, tend to focus on smaller communities, which likely allows

better management, more focused goals, and better community communica-

tion (channels other than the library, itself), alleviating many of the problems

here cited. See Gaible (this issue).

The LaDDER Model
The LaDDER model (Layered Distributed Development of Educational

Resources) involves four ‘‘layers’’ of participants: students, teachers,

secondary developers, and primary developers (or simply developers), all

working together to develop learning materials over an extended period of

time. Figure 4 illustrates, using three layers for simplicity. The core goal of the

model is to empower levels of participants with less technological expertise,

especially teachers and students, to solve as many of their own problems as

possible. Thus, the model works well in conjunction with the toolset model,

creating flexible resources, in addition to software solutions.

Typically, developers will initiate construction of a toolset and will provide

model configurations for educational use. Yet, a lot of work – modifying,

trying out new configurations and activity structures – can happen among

teachers, likely in conjunction with members of a helping class, what we call a

secondary developer. A secondary developer might be, for example, a member

of a university community or a teacher with more-than-usual technical

competencies, but with more pedagogical expertise and local community

connection than a primary developer. One function of the secondary developer

is to provide leadership and liaison, both up and down the technical-expertise

ladder. Face-to-face groups, say, in a particular school or school system, might

ISSUES IN COMPONENT COMPUTING 17

be headed by a secondary developer. Primary developers may not need to have

as much direct contact with the project. Secondary developers serve a similar

function to what Bonnie Nardi calls ‘‘gardeners’’ in her work on end-user

programming (Nardi, 1993).

The characteristic pattern of work in the LaDDER model is that technical

needs or problems propagate up the technical competence hierarchy (students

to teachers, to secondary developers, to primary developers) to the point that

they can be addressed. Then, however, instead of solutions, new or modified

resources are created and propagated as far as feasible back down the

hierarchy before converting those resources into solutions. The Boxer Group

has experimented with the LaDDER model (diSessa, 2001b).

Opportunities

The LaDDER model, in enhancing educational adaptedness by empowering

educational participants, aims at enhancing the education side of the

education/technology balance. This may be particularly felicitous if, as is

suggested by some of our data, technology generally holds the upper hand

within the component movement. Flexibility and local adaptation should be

Fig. 4. In the LaDDER model, problems percolate up the Hierarchy of expertise (uplinks) from
teachers, to secondary developers, to primary developers; know-how and resources to
solve problems (downlinks) propagate downward.

18 ANDREA A. DISESSA ET AL.

enhanced at the same time. At least some teachers can act relatively

autonomously, seeking help from ‘‘up the LaDDER’’ only occasionally.10

Because of its emphasis on producing autonomy and because of the helping,

secondary developer level, professional development of teachers may be

enhanced. If it works well, responsibilities of primary developers to be involved

in every technological change can be lessened. In principle, misalignment of

community-specific practices may be minimized by the looser coupling between

technology and educational participants, and difficulties of hierarchy are ad-

dressed by emphasizing teacher and student empowerment. Our own expe-

riences with the LaDDER model have been highly positive, especially with

respect to limiting the responsibilities of technologists and promoting local

adaptation.

Difficulties and Limitations

The LaDDER model is much less familiar and less common than the other

social models, and there is less data on which to generalize. Examples

studied within the Boxer project may have worked for idiosyncratic reasons,

including the people involved and the domain investigated. (See diSessa,

2001b, for details.) A given presumption in this model is that everyone,

notably including teachers, has some degree of technical expertise, which is

not a situation to be taken for granted, nor a likely prospect in the estimation

of many. See Chapter 9 in diSessa (2001) for extended discussion. The

LaDDER model is also dependent technologically on something like the rich

container model, where users have a lot of building resources available to

them. A trade-off for empowering teachers is that the model may tend to be

educationally conservative. That is, if ‘‘average teachers’’ develop materials,

‘‘average (and not particularly innovative) outcomes’’ may result. However,

several management strategies are available, such as selecting innovative

teachers to work with and using innovative technology as a ‘‘Trojan

mouse.’’11

10Because of the technology they used, teachers could not work independently in ESCOT
integration teams. E-Slate’s technology was explicitly designed to advance independence in
teachers. Unfortunately, our primary work finished before that project began serious work with
teacher autonomy. Readers should consult newer E-Slate references, such as Kynigos, Trouki,
and Yiannoutsou (2002).
11The term ‘‘Trojan mouse’’ refers to an attractive and seemingly unthreatening artifact that,
nonetheless, seeds major change.

ISSUES IN COMPONENT COMPUTING 19

While it may reduce burden and, especially, time-coordination problems

with respect to developers, the model does depend on developers’ involvement

over an extended period of time, albeit at reduced levels. Finally, the model

may be better adapted to fairly local projects, and less adapted to large-scale,

say, ‘‘national curriculum’’ development, where a single product is expected.

LaDDER is not adapted to major infrastructural software innovations: Boxer,

itself, was not developed using this model.

We close this section by noting, again, that collaboration is a complex

theoretical and practical matter about which we can have no pretensions

concerning complete analysis. In particular, we emphasize that on-the-ground

strategies of managing collaborations may overcome intrinsic weaknesses,

and, in any case, such strategies must account for a significant part of

variations in success. More generally, we feel there is a great need for

understanding of management issues specific to these kinds of collaboration.

Such understanding is very difficult to develop by projects, themselves, at the

same time that they actually do development. Thus, it may make for a good

supplemental focus for research in future projects.

TECHNOLOGIES: REVIEW OF PROJECT

ARCHITECTURES

The second principal perspective we entertain is technology. What are the

range of relevant possibilities and issues concerning the technological bases of

component computing? We begin concretely with a brief review of the

technologies underlying the four profiled component projects.

Component Construction

Three of the four projects we profiled (EOE, ESCOT, E-Slate) used Java as a

component construction language. Java is an evolved, modern, reasonably

high-level programming language that, importantly, has as a central aim to be

platform-independent: Constructions should, in principal, run equally well

under any operating system. Java has generic standards for components

(‘‘beans’’). ESCOT and E-Slate add further specifications for components that

participate in their architectures.

Boxer does not currently use Java. Instead, Boxer is an autonomous,

integrated medium. That is, it provides a rich collection of resources,

including text processing and programming, to any user; hence, it adheres to

20 ANDREA A. DISESSA ET AL.

the rich container model. A programmer works in the Boxer medium by using

text processing to create text-and-boxes documents that are programs. To

create a component, the programmer typically puts all relevant programs in a

box, and creates a ‘‘boxtop’’ for that box, which is the presentation and

interface he wants users to see. Users can use the component directly (as one

would just use a Java applet), but there is nothing that prevents the user from

‘‘opening the box,’’ looking at, modifying or extending the programs

contained inside. If a component is not feasibly constructable in Boxer for

speed or memory efficiency reasons, it can be implemented in Lisp (Boxer’s

implementation language), at the cost of becoming ‘‘black box’’ from a user’s

point of view.

Component Hosting, Configuring, and Connecting

In creating a particular learning application from components, one selects

from available components and creates a particular screen configuration. In

addition, one must interconnect the components to make them work together

properly for the purpose one has in mind. One might select a simulation

component, a graphing component, a text component (for instructions and

documentation) and a few control components, such as slider controls and

buttons, to form a control panel. The graphing component has to be connected

to the simulation, and the control components likely need to be connected to

both the simulation and graphing component.

ESCOTand the EOE use Web browsers to host their components (provide the

screen space and interaction protocols). The EOE does not demand or highlight

combinable components, so configuring and connecting are not particularly

relevant operations. ESCOT components are Java beans, and they use some

standard Java technology for interconnection as well as some proprietary

protocols and graphical techniques to simplify interconnection in common

cases. ESCOT delivered black box applets (configurations of components) to

students.

One of the non-negotiable commitments of the E-Slate project has been to

make components configurable by non-experts, in particular, by teachers.

Hence, they developed a proprietary container environment. The principal

paradigm of interconnection is ‘‘wiring,’’ and components can be connected

by using type-coded plugs and sockets. In addition, one of the components

available with E-Slate is a Logo programming system. Components can export

component-specific commands to the Logo component, and Logo can thus

control some aspect of the component. Scripting is therefore available as an

ISSUES IN COMPONENT COMPUTING 21

inter-component connection method that is more adaptable and more general

(if sometimes more complex) than wires.12

Boxer has a ‘‘one environment for all purposes’’ commitment. The

environments in which one generally creates components, in which one

combines and configures them, and in which configurations are used are one

and the same. Boxer’s always-available ‘‘text’’ editor has a sense of geometry

and objects (components may simply be boxes), so layout is encompassed.

The most natural interconnection method is scripting, but a host of more

specialized methods are feasible. See diSessa (2001b). In particular, a simple

wiring protocol (implemented in Boxer) allows one to connect components

with a ‘‘drag and drop,’’ plug-to-socket gesture. Boxer does not have a built-in

wiring editor, in contrast to E-Slate.

The Roles of Programming

Programming plays a number of roles, discounting infrastructure building

such as creating the E-Slate container, ESCOT interconnection protocols, or

Boxer environment. First, obviously components need to be created. Boxer is

the only system of the four that uses a general-purpose language that is

intended to be user accessible to implement most components. Somewhat

along these lines, however, ESCOT used two component generators (in

addition to Java programming) for the purpose of creating some components,

dominantly the Geometer’s Sketchpad (/www.keypress.com/sketchpad) for

geometric constructions, but also AgentSheets (www.agentsheets.com), which

is a grid and agent-based programming system. We consider these to be

specialized programming systems that have the intent of end-user accessi-

bility.13 They are the equivalent of Boxer toolsets14 (see elaboration below).

For component interconnection, ESCOT uses generally non-user-accessible

programming. E-Slate allows programming for interconnection, and it is user

12Whether E-Slate should be described as having a rich container or not may be a matter of
semantics. It certainly is enriched (by connectivity editing) compared to a browser host.
Programming does not reside in the container, but can be added to any configuration of
components. How important is always-available hypertext processing, ala Boxer?
13Most people use Sketchpad as a gesture-based construction system, hence would not consider
it to be programming. We do not feel it is appropriate to restrict ‘‘programming’’ to text-based
systems. In our view, any system that allows the construction of complex, dynamic and
interactive objects should be classified as programming.
14Indeed, one Boxer toolset allows gesture-based construction of dynamic, geometric objects.
See Sherin (2002).

22 ANDREA A. DISESSA ET AL.

accessible. Newer work of the E-Slate Project on teacher creativity and

professionalization depend on interconnect (and other) functionality of

programming in the hands of teachers. Boxer reverses the priority and depends

mostly on user-accessible programming for interconnect, but also can support

wiring, if not currently as elegantly as E-Slate.

Boxer and E-Slate also explicitly support student programming as an

expressive practice with important pedagogical value in its own right. This

heritage from the Logo tradition (Papert, 1980) manifests itself as student

activities that involve programming. So, for example, students in E-Slate learn

about topics in mathematics, particularly geometry, by programming

(Kynigos, Koutlis, & Hadzilakos, 1997), and students in Boxer learn about

motion via programming representations (diSessa, 1995; Sherin, 2001).

THREE CRITICAL ISSUES

The astute reader will have noticed that we did not define models of

technology (‘‘architectures’’) for each project in the way we did for social

configurations. The reason is the technologies involved in this study do not

seem to be classifiable in a way similar to the simple topological scheme that

applied to models of collaboration. Technology for components is more

diverse and multidimensional than our top-level organization of collabora-

tions, and these projects do not appear to us to represent any pure forms.15 In

addition, the main issues we want to talk about cut across projects in more

complex ways than the tradeoffs for each model, which organized our

discussion of social configurations. On that basis, we proceed directly to

discussion of our three main clusters of issues, subsuming technological

issues into a more general discussion mainly as a space-saving strategy. We

start with a relatively simple issue, and progressively move to more complex

ones.

15Consider wiring. ESCOT has wiring, but only for experts. E-Slate wiring is prominent in the
system, and intended for users, not just developers. Wiring is possible in Boxer, but it is not a
uniform, explicitly represented system property. Similarly, user programming is possible in E-
Slate and Boxer, but it may be (and we will argue) that it has different properties in the two
systems. Of the four projects, Boxer may best represent a ‘‘pure’’ model – a ‘‘computational
medium’’ where all users have access to all generic computational resources (diSessa, 2000).
This is a particular instantiation of the rich container model.

ISSUES IN COMPONENT COMPUTING 23

The Critical Container
The first of our three critical issues emerges directly from our discussion,

above, concerning component hosting, configuring and connecting. Web

browsers have some strong advantages, and a few possibly critical

disadvantages as container environments. On the one hand, they are free

and ubiquitous. A lot of industry effort goes into developing and supporting

the technology. One of the key downsides, which was amply reported to us by

the ESCOT project, is that industry standard technology is still not very good

for supporting rapid and stable component interconnection and re-use. Among

other things, browser independence seems to be an illusion; more commonly,

endless multiple-platform and multiple-browser testing and tuning are

required. Unfortunately, technology that is owned by the industry widely is

very difficult to affect, and there are no particularly clear indications that the

needs of re-usable components in education will be met any time soon.

Using a browser as a container has one other serious downside. Browsers

are one-way media (diSessa, 2000). That is, the mechanisms of constructing

web pages (and, more critically for our purposes, interconnecting compo-

nents) are reserved for relative experts. Wide-spread construction and

modification of component-based systems by ‘‘ordinary’’ folks (including

even technologically sophisticated teachers and designers who are not

programmers) is nearly foreclosed. ESCOT early on hoped to make some

configuration and connection possibilities accessible to less technologically

sophisticated individuals, but the task of creating an appropriate container was

judged beyond the means of the project.

An appropriate container, then, constitutes a critical dilemma for the field.

Even if one is willing to use only expert-appropriate technology, cross-

platform and cross-browser issues are daunting. If one is not willing to use

expert-only technology, one is apparently faced with the much larger scaled

prospect of designing and building an appropriate container from scratch. E-

Slate and Boxer have taken on that challenge, but both suffer from treading a

‘‘non-industry standard’’ path: For example, it is difficult to break into the

mainstream of computing, and it is difficult for one project to keep up a

complex piece of software for an extended period of time.

Component Modifiability
Re-use is the lynchpin assumption behind component computing, but we feel

it needs to be reconsidered. In short, we believe the image of a fixed

component library out of which new educational products can be quickly

24 ANDREA A. DISESSA ET AL.

assembled (without significant modification) is more illusion than reality.16

Instead, our contention is that component re-use depends on the capability to

modify and adjust them extensively according to context. This is the second of

our critical issues, and we call it component modifiability.

ESCOT produced the best documentation of re-use of any of the projects.

But even here, in the end, we feel ‘‘code re-use,’’ rather than component re-

use, best describes what was accomplished. (Code re-use doesn’t presume that

the units or boundaries of re-use are established in advance.) The distinction

between code re-use and component re-use often comes down to the

programmer/development team’s anticipating the important variations of use

for a component, and providing easy customizations (such as preferences and

adjustable attributes) for them. In fact, despite initial hopes, ESCOT

programmers wound up doing much more changing of components than they

originally intended.17

It is possible that poor design, in some sense, lies behind limitations in strict

component re-use. Certainly it is true that if designers can foresee re-use

needs, relevant features can, in principle, be designed in as customizing

options. To some extent, this is a sensible position in that extensive use by a

community may well lead to components that are easily adjustable in ways

that are important to the community. On the other hand, components with too

many adjustments suffer from well-known difficulties such as inherent

complexity and dependence on documentation, which is often lacking or

difficult to interpret.

An elaborated form of component modifiability might be phrased as follows:

� Context dependence: Components that work adequately or optimally in a

certain context are actually much more sensitive to the context than is

generally expected.

� Diversity: Since educational materials development constantly innovates

new contexts of use (new lessons, new subjects), we conjecture that context

sensitivities and appropriate adjustments are, in principle, not anticipatable

in many cases.

16Obviously ‘‘quick assembly’’ and ‘‘significant modifiability’’ need calibrating, which will be
partially addressed in later discussion.
17These are somewhat delicate judgments, since rhetoric and commitment are often not well-
captured in published documents. In addition, shifts in strategies are often reported only
informally, or not in the context of prior expectations. Nonetheless, we feel we have adequate
formal and informal documentation to substantiate this judgment.

ISSUES IN COMPONENT COMPUTING 25

Our experiences with Boxer components can be summarized as follows:

Every significant use of a component in a new context has required adjusting

the behavior of the component. Here, we content ourselves with producing two

of examples that illustrate the general phenomena.18 The examples are meant

to argue: (a) Components are sensitive to the contexts in which they are used.

(b) It is not possible and does not make sense to anticipate all such contexts in

the construction of a component. (c) Modification via programming might be

the best option, and often such is not difficult at all. The first two of these

directly reflect elements of our elaborated version of component modifiability,

above.

Figure 5 shows two components from an image processing toolset in Boxer.

The astronomical image on the left is a graphical rendition of an array of

numerical values representing light intensity in a CCD array (from the Hubble

telescope). The graphing component at right was based on a generic graphing

component that we used for years, with little modification, in the context of

Fig. 5. Components in an image processing toolset.

18Our use of Boxer for examples does not mean that we think the phenomenon is not general.
Instead, it reflects the difficulty in getting information about how much modification was
actually done in order to re-use a component. Obviously, we are in a better position to know
what modifications we made in components within our own project. Finally, Boxer has had a
long life, and thus more opportunity to experience the need to change apparently stable
components.

26 ANDREA A. DISESSA ET AL.

students’ explorations of motion. In this configuration, the user drags out a

straight-line segment on the image, and the graph shows the light intensities

across this slice. For image processing, we needed to make at least the

following modifications of the graphing component:

1. The physical size of the graph automatically adjusts to the length of the

slice.

2. Only maximum values are shown on x and y axes, and no tick marks are

displayed. (The graphs are used mostly for qualitative analysis.)

3. The vertical bar with ‘‘knob,’’ on the left of the graph, can be dragged

across the graph, which then ‘‘lights up’’ the entire corresponding slice in

the image, and places an ‘‘�’’ at the position corresponding to the indicated

x coordinate. Simultaneously, the precise y value is numerically indicated

on the graph.

4. The graph keeps track of the image from which a particular slice comes, in

case of multiple images.

5. The grapher is capable of producing a miniature thumbnail of itself (for

documenting explorations). When one drags and drops a thumbnail onto

the grapher, it responds by reinstating the graph that was present when the

thumbnail was created, including the link that highlights the relevant slice.

While some of these are plausibly generic adjustments that one might like to

have available (e.g., size and tick mark display), others seem quite

idiosyncratic to our needs in this context. For example, the vertical control

bar and its display properties, internally keeping track of the image from

which a slice was drawn, and the response to graph-thumbnail drag and drop

just do not seem plausibly like optional features of a general graphing

component, unless that component were to become baroquely complex. We

note in passing that we deliberately chose not to use wiring as a way of

connecting graph to image. Instead, any image responds to a slice gesture by

communicating its data automatically to the slice graph. No single connection

protocol is ideal for all circumstances. With respect to the issue of how much

effort modification takes, it took about an hour or two of programming to

make the modifications listed above.

Figure 6 shows a collection of components from a ‘‘plant growth’’

modeling toolset, which contains a second modified graphing component. In

the top row are output devices, left to right: a plant with three input

parameters, corresponding to height, width, and depth of branching; a graph

allowing three independent parameters to be graphed in different colors; a data

ISSUES IN COMPONENT COMPUTING 27

display component that shows a sequence of numerical data points, as might

also be displayed in the graph. The bottom row are controllers, left to right: a

slider that can directly control, for example, the parameters of the plant; below

the slider, a clock that can control other components that create a sequence of

numerical output data; a graph serving as an input device to specify a growth

pattern; a programmable controller, which produces an output according to

any simple program – in this case, increment the current value by a random

number between 2 and 10.

These components can be cut, copied and pasted to configure a model of

plant growth. Typically, one would wire, plug to socket, the clock to one’s

choice of controllers (a graph or program – middle and right components,

bottom row), and then the controller would be wired to the appropriate

parameter of the plant. The plant’s parameters could, in turn, be wired to a

graph output device or numerical display of the data.

Fig. 6. Components in a ‘‘plant growth’’ modeling toolset. In the top row are ‘‘output’’
components, and the bottom row contains ‘‘input’’ components that control various
parameters of the plant. Components are wired together by drag and drop gesture, from
plugs (target icons) to sockets (a pair of vertical ‘‘slots’’).

28 ANDREA A. DISESSA ET AL.

In this case, the modifications of our generic grapher included:

1. three input sockets for different-colored graphs (left-most column in the

graph component);

2. three data buckets (right-most column in the graph component), from

which one can ‘‘pour’’ data from each of the colored graphs into another

component, such as the numerical data display;

3. internal state of the grapher to ‘‘remember’’ what components it is

connected to, and methods to respond to new messages be sent from

connected components.

In addition to reinforcing the implications of our first example, this one

especially highlights mutual configuration that may be necessary with

toolsets. In the case of this plant growth modeling toolset, we judged wiring

to be an appropriate connection method. So we had to add plug-and-

socket interfaces for each component. In addition, each component needs to

respond appropriately to messages sent along connecting wires, and pass on

appropriate messages to other components. Further, we wanted to have plugs

and sockets visible on the components themselves, rather than available (only)

in a separate wiring editor, since wiring is such an intimate aspect of this use of

components; wiring is not ‘‘designing the application,’’ but is an expressive

action for users. Once again, we argue that specializations such as these do not

make sense as part of the options of generic components, and are best handled

by modification via programming.

Examples, of course, do not prove that component modifiability is a critical

issue. But they illustrate a broader trend we saw in our data, and show

something about why and when it is critical. It is particularly important to

monitor the issue because of fairly wide-spread unqualified rhetoric concerning

the value and feasibility of component re-use. It is worth noting that these

claims are fairly directly relevant to intentions concerning local adaptability.

Easy configuration (not including serious component modifiability; see

discussion in the introduction) may not be sufficient for genuine adaptability.

The need for component modifiability does not signal a death knell for

component computing. However, as a community, component advocates may

need to develop strategies to deal with the consequences. A list of compensating

strategies will be presented later. In closing this section, we remind readers that

our graphing component had stood essentially unmodified for years, as long as

our work rested in the context of motion. When we turned to image processing

and plant growth models, however, a more intimate connection between the

ISSUES IN COMPONENT COMPUTING 29

grapher and other components of the toolset were required. This illustrates what

might be expected – that the need for component modifiability may not show up

when components are used only for a few, similar purposes.

Who Gets to Do What?
Our third key issue really constitutes a complex net of both social and

technological issues. Furthermore, that fact that the issue is relatively

unaddressed in much of the component literature, we feel, reflects a basic

techno-centric orientation of the component computing community. The issue

therefore warrants more extended treatment.

A Cultural Gap

As a prelude, we describe a cultural gap that we discovered in analyzing our

survey of important issues for component computing. Recall this was a Web-

based survey. It involved only a small number of individuals (12), all of whom

volunteered from a larger group of individuals we contacted, who were

involved in component computing. Most of the surveyed individuals were

from the projects discussed here, although no members of the Boxer group

participated. No claims of representativeness or statistical significance are

made. Still, some of the results are provocative.

On part of the survey, we asked respondents to assign a value on a scale of

importance, from 1 to 5, for two lists of issues. The first list concerned the

most valuable features of component computing, and the second list

concerned the most important issues that need to be addressed to make

further progress with components. The choices we offered were as follows:19

Best properties

� Cumulativity – Components avoid ‘‘reinventing the wheel’’ and provide a

base for continued improvement and use.

� Adaptability – Components allow schools and teachers to adapt to their

local circumstances.

� Social Factoring – Components allow teachers to do what they do best, and

technologist to do what they do best.

� Quality – Components can support higher quality software.

19Free responses were also allowed. There were relatively few of these, and we do not analyze
them here.

30 ANDREA A. DISESSA ET AL.

� Speed – Components allow quicker development of software.

� Cost – Components reduce the cost of software development.

� Accessibility – Components allow easy wide-spread access to software.

� Teacher Autonomy – Components allow teachers creative expression and

independent empowerment.

Issues for the future

� Hospitality for Teachers – A collection of issues concerning involvement and

empowering of teachers, including autonomy and teacher professionalism.

� Hospitality for Students – A collection of issues concerning involvement

and empowerment of students, including ability of students to configure

components themselves.

� Improved Technology – Better technological infrastructure for components.

� Authoring Models – Developing better ways to involve different kinds of

people in the production of component-based software.

� Curriculum Match – Better matching of software to the curriculum.

� Curriculum Coverage and Access – Wider curriculum coverage and easier

access to the software.

� Economic Models – Models that allow ‘‘profit motive’’ to work success-

fully with components.

Among our analyses, we looked for issues that engendered the most

disagreement. In ‘‘Best Properties,’’ Teacher Autonomy had the greatest

standard deviation. Among the ‘‘Issues for the Future,’’ three issues were

outliers in standard deviation: teacher independence and autonomy, student

ability to configure and adjust component software, and economics. With the

exception of economics, it seemed that creative options, ‘‘who gets to do

what,’’ involving teachers and students systematically engendered most

disagreement. With this in mind, we looked at two groups, which were split

about the median in ‘‘teacher autonomy.’’20 We call the resulting groups

‘‘Teacher-’’ and ‘‘Technology-oriented’’ respondents.21 Tables 1 and 2 are the

rankings for our two sets of issues, by group. Ties are marked in brackets.

20In order to enhance contrast, we also omitted three subjects closest to the median.
21Although participants had the option of remaining anonymous, most chose to identify
themselves. Interestingly, a couple of respondents who would likely be classified as
technologists fell into the teacher-oriented group, and at least one teacher respondent fell
into the technology-oriented group.

ISSUES IN COMPONENT COMPUTING 31

In terms of best properties, teacher-oriented respondents ranked cost and

speed last and tied for next to last, while technology-oriented ones ranked

them first and second, respectively. (See arrows in Table 1) Quality was tied

for first in the teacher-oriented group, and tied for next to last in technology-

oriented respondents. Teacher autonomy, the most disparately ranked item and

the basis for the group split, showed up last for technologists, but only in the

middle of the rankings for teacher-oriented respondents. This reflects the

extremely low rating for teacher autonomy scored with technologists. We

suspect the middle-of-the-pack rating for teacher-oriented respondents was

2

2
2

2

Table 1. Ranking of Importance of Various Properties of Component Computing, Based on
Average Ratings on a 5 Point Scale. Ties Marked With Brackets. Highly Contrasting
Rankings are Indicated by Arrows.

Components’ Best Properties

‘‘Teacher-oriented’’ respondents ‘‘Technology-oriented’’ respondents

[Quality Speed
Cumulativity] Cost
[Adaptability Social Factoring
Social Factoring] Cumulativity
[Teacher Autonomy Adaptability
Accessibility [Accessibility
Speed] Quality]
Cost Teacher Autonomy

2

2

Table 2. Rankings of Importance of Various Issues to the Future of Component Computing, Based
on Average Ratings on a 5 Point Scale. Ties Marked With Brackets. Highly Contrasting
Rankings are Marked With Arrows.

Issues for the Future

‘‘Teacher-oriented’’ respondents ‘‘Technology-oriented’’ respondents

Hospitality for Teacher [Hospitality for Teachers
Hospitality for Students Economic Models]
Improved Technology Improved Technology
[Curriculum Match Authoring Models
Authoring Models] Curriculum Match
Economic Models Hospitality for Students
Curriculum Coverage and Access Curriculum Coverage and Access

32 ANDREA A. DISESSA ET AL.

skewed low by the fact that, with the technology involved in most of these

projects, teacher autonomy was seen as somewhat implausible, even if it was

considered important.

With respect to issues for the future, there was firm agreement across the

board that teachers are important and need to be involved. But, after that, the

most striking feature is the reversal – from second to next-to-last, and from

next-to-last to second – of economics and hospitality for students. (See arrows

in Table 2) Especially regarding free-form responses of teacher-oriented

respondents, it was clear to us that involvement and creative expression for

students, in particular in configuring components, marks a strong disagreement.

To sum up, the most visible trend in this analysis is that some people

consider the ability of students and teachers to control the technology on their

own extremely important, while others do not see this as important at all. This

cultural gap sets the stage for a wider discussion of our third critical issue for

component computing – who gets to do what? Here, we focus mainly on

teachers, why they might profit from control of the technology, and what that

means about component technology.

Teachers and the Control of Technology

Let us start by reviewing the technological bases for the component projects

studied in this work. The major relevant distinction is what controllable

aspects of the technology are made available to teachers and students. Without

argument, we assert (and we think most will stipulate) that Java programming

is, in general, simply not accessible to teachers or students. With this in mind,

a fairly straightforward hierarchy of possibilities is demonstrated by the

projects. The EOE – for technological and historical reasons, rather than

matters of ideology – does not allow teachers or students any direct access.

ESCOT, while it hoped for some teacher and student adjustability, mainly in

wiring components, finished with a technological base that was largely off-

limits for teachers.22 E-Slate aimed at a scalable teacher and student

accessibility, including wiring and also programmability. Boxer’s uniform

architecture, inside and outside components, represents an extreme in the

continuum in that, to the extent that teachers and students learn any

programming, they can in principle configure components, open them up to

modify them, or even construct new components from scratch.

22An exception is that the ‘‘component generators’’ (e.g., Sketchpad) could, in principle, be
used by teachers, although teachers themselves reported almost no use of this possibility.

ISSUES IN COMPONENT COMPUTING 33

Let us examine why it might be useful for teachers to adjust component

configurations.23

1. Local adaptability
Classroom practices vary greatly across individual teacher’s styles,

across school cultures (say ‘‘open’’ or ‘‘regimented’’ styles), in response

to different students’ needs, and so on. A software component or

configuration of components that fits one teacher’s style and pedagogical

goals is unlikely to fully satisfy another teacher’s needs and preferences.

Even repeated uses of a component or set of components within the

‘‘same’’ context (i.e., the same teacher and students working on an

extended curricular unit, or the same teacher in subsequent years) are likely

to require modifications to the component’s behavior and/or appearance in

view of any attempt to follow student interest or level of competence, year-

to-year variability of students, professional growth of teachers, and so on.

A counter argument to this claim for the need for adaptability is that

textbooks are uniform, and teachers can and do adapt their own styles to

textbooks. In response, although we cannot make a compelling argument

here, one might contend that activity structures in the classroom are much

more sensitive to software than to textbooks. Teachers can always have a

complex, open discussion in a class, no matter what the textbook (or

software). But open exploration is absolutely curtailed by regimented

software.

What sort of modification and adjustment might teachers make? First,

teachers might want to change the specification of the task, or of the

sequencing of tasks for students to accomplish. In experiences reported to

us by members of the ESCOT project, this might only require changes to

the text accompanying the software, describing what students are to do. In

recent work, we developed software involving image processing (see Fig.

5) in collaboration with a teacher (Friedman & diSessa, 1999). By and

large, the development process involved jointly discussing activities that

might be valuable for students. Then, graduate students (serving as

secondary developers) configured components for those purposes. The

23Once again, there is a ‘‘familiarity effect’’ in the selection of examples in this section. Most of
the examples are Boxer partly because we know Boxer best, and partly because only Boxer and
E-Slate make teacher modification a priority. We have seen apparently impressive constructions
by teachers in the E-Slate Project, but these have been too recent for our careful consideration.
Consult recent publications from E-Slate.

34 ANDREA A. DISESSA ET AL.

final pass was reserved for the teacher, who sometimes resequenced

‘‘things to do,’’ but almost always extensively edited the text of instructions

and explanations to his taste and to his understanding of students’ level of

comprehension.

Beyond this simple, but potentially important kind of customization, any

reasonably open kind of software creates possibilities for task invention.

Tool-like software (for example, a simulation or an image processing

toolset) creates the possibility for teachers to invent new tasks, which often

can benefit from customization of the software. For example, in the Boxer

profile (diSessa, 2001b), we report how a teacher was inspired to invent a

new task concerning student-constructed patterns of colored cells in a

numbered 10� 10 array. The task required a modification of the then-

available tool, which was accomplished with the help of a secondary

developer.

Another example of task invention – or, more precisely, substantial task

modification – emerged in an earlier Boxer project that involved developing

a year-long curriculum on motion for sixth graders (diSessa, 1995). One of

the culminating projects for students was to take stroboscopic image of a

thrown ball, and make a simulated ball travel so as to exactly match the

sequence of images. Literally the day before the task, the teacher told us

that she felt the way we had conceived of the task, in which students merely

adjusted a single acceleration vector, hid (by assuming) the essential fact –

that acceleration is constant. On-the-spot, the task software was

reconfigured to allow students to adjust acceleration for each stroboscopic

image.24 See Figure 7.

The extent to which activity design and customization requires, or could

benefit from, small or larger changes in the underlying software is an issue

with no clear consensus in the field. Our impression is, however, that the

value of software tailoring, even of broadly useful tools, is much

underappreciated. The rise in prominence of scaffolding resources (task

specific resources) in educational software does hint that more recognition

is emerging in the educational software development community.

Can teachers actually develop components, in addition to adjusting text

and configurations? This is a complexly situated issue that depends on

24While we do not show all aspects of the change, the main part of it was merely to paste in five
copies of the vector component. It took about two minutes to create the working new task
configuration.

ISSUES IN COMPONENT COMPUTING 35

teacher preparation, expectations of the educational community, and the

complexity and easy of use of relevant software. We can state

unequivocally, however, that several good examples exist. See Sherin

(2002). Furthermore, the argument above – that entering into the interior of

components is a much more important and likely-to-be-needed capability

than might be expected – also suggests that shutting teachers out of

components’ insides might be too restrictive.

2. Professional Development
Beyond local adaptation, there are potentially important issues concerning

professional development and assumed professional responsibilities of

teachers. To begin, consider the contributions of teachers in co-devel-

opment. First, allowing teachers to contribute to technology (at their own

level of expertise) may well curb some of the sharp social boundaries that

can disrupt good collaboration, for example, in integration teams.

Furthermore, a reasonable degree of teacher technological competence,

obviously, is an assumption of the LaDDER model. Also within the LaDDER

model, allowing less technologically expert people to work directly with

components is a requirement at the secondary developer level. Considering

the needs of secondary developers emphasizes the fact that opening up

technology for teachers also expands possibilities for others competent in

education, but less so with technology. Co-development can become an

apprenticeship process that leads to a long-term innovative spirit for teachers.

Fig. 7. Task: Match the stroboscopic images of a tossed ball by adjusting acceleration and
initial velocity. Left: Original configuration with one acceleration vector, assumes
constant acceleration. Right: Modified task – acceleration may be adjusted individually
for each ‘‘hop’’; Constant acceleration is the ‘‘surprise’’ result.

36 ANDREA A. DISESSA ET AL.

It is not a trivial matter that, once separated from team contexts and without

more open architectures, teachers will be closed out of further pursuits. See

the case study of ‘‘Sarah’’ in Parnafes and diSessa (2001).

There is a subtle, but we think important effect concerning the ability of

teachers to contribute to technology design, independent of their actually

constructing part of the technology product. Technology-naı̈ve teachers have

little sense for interactivity, and for the limits of what is possible with

technology. Therefore, their suggestions for improvement may be, for

example, overly optimistic about what can be done with modest resources, or

do not take advantage of what is actually easy to do. There are other routes to

a reasonable level of technological literacy, but direct involvement in

technology construction can be an excellent means to that end.

Summing Up

The direct involvement of teachers (and others who are conventionally

considered to have little or nothing to do with innovations in technology) with

component technology is a complex and contentious issue. But there are three

reasons it is particularly important to consider opening technology to teachers,

beyond the suggestive examples and brief arguments we have given.

1. Teacher empowerment is a phenomenon whose importance has been

extensively documented. McLaughlin and Talbert (2001), for example,

identify local teacher communities who work among themselves as a

critical locus of reform. If such groups are to harness component

technology’s power for their own efforts, the most direct and probably

most sustainable route is to put the technology under their control.

2. The fact that teacher empowerment runs against the grain of many current

trends and intuitions (e.g., massive accountability testing, rigid state and

local standards) means that more, rather than less, resources may be

necessary to counter such trends. That teachers now may be less than

optimally prepared to take on the challenge and promise of component

technology for themselves may be one of the best reasons to foster such a

trend.

3. The very fact that empowering teachers with open technology seems least

important and least feasible to technologists who dominate public

discourse on component technologies (compared to judgments of teachers

and other educators – recall our survey disparities) suggests that more

balanced discourse and careful attention to possibilities are appropriate.

ISSUES IN COMPONENT COMPUTING 37

Our three critical issues, exposed in the last three subsections, constitute our

best judgments for the most important considerations for the advancement of

component computing in education. In the following section, we return to

‘‘core claims’’ for a broader review of the status of component computing. The

cost of this breadth, as we anticipated early on, is that some of these issues are

not well addressed by the data we have.

REVIEWING COMPONENT COMPUTING’S

CORE CLAIMS

In spite of a manifest variety in component projects’ philosophies and

organizations, a common set of critical advantages has been attributed to

component technologies. Over the years, and given local circumstances,

individual projects have evolved to focus on particular aspects of the claimed

advantages of components. But an overall guiding vision remains as a strong

motivator for the pursuit of educational component computing. In what

follows, we briefly assess – as much as our data allow – how much the field has

progressed towards realizing that vision. Most sections briefly review the logic

of advocacy and then follow with a brief assessment.

Re-Use

Rhetoric

In contrast to large, monolithic applications, component-based software is made

up of smaller functional elements (i.e., components), which can be individually

re-used across a range of applications. A graphing component, for example, can

be used as part of an algebra lesson, in conjunction with a simulation in the

biology of species population, or in teaching the physics of motion.

From the inception of the educational computing movement, component re-

use has been perhaps the most central attribute justifying continued work on

the technology. In terms of educational software production, a ‘‘building

block’’ approach to development, it is said, will lead to improved quality, with

concomitant gains in speed of development.

Assessment

Our observations, including experiences with component-style development

within our group, convince us that there is, indeed, real value in

38 ANDREA A. DISESSA ET AL.

component re-use. There is no question this core intuition often plays out

positively. On the other hand, there are complexities and hidden issues

that cloud the extent of savings that may be achieved, and also cloud

the conditions under which advantages may accrue. In this report we

highlighted the problematic nature of assumptions of re-use without

modification. Beyond our own cautionary stance, a component project at

Brown University (Spalter, 2002) has been most vocal about how difficult

it appears to be in practice to reap the ‘‘obvious’’ rewards of components.

Spalter (2002) also investigates why this problem appears to be especially

acute in education.

Although skewed pessimistically by a number of factors,25 re-usability

has been surprisingly muted in our focal projects. In the best cases,

component re-use has been realized essentially in the form of code re-use.

Only a small subset of components implemented within specific projects

have been re-used according to the ‘‘building block’’ paradigm, as far as we

have been able to ascertain. Truly large-scale reuse – say in dozens of

significant new uses across multiple instructional domains – simply has not

happened.

The best documented re-use among our profiled projects is the ESCOT

project. Yet, ESCOT’s experience also suggests problems with assuming

limited modifiability, along with some important details and nuances.

‘‘Widgets’’ such as slider controls, buttons, and other interface elements

reportedly have seen multiple, as-is uses. However, re-use of more complex

components has been a different matter. ESCOT’s developers eventually

settled into a development mode in which component code was fairly freely

modified and specialized to particular contexts. While code re-use, per se,

is reported to be substantial, component re-use in a strict sense is more

limited. Code re-use appears to have been facilitated by a confluence of

factors. First, ESCOT component developers are masters of the programming

language (Java) in which components are implemented. Second, often those

programmers work on their own code, making code interpretation and

modification easier. Third, ESCOT components have been used inside a

25For example, the EOE’s early work did not emphasize component re-use. In addition, their
distributed social organization was not particularly conducive to the emergence of common
components. By the time of our profile, the E-Slate project had not reached a state of maturity of
its architecture and components that serious re-use was tested. Again, the reader is referred to
more recent work (e.g., Kynigos et al., 2002).

ISSUES IN COMPONENT COMPUTING 39

restricted community that strongly supports and foster code sharing.26 Fourth,

the ESCOT project developed a technique of using somewhat specialized,

but still quite general ‘‘programming’’ systems (such as the Geometer’s

Sketchpad) to develop symantically specific components to anchor particular

applications. This last point suggests to us that establishing the core semantics

of an educational application may require more flexibility – perhaps enough to

implicate ‘‘re-programmability’’ – compared to more fixed-purpose elements,

such as interface elements.

Rapid Development

Rhetoric

Re-usable components can, in principle, drastically reduce the development

time of educational software because programmers can readily use existing

components stored in public/community libraries. By deploying a component

as-is, development can also proceed at a higher semantic level. Similar

advantages hold in case a pre-fabricated component provides many of the

sought after functions, yet needs some sort of adjustment. To follow on the

example of the graphing component, one need not implement a graphing tool

from scratch. Rather, one can simply borrow an existing graphing component

and extend or change its functionality. In either case, programmers start from

an existing code base, thus saving time and resources.

Assessment

Again, the best-documented examples of rapid development came from the

ESCOT project (Roschelle & DiGiano, this issue), although the Boxer Project,

also, has experienced many cases of very rapid development based on existing

components. (See, e.g., the discussion of image processing in Parnafes &

diSessa, 2001.) More broadly, we do feel that many developments proceeded

much more rapidly across projects studied than would have been the case

without component technology.

26We got some confirmation that the ‘‘local community of developers’’ effect in re-use is
important. An expert programmer who knows ESCOT and Java well reported to us that, in
failing to understand how an ESCOT component worked (so as to adjust it slightly), he resorted
to reimplementing it, rather than re-using it. Our interpretation is that this programmer’s status
as outsider to the ESCOT community, not his general expertise, undermined re-use.

40 ANDREA A. DISESSA ET AL.

On the other hand, there are caveats and complexities. Because rapid

development depends on re-use, some of the same qualifications that we

developed concerning re-use and modifiability are relevant. In short, rigid

reuse is much less likely than many hope. Yet, accepting modifiability may not

have a huge impact on rapid development. Providing that modification is easy

(such as when it is facilitated by being done in a small, expert community,

with tight, organized coding practices), development need not be much

slowed, even if rigid re-use is limited.

A more serious threat to rapid development has to do with the big picture

of designing educational software. The educational aspects of design, we

feel, generally take much longer than current development practice assumes.

Several substantial cycles of use and refinement may be extremely salutary,

especially for larger elements of software or for components and toolsets

themselves. So our favored scenario for future development of materials is

not necessarily that development itself becomes shorter. Instead, the

technical aspects of development can become a smaller and smaller part

of the full development process. This is consonant with our description of

LaDDER model collaborations, where educators can spend the time they

need to develop and refine software and learning activities iteratively,

without the coordination problems of tight coupling with primary

developers.

Economics

Assessment

We have little data on the economics of component computing to report, and

are hesitant to speculate. The ESCOT project is the only one to document

specific claims of economic advantage (Roschelle & DiGiano, this issue), and

their conclusions are highly positive. However, even if the economics of

coding are advantageous, the ‘‘bigger picture’’ considerations above – that

the biggest component of development may be educational design, not

‘‘coding’’ – suggest that the overall economic advantage of components may

be more muted than advocates hope for.

The real economic issues begin mainly in terms of sustainable commercial

models. None of our projects have seriously broken into this regime, although

E-Slate and Boxer are making efforts in this direction. A central tension we

can anticipate, however, is that components would seem to work best if they

are widely and inexpensively available, and are documented and modifiable.

ISSUES IN COMPONENT COMPUTING 41

These qualities obviously run counter to the proprietary ownership that is

typical in profit-making software.

Access

Rhetoric

Although a variety of distribution channels may be used, component software

is often tied strongly to Internet strategies for distribution. In a nutshell, the

Web makes libraries easily feasible, and small components can be quickly

downloaded from the Web. While component production has been carried out

under different social configurations, the existence of a central repository of

components has been an idea common to the majority of projects. This central

repository would serve as a clearinghouse for components, addressing a

number of issues of economic nature (see below).

Assessment

The EOE is the only project that we judge has achieved critical mass in terms

of the number of components it makes available and in implementing a

central, Web-based repository with worldwide access. In preparing our profile

of the EOE, for example, we studied the practices of a middle and high school

in Australia that seemed to have succeeded in integrating substantial EOE use

into their regular classroom practices.

Empirical results across all projects on distribution are thin and

concentrated on distribution for users, as opposed to distribution of

components for developers’ purposes.27 Even the EOE seems to have had

limited effect via its central repository. Our Australian ‘‘informant’’ school,

for example, admitted their use of EOE was more peripheral than their

original claims seemed to imply. Certainly we can say that component

software has yet to affect the core practices of instruction in a substantial

number of schools. Of course, technology was a limiting issue for EOE, but

other issues are important. Fetching a component from a repository is only a

small part of its effective use. For instance, given a large enough set of

components, how does one find that which best fits one’s needs? What kinds of

pedagogical guidance exist to help teachers use components/component-

27The ESCOT project did distribute its products via the Web. However, this was a very
particular social context – products of component development fed into a well-organized social
process of Problems of the Week. It did not approximate a library model of distribution.

42 ANDREA A. DISESSA ET AL.

constructions well?28 How can educationally sophisticated, but technologi-

cally non-expert people really participate effectively in a component- (i.e.,

technology-) oriented community? To oversimplify the data, while the EOE

intended to develop an educationally adapted model, it seems to have failed in

that regard, and thus did not supply sufficiently adapted applications nor the

cultural support needed for valid, wide-spread educational use.29 There are

further issues that are not specifically educationally-related. How does one

manage redundancy and quality in a public library? See Azevedo (2001) and

Spalter (2002) for more extensive treatment of some of these issues.

In a nutshell, while Internet distribution seems like a sound idea in principle,

we found little data and more than a few in-principle worries about how this

may work in practice. The fact that there are many web sites selling commer-

cial components (e.g., www.componentsource.com) suggests that there may be

specifically educational considerations at issue (e.g., cultural support for new

instructional practices, and inherent diversity of educational products).

Local Adaptability

Rhetoric

We found a tension in rhetoric concerning local adaptability. On the one hand,

component projects often seem keen to acknowledge that contexts, teaching

practices, and pedagogical styles may vary across classrooms and school sites.

Such variations suggest the need for mechanisms that allow local customization

of individual components or of composite constructions. On the other hand,

there is a clear refrain concerning limited capability and willingness of teachers,

by themselves, to design, redesign, or do any implementation (e.g., EOE,

undated; Roschelle, Pea, et al., 1999, p. 3). E-Slate and Boxer are exceptional in

this group, and in the broader terrain of educational computing, in anticipating

and designing for significant adaptability for a broad population of educators.

Among our profiled projects, three levels of mechanisms are advocated for

adaptability: (1) tailoring of presentation and behavior, such as editing text

and adjusting preferences (Roschelle, Pea, et al., 1999, p. 3); (2) authoring and

28Our Australian informant school developed a novel social structure to deal with the difficulty
of finding relevant components. Students were assigned the task to find and justify the
educational use of components, from which teachers selected components to be integrated more
widely into instruction.
29Again, newer work of the EOE, which we do not report, may address many of these issues.

ISSUES IN COMPONENT COMPUTING 43

editing through simple wiring (Roschelle et al., 1999, and the E-Slate Project,

generally); and (3) programming. Programming splits into two levels in

consideration of whether the internals of most components are open to non-

experts (Boxer) or not (E-Slate).

Assessment

By and large, locally adaptable technology using components has not been

realized enough to test the concept seriously. The EOE did not have

technology conducive to adaptation, especially adaptation by less technolo-

gical sophisticated people such as teachers, and neither did ESCOT seek to

develop such technology.30 E-Slate’s user-accessible wiring and programming

(scripting) were not used in any local development/adaptation modes until

after our study of component projects began to wind down.

Boxer has an open technological base (rich container model, one-level

system) that is conducive to adaptability. Our emphasis on student creativity has

led to many examples of students’ adapting pieces or wholes of Boxer materials

written by others. See, for example, examples of student work in chapters 3 and

8 of diSessa (2000), and Azevedo (in press). Concerning teachers, we have

documented a few teachers carrying out significant adaptations (diSessa, 2001b;

see also the examples in the ‘‘Teachers and The Control of Technology’’

section, above). Most of these have been in the context of a supportive

collaboration, such as LaDDER. Furthermore, a few exceptional teachers have

relentlessly pursued innovation and adaptation, largely autonomously (e.g.,

Picciotto, 1997) using Boxer. These examples are existence proofs that some

teachers, under some circumstances can productively adapt and innovate. They

motivated us to point out the possibilities and importance of local adaptation

earlier in this article. But more work needs to be done to convince a generally

skeptical educational technology community, and to show the way for those

who feel local adaptation is important.

It is important to note that adaptability depends critically on the cultural

assumptions about the role of non-experts in adjusting software to local

circumstances, in addition to how well component architectures support the

initiative of people who are not technology experts. Technology provides a

baseline, but whether teachers feel their job can productively include

30In addition, the context of use for ESCOT constructions was as occasional enrichment
activities (see Parnafes & diSessa, 2002), which is not conducive for teachers to think about or
to be prepared to adapt the materials.

44 ANDREA A. DISESSA ET AL.

adaptation (or creation), whether they are adequately supported in learning

how to do this, and whether they are sufficiently rewarded for their efforts are

indispensable concerns. Future work on adaptation will need to attend to the

social and cultural side of the equation. The LaDDER model is important in

this regard as at least one example of how cultural and technical support may

be provided to teachers on an extended basis.

New Social Structures of Production and Consumption
One of the more diverse, interesting and relatively unanticipated (e.g., in

‘‘standard component rhetoric’’) aspects of component computing that we

sought to open up in this review is the many ways that groups of people with

different affiliations and expertise can collaborate in the production of

software. We exposed a complex set of tradeoffs for the various models of

collaboration used in our profiled projects. What all these models share is the

attempt to build better software by an appropriate melding of expertise from

different communities.

The core problem to be managed by each of these models is that of two (or

more) cultures coming together to serve a higher goal, the production and

distribution of excellent educational software, which neither community by

itself is likely to accomplish well. The member-sustained community model is

optimistic (perhaps over-optimistic) that enlightened self-interest, along with

the modest coordinating infrastructure of an Internet library and exchange

center, is up to the task of bridging cultural differences. The two-legged model

localizes the coordination problem at a somewhat macro-level, coordinating

two teams, which in many ways operate autonomously. In contrast, cultural

coordination may become more individualized and personalized in the

relations of members of integration teams. The LaDDER model aims to

manage a ‘‘soft interaction’’ of the two communities, buffered by intervening

levels, such as secondary developers, and by technology that is aimed at

increased autonomy for educators.

There are no easy, simple conclusions regarding the complexities of

cultural coordination. We found these complexities hiding in some sharp

differences of opinion in our Web survey and in reports of participants in each

of the projects that we profiled. Certainly we are not in a position to say that

one of these models is best, nor that others could not be substantially improved

by innovative management of their ‘‘intrinsic’’ properties. In fact, if there is

one generalization in which we have most confidence, it is that the local,

innovative management of the difficulties of any of these models may well be

ISSUES IN COMPONENT COMPUTING 45

as or more important than their intrinsic tendencies. The ‘‘black magic’’ of

cultural coordination in this management is a critically important topic, about

which we have said little here.

THREE CENTRAL ISSUES, REVISITED

As a way of synthesizing a very complex exploration, we return to our three

central issues and try to set them in the larger context. Aside from the idea of a

model as a partial specification, and the characteristics of and trade-offs

inherent in particular models (reviewed briefly in the section above), these

three issues are the best, most compact ‘‘take home’’ results of our study.

In what senses are our three issues ‘‘most important’’? First, these are

issues, we believe, that affect the very choice of avenues to pursue in realizing

the promise of component computing, not so much ‘‘how we proceed’’ once

we have selected a direction. Relatively common rhetoric in the movement

hides a complex and diverse family of choices, including highly contrasting

social models of production and consumption, and diverse underlying

technical architectures, as illustrated by our profiled projects. Thus, our work

should be more relevant to future component projects than those who have

already chosen a path and need more detailed help.

Secondarily, we have chosen to highlight issues that are somewhat out of

the limelight. Thus, while insiders know the problems related to browsers,

new-comers and outsiders to component computing tend to assume a browser

is obviously the right way to proceed. Similarly, the core rhetoric of re-use

tends to obscure limits of strict re-usability and the need for strategies (e.g.,

modifiability) to enhance re-use. Finally, the technologist dominated

component movement tends to ignore critical social issues that we have tried

to highlight in ‘‘who gets to do what?’’ We felt we were very lucky to have

projects to study that considered social organization important, and troubled to

make it visible in their reports.

Here, then, is a brief reprise of our three core issues:

1. The problematic container
We discussed what may appear to be local problems with available

container environments and industry support for educationally-adapted

component construction, in particular, in web browsers. Education has

little leverage in turning browsers into a true two-way medium, allowing,

for example, easy reconfiguration by non-experts. On the other hand,

46 ANDREA A. DISESSA ET AL.

building proprietary containers, like E-Slate and Boxer, has its own

implausibilities in achieving the kind of standardization and industry-wide

support that would be optimal.

2. Modifiability of components
We raised the possibility that components, to be broadly useful, need to be

much more adjustable and flexible than most people believe. Indeed, our

own experiences surprised us with respect to the importance of

modifiability, which we argued might arise on an in-principle basis either

because we can never anticipate well the specific needs of multiple

contexts, or because designing components with adjustable preferences for

many contextual uses might lead to components as complex and baroque as

the large-scale applications that components are meant to replace.

The implication of modifiability go to the heart of component work since

re-usability is, arguably, the core principle of the movement. The image of

permanent libraries of stable components is put at risk. And yet, there are

multiple strategies that can adapt to this ‘‘fact,’’ should it prove robust.

� Opening the internal architecture of components, as components open the

architecture of applications: E-Slate is exploring hierarchical component

systems, and Boxer already has a uniform system across levels that allows

components as elements of components, and modification-via-program-

ming of components on the same basis as they are combined into usable

systems.

� Software developers can write for modification in re-use, including

architectures and documentation aimed at that much more systematically

than they do now.

� Libraries might be hierarchical, with generic components forming a certain

core, about which satellites (‘‘toolsets’’), adapted to particular areas, are built.

� Social configurations of development might be encouraged that better

support long-term development across multiple contexts, and adaptation to

specific needs.

3. Who gets to do what?
The biggest cultural rift we perceived within the component movement – as

revealed to us from our studies of four component-based projects and

supplementary studies – concerns the technological empowerment of

teachers, students, and other less technologically adept participants in the

educational enterprise. On the one hand, some people view teacher

ISSUES IN COMPONENT COMPUTING 47

participation as critical, not just as commentators and critics, but, to the

extent that it is sensible, teachers should be technology users in the full

sense of being able to modify, adapt, and even create software. Indeed,

components enter this line of thinking precisely by adding domain

specificity and a lot of pre-existing functionality to the resources one has

going into design.

On the opposite side, real teacher involvement with technology may

seem to subvert the advantages of pure social factoring. Teachers,

generally, are not competent to program, or, possibly, even wire

components together productively. They are not likely to want to,

let alone be capable of producing or adapting software.

Part of the reason the picture is unclear is that an emerging

professionalism of teachers with respect to technology simply is not

solidly in place. No one really knows what will happen in terms of

expectations, desires and possibilities among the teacher community. The

critical point, however, is that architectures that do not at least make room

for the possibility of less-technical contributors absolutely foreclose the

possibility before we have a chance to find out how far such empowerment

may proceed.

Final Words
Component software is an exciting contemporary movement in software

development, especially in educational software. Overall, we remain quite

positive, despite the fact that rhetoric frequently outstrips reality, or it ignores

issues that need attention. One of the most positive features of component

computing is that it can, in many ways, democratize aspects of software

development, leading to more educationally adapted software and, in the

view of some, an increased autonomy and professionalism for teachers and

other educators with less technical competence. Despite this promise, the

component movement is still dominated by technologists, even if others with

more educational expertise are being invited to the table.

One of the most evident things in our analysis is that there are many, many

ways that component computing may be organized. We hope we have laid out

a map, if partial and rough, so that others can proceed a little more

expeditiously in exploration. We hope we have laid out a range of possibilities

in mix and match models, a range of issues that deserve monitoring and

further study, and a focus on some problems and impediments that may be

removed with due diligence.

48 ANDREA A. DISESSA ET AL.

ACKNOWLEDGMENTS

We wish to acknowledge the openness and collaborative spirit shown to us by the ESCOT, E-
Slate and EOE projects and their members. Without their cooperation, our empirical work
would have been greatly diminished. Needless to say, the judgments and conclusions offered
here do not necessarily reflect any of their views. We are also grateful to reviewers, who drew
our attention to some errors, to problems in the organization of the report, and to additional
issues that needed attention.

REFERENCES

Azevedo, F. (2001). Educational Object Economy Profile. Web-posted technical report.
University of California, Berkeley: The Boxer Project. ftp://soe.berkeley.edu/pub/boxer/
Distribution/EOE_Profile.pdf

Azevedo, F. (in press). Personal excursions: Investigating the structure and dynamics of student
engagement. International Journal of Computers for Mathematical Learning.

Bijker, W.E., & Law, J. (2000). General introduction. In W.E. Bijker & J. Law (Eds.), Shaping
Technology/Building Society: Studies in sociotechnical change (pp. 1–14). Cambridge,
MA: MIT Press.

Clements, P., & Northrop, L. (2002). Software product lines: Practices and patterns. Boston,
MA: Addison-Wesley.

diSessa, A.A. (1995). The many faces of a computational medium. In A. diSessa, C. Hoyles, R.
Noss, & L. Edwards (Eds.), Computers and exploratory learning (pp. 337–359). Berlin:
Springer-Verlag.

diSessa, A.A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA:
MIT Press.

diSessa, A.A. (2001a). Overview of component project profiles. Web-posted technical report.
University of California, Berkeley: The Boxer Project. ftp://soe.berkeley.edu/pub/boxer/
Distribution/Overview_of_Profiles.pdf

diSessa, A.A. (2001b). Boxer profile: Component computing within a computational medium.
Web-posted technical report. University of California, Berkeley: The Boxer Project.
ftp://soe.berkeley.edu/pub/boxer/Distribution/Boxer_Profile.pdf

diSessa, A.A. (in press). Meta-representation: Native competence and targets for instruction.
Cognition and Instruction.

EOE (undated). The EOE Info Pages. http://www.eoe.org/foundation/info.htm.
Friedman, J., & diSessa, A.A. (1999). What should students know about technology? The case

of scientific visualization. International Journal of Technology and Science Education,
9(3), 175–196.

Hoyles, C., Noss, R., & Sutherland, R. (1991). Final report of the microworlds project: 1986–
1989. London: Institute of Education, University of London.

Kynigos, C. (2002). Generating cultures for mathematical microworld development in a multi-
organisational context. Journal of Educational Computing Research, 1–2, 183–209.

Kynigos, C., & Friedman, J. (2001). E-Slate Profile. Web-posted technical report. University of
California, Berkeley: The Boxer Project. ftp://soe.berkeley.edu/pub/boxer/Distribution/
E-Slate_Profile.pdf

ISSUES IN COMPONENT COMPUTING 49

Kynigos, C., Koutlis, M., & Hadzilakos, T. (1997). Mathematics with component-oriented
exploratory software. Journal for Computers and Mathematical Learning, 2, 229–250.

Kynigos, C., Trouki, E., & Yiannoutsou, N. (2002). Generating communities of practice for
educational innovation: Experience from an institutionally distributed integrated
authoring community. Proceedings of the 3rd international conference on communica-
tion and information technologies in education (pp. 191–202). Rhodes, Greece:
University of the Aegean (Kataniotis).

Kynigos, C., & Yiannoutsou, N. (2002). Seven year olds negotiating spatial concepts and
representations to construct a map. Proceedings of the 26th psychology of mathematics
education conference (Vol. 3, pp. 177–184). Norwitch, England: University of East
Anglia.

McLaughlin, M.W., & Talbert, J.E. (2001). Professional communities and the work of high
school teaching. Chicago: University of Chicago Press.

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. NY: Basic Books.
Parnafes, O., & diSessa, A. (2001). ESCOT Profile. Web-posted technical report. University of

California, Berkeley: The Boxer Project. ftp://soe.berkeley.edu/pub/boxer/Distribution/
ESCOT_Profile.pdf

Picciotto, H. (1997). The turtle in the age of the mouse: Why I still teach programming. http://
www.picciotto.org/math-ed/t-and-m/turtle-and-mouse.html.

Roschelle, J., DiGiano, C., Koutlis, M., Repenning, A., Phillips, J., Jackiw, N., & Suthers, D.
(1999). Developing educational software components. IEEE Computer, 32(9), 50–58.

Roschelle, J., Pea, R., DiGiano, C., & Kaput, J. (1999). Educational software components of
tomorrow. In M/SET 99 Proceedings [CD ROM], Charlottesville, VA: American
Association for Computers in Education. Available at http://www.escot.org/escot/
External/MSET_ESCOT.html.

Sherin, B. (2001). A comparison of programming and algebraic notation as expressive
languages for physics. International Journal of Computers for Mathematics Learning,
6(1), 1–61.

Sherin, B. (2002). Representing geometric constructions as programs. International Journal of
Computers for Mathematics Learning, 7(1), 101–115.

Spalter, A. (2002). Problems with using components in educational software. In Proceedings of
ACM SIGGRAPH 2002.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge,
England: Cambridge University Press.

50 ANDREA A. DISESSA ET AL.

APPENDIX A: OTHER ISSUES

We used two primary principles to generate issues in component computing:

(1) core rhetoric of the community; (2) a short set of, in our judgment, most

important issues. These principles obviously produce an incomplete list. In

this complex area, we felt it better to concentrate, rather than list – much less

consider – all the issues we or others might consider important. This appendix

mainly marks that incompleteness.

Below are a few of the other issues most frequently mentioned by

commentators on this article and by participants in our work. We briefly

extrapolate the discussion contained in the text concerning these directions.

1. Component grain-size: How encompassing or minimalist should compo-

nents be? There are innumerable trade-offs that affect this decision. In

particular, smaller components are farther from usable educational

materials, yet when components become too big, they often become too

specialized and complex, defeating the main purposes of components. Our

take is that a fluid technology is best, which allows nesting and re-drawing

of levels. Beyond that, this seems certainly to be an enduring core

computer science issue, not new to components, nor settled by their use.

2. The challenge of designing truly re-usable components: Many reported to

us how difficult it was to produce truly re-usable components. Our

discussion of modifiability suggests one direction of lessening constraints

on ‘‘truly re-usable,’’ and at the same time introduces a classic set of old

and new issues concerning re-usable elements of computing (e.g., the vast

literature on object-oriented computing). One of the ideas we introduced,

low intensity but extended duration development (e.g., LaDDER), can help

find the right form for components, as well as the right size (above).

3. Indexing and library management: How do we make it possible for users or

developers to find relevant and high-quality components? In our judgment,

there are prior issues, such as to what extent large libraries can really work

(e.g., in providing cultural support for educational use, not just

components), or whether more local communities are more likely to build

their own stock of components, lessening some of these problems.

ISSUES IN COMPONENT COMPUTING 51

View publication statsView publication stats

https://www.researchgate.net/publication/228704255

