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AN OVERVIEW OF BOXER

This issue of the Journal of Mathematical Behavior highlights research emerging
from the Boxer group at the University of California, Berkeley, School of Educa-
tion. Boxer is the name for a multipurpose computational medium intended 10 be
used by people who are not computer specialists. Boxer incorporates a broad
spectrum of functions—from hypertext processing, to dynamic and interactive
graphics, 10 databases and programming—all within a uniform and easily
learned framework. Most significantly, Boxer is intended to be a new interactive
educational medium through which students and teachers can carry out activities
spanning a wide range of areas.

When discussing education, the word “medizm” often calls to mind books,
newspapers, films, or other noninteractive media. This goes hand-in-hand with a
model of education where teams of professionals—writers, software developers,
content experts—produce materials thal incorporate the “right™ approach, and
where teachers and students are passive consumers. Boxer embodies a very
different premise: Students and teachers can shape an expressive computational
medium for their own ends. In Boxer, a teacher can create an interactive *work-
sheet” that incorporates hypertext, graphics, and programs, and students can use
and modify these elements and incorporate them into their own work. Rescarch
on Boxer is motivated by the hope that such an interactive computer medium
could lead to major changes in how students learn, and what they learn.

This research is supporcd primarily by a grant from the National Science Foundation, NSF~
MDR-88-50363, to Andrea A. diSessa. We also gratefully acknowledge 2 contribution to support
students from Apple Corporation, and a contribution of equipment from Sun Microsystems.

Cormespondence and requests for reprints should be sent 10 Andrea A. diSessa, School of Educa-
tion. Tolinan Hall, University of California. Berkeley, CA 94720.
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BOXER'’S ROOTS IN LOGO

Boxer grew out of Logo, a computer language developed primarily at MIT! by
Seymour Papert and his colleagues beginning in the late 1960s (Papert, 1980).
Logo was a significant advance in comprchensible programming languages: It
was the first prominent attempt to apply constructivism? to educational compul-
ing, and introduced new content areas and modes of learning. Logo made com-
puter programming casy enough so that young children could use programming
as a vehicle for exploring geometry (Watt & Watt, 1986). It was also powerful
enough so that high school and college students could use it to investigate such
IGPics as differential geometry (Abelson & diSessa, 1981).

Logo has been available for use in schools since 1981. Serious work on Logo,
however, preceded school-available technology by about 15 years. The first
Logo implementations, made in the late 1960s, ran on research computers that
cost over a million dollars. During the 1970s, while the cost of compulter tech-
nology was falling, Logo researchers developed and refined the language, and
carried out extensive pilot studies with teachers and students. These studies
addressed two questions: (1) Can students and teachers master this medium and
do interesting things of genuine educational value? (2) What can educational
rescarchers leamn about leaming by watching people work in the Logo envi-
ronment?

Yet, even before the first Logo implementations were available for schools, a
few members of the Logo group at MIT were envisioning a new computer system
to overcome what they saw as two major drawbacks in Logo.

The first drawback is that Logo is too difficult to leamn. Children can write
programs in Logo to do simple things, for example, to draw triangles, squares,
and other shapes, but the mechanism by which the language actually works is not
made visible and concrete either for students or teachers. It is easy to get started
in Logo, but it is difficult to master the language.

The second major drawback is that Logo is essentially just a computer lan-
guage, and Logo activities are closely tied to the ability lo write simple pro-
cedures. It would be difficult for children to use Logo to construct a computer-
based journal or to make extensive use of a database. Many teachers have been
able 1o use Logo to create simple computer-based microworlds consisting of a
few Logo procedures, but Logo's lack of structuring principles, beyond indi-
vidual procedures, makes it difficult for teachers to organize these into flexible
construcls, such as an interactive notebook that students can use and modify.

'Editor’s Note. Although Seymour Papert has unquestionably been the genius behind LOGO—
and in this case the word genius can be given its fullest meaning—it should be noted that the first
NSF cantract supporting the develofment of Logo was to Bolt, Beranek, and Newman, not to MIT,
and the Project Direclor was Wallace Feurzeig. .

Editor's Note. For a discussion of “constructivism,” sce, for example, Davis, Maher. and
Noddings (1990).
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These considerations led to the formation, in 1981, of a new research group in
the MIT Laboratory for Computer Science, under the direction of Andy diSessa
and Hal Abelson. In contrast to previous work on Logo, their goal was to
develop, not just a programming language, but a programming language that
would be fully integrated into a muliipurpose, flexible medium.

THE DESIGN OF BOXER

An underlying oricntation of Boxer is this: If the match between the medium and
the programming language is right, then many programming tasks can be auto-
matically subsumed into the natural interaction with the medium, and will not
require explicit programming. Consider, as a simple example, changing the value
of 2 program variable. In traditional programming languages, a variable is an
abstract association between a name and a value; a variable is changed by issuing
an assignment statement. In contrast, if the variable is represented as a visible
object on the computer screen, you can change the vanable's value simply by
editing the screen representation—just as you would edit a piece of text with a
text editor—an activity that does not seem like programming at all. This style of
interaction is often referred to as a “direct manipulation interface” (Hutchins,
Hollan, & Norman, 1986). Boxer differs from most direct manipulation inter-
faces in that it incorporates a full-fledged programming language.

The Boxer group began by designing a new system based on two principles of
learnability. The first one is called concreteness (or naive realism). Concreleness
specifies that all mechanism in the system should be visible and directiy manip-
ulable on the display screen. The second underlying principle is that there is a
uniform spatial metaphor for structurc. The root form of Boxer is an object
called a box. A box may contain text, graphics, programs, or other boxes. A box
may be named, in which case. the name is a variable whose value is the box's
contents. Named sub-boxes of a box serve as “local vaniables,” their names are
visible only inside the enclosing box. Boxes structure files, databases, programs,
and everything else in the Boxer system. Boxes allow people 10 use ordinary
spatial inwitions of inside, cutside, and next to in order to understand a broad
range of compultational structures. An extensive discussion of the principles
behind Boxer's design can be found in diSessa (1985).

In 1985 the locus of Boxer development moved from MIT to the University of
California at Berkeley, where a scenano similar to the earlier Logo work is now
being played out by the Boxer Research Group, under diSessa's direction. Like
Logo. Boxer development is preceding practical schooi-available technology by
10 1o 15 years. The first Boxer implementation, in 1981, was designed for
computers that cost well over $100,000. Today, Boxer can run on a workstation
that costs about $6,000, and the development of Boxer is following the same
overall 15-year time scale. It appears that, by 1995, Boxer will run on machines
schools can afford. In the meantime. members of the Boxer Research Group are
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addressing questions similar 1o those addressed in Logo research: Can students
and teachers master this medium? What can we learn about learning from watch-
ing people usc Boxer?

A Brief Introduction to Boxer

This section introduces some of the basic characteristics of Boxer. In keeping
with the articles in this issue, the emphasis here is on how Boxer can be used as a
representation language. A more extensive overview of Boxer can be found in
diSessa & Abelson (1986); diSessa (1990) reviewed the goals of Boxer from a
socially oriented point of view.3 '

Representing Data. Data in Boxer takes the form of data boxes. A named
data box serves as a variable. Evaluating the name of a data box returns a copy of
the box. One of the essential features of Boxer variables is their visibility. The
user can always directly see the computational state of the system and, as di-
rectly, change it with simple editing commands. This avoids much programming
input and output. More importantly, the user can easily see what is going on and
feels in control of the system.

The following example is drawn from a project completed by two high-school
students during a 6-week Boxer course taught at the University of California,
Berkeley, in the summer of 1990. The example has been simplified for the
purposes of presentation. The students’ project was actually much more
complex.

Figure 1a shows a data box called carbon, with a value of 3, and a data box
called hydrogen, that is empty. Figure 1b shows how information about vari-
ables can be accessed. When carbon is cvaluated, its value is retumed (as
indicated by the copy of the box 1o the right of the vertical linc). When hydrogen
is evaluated, an empty box is returned.

The value of a variable can be changed simply by editing the contents of the
box. Boxer also includes a change command that allows variables 1o be changed
under program control. Figure 2 shows how the value of hydrogen (which was
empty in Figure 1) is changed to a new value, which is twice the value of carbon
plus 2. (This illustrates the relation between the number of carbon atoms and the
number of hydrogen atoms in an alkane, the first class of molecules the students
considered in their project.)

Manipulating Structured Data. Any Boxer objects—numbers, multiple sub-
boxes, pictures, programs, and so on—can be placed in a data box. This makes it
easy to represent complex data. The carbon and hydrogen data boxes shown in
Figures | and 2 represent a natural grouping: the number of aloms in a molecule.

}An annotated bibliography of papers about Boxer, as well as reprints of those papers, is available
from the Boxer Project, Graduate School of Education, University of California. Berkeley, 94720,
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Figure 1.a. Variables in Boxer.

carbon |[ 3 ]
Daca
hydrogen |
0414

Figure 1.b, Accessing the value of variables.

Figure 3a shows this grouping made explicit by placing the two data boxes into a
third data box, called molecule. The result is a very simple database,

With the data structured as in Figure 3a, the value of carbon and hydrogen
are local to the molecule box. Their values are not accessible outside the mole-
cule box, and one could, without confusion, have another box that included its
own local carbon and hydrogen boxes. One can access the parts of complex
data boxes in a number of ways. Figure 3b shows two of the most useful ways:
using the ask command, and using a command name molecule.hydrogen. Fig-
ure 4 shows how to change the information in the two sub-boxes under program
control. (Of course, the information could also be changed by directly editing the
boxes.)

Structure in Boxer can be constructed under program control using a com-
mand called buitd. Build takes a templaie that contains exactly what you want to
see, with a special symbol, @, in front of picces that need to be filled in from
computed values. Build preserves the spatial layout that is shown in its input
template. Figure 5 shows an example of information retrieval that makes use of
an existing database. This basic template can easily be modified to any level of
complexity. Figure 6 shows one such extension that students used during their
third week of Boxer programming.

Databases can be modified to include graphics as well as text. Figure 7 shows
the inclusion of graphic information. Boxer uses sprite graphics, an extension of

lara

change hydrogen 2 * carbon + 2

Figure 2. Changing the value of a variable.
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Figure 3.a. A simple database in Boxer.

ask molascule catbon It3 . I
.;-' sl
moleculs. hydrogan I'. I
1]

Figure 3.b. Accessing the information in the database.

’ 4

tell molecule change carbon carbon + 1

hydrogen|
10

tell molecule change hydrogen hydrogen + 2

Figure 4. Changing information in a databasc.

build ]
The malecule haa The molecule has

f#aclecule.carbon carbons 4 carbons
and #molecule.hydrogen hydrogens snd 10 hydrogens

Figure 5. Using build to construct a simple description.

Logo’s turile graphics. Sprites occur in graphics boxes (a special form of data
box) and respond to commands that are familiar from Logo, such as forward,

back, left, right, penup, and so on. Note that graphics can be returned as the
value of a procedure, like any other data.

e
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build !

The molecule has
4 carbons and 10 hydrogens

fsentence-descriprion

Its name is @determipe-name 1ts name 13 butane

|its molwcular weight 15 fcompute-welght 1ts molecular weight 13 58

—/

ata aLa

Figure 6. Using build to construct a more delailed descniption.

Observe in Figure 7 that the boxes atomic-weight and alkane-names have
been shrunk, as indicated by grayed boxes. Boxes automatically expand to hold
as much as desired, and they can be shrunk or reexpanded with a click of the
mouse. Expanding a box that is already open causes it to fill the full screen.
Thus, expanding and shrinking allow one to peruse complex data casily, sup-
pressing detail or “zooming™ in to it.

Figure 8 displays a more sophisticated approach to manipulating names, with
a simple program that automatically generates the names of molecules. For

tomic-weight 4 ka0e - i

fdraw-molecular-atructure
Paentence-description /A

ILs nesa 13 POBtEImING-RABS

Its moleculat waight is #compute-weight

The woleculw has 5 carbons snd 12 hydrogens

Ite ness 19 pentane

L 1ts mojeculsr weight 1s V2

Figure 7. Including graphics 1n the constructed descnpuion.



10 DISESSA, ABELSON, AND PLOGER

P

“outa J

name molecule-2 This molecule is an alcohol with 2 carbons

Its name is ethanol

s

Figure 8. A naming procedure that handles different classes of molecules.

molecules in the classes considered, two pieces of information are used. These
are stored in the data boxes carbon and type. The value of carbon determines
the prefix, the value of type determines the suffix. In molecule-2, the value of
carbon is 2, and this selects the second item in prefixes, “eth.” The value of
type is “alcohol,” and this leads to the selection of the suffix, “anol." When the
suffix and prefix are combined, the result is the complete name, “ethanol.”

Representing Processes. Boxer programs are called doit boxes. Figure 9
shows some boxes that implement a Logo-style turtle moving according to a
simple model of speed and acceleration. This tick model was used in the Boxer-
based course on motion described in the articles “Inventing Graphing,” to appear
in the next issuc, and “Leaming by Cheating,” which appears in this issue. The
tick procedure specifies how speed and position change with the passage of a
single unit of time.

Doit boxes provide the same structuring and interaction capabilities for pro-
cedures that data boxes provide for data. Any program or part of a program may
be selected and executed. Thus, a student can step through the lines in tick by
selecting them one at a time, watching the turtle move, and watching the speed
variable increase. Hierarchical box structure can be used with programs as well

10 1
Dat Dal &’

’

move-turtle speed
change speed speed + acceleration
Dot

Figure 9. The tick model. The procedure tick implements one unit of change in time.
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as data. Figure 10 shows a modified tick prcg:an: that contains a subprocedure
new-acceleration that computes a new acceleration from an external input such
as a force sensor. Local data in the form of variables may, of course, be included
where appropriate in any procedure or subprocedure.

Object-Oriented Programming. Many kinds of systems are conveniently
structured using a programming methodology called object-oriented program-
ming in which procedures and data arc organized by grouping them into com-
putational structures called objects. Combining data and doit boxes, and the
locality of data and programs that arise from nested boxes, provides an easy way
to implement such objects. Figure 11 shows the implementation of an object
named Henrietta that can move around on the display screen, maintaining her
own speed and acceleration, when told to execute the procedure tick. (In the
vocabulary of object-oriented programming, tick would be called a local method
for the object.)

Interactive Data Objects. The appearance and interactive properties of Boxer
objects on the screen may be modified to suit new needs. The program in Figure
12 represents vectors as boxes containing amows. Vectors are implemented using
graphics boxes, which can be made “touch sensitive™ (they can respond in
various ways, and can be aliered, using the mouse). In this implementation,
vector boxes can be created by students with a keystroke, and like any ordinary
box, they can be named and used in programs. In addition, students can modify a
veetor by dragging the tip around with the mouse. This implementation was used
by children to leam about vector descriptions of motion, as described in the
articles “Inventing Graphing™ and “Leaming by Cheating."”

Overview of the Articles

The articles in this issue represent current research of the Berkeley Boxer Group.
Like Logo, Boxer is more than a piece of technology. It is a developing notion

] -d‘ acceleration
1c 1
aty Ceta

ltict
rn.'~lcc.].r“l°ﬂ
vorrm— ]

move-turlle speed
change acceleration new-acceleration
change speed speed - acceleration

~Dait

Figure 10. The tick model extended so that a new-acceleration is provided by an external sensor.
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move-turtle speed
change speed speed + acceleration

Dot

“Data: J

tel)l henrietta tick

Figure 11. An object, Henrictta, responds to tick messages.

for how to foster learning. The Berkeley group’s oricntation is toward learning
and educational experimentation. They regard their most important goal as one of
developing models of new styles of learning that will establish the educational
value of a computational medium.

“Inventing Graphing,” by diSessa, Hammer, Sherin, and Kolpakowski, and
“Learning by Cheating,” by Adams and diSessa, are both part of a larger project
on teaching elementary school children about physics. The Berkeley group calls
this project “A Child’s Science of Motion.” This name emphasizes two funda-
mentally constructivist oricntations that pervade all Boxer efforts. First, there is a
commitment to understand the conceptual structure of children's ideas as a basis
for developing scientific comprehension. In contrast 1o an orientation that seeks
to identify and correct misconceptions, the Berkeley group believes that it is
quite possible to find areas of children’s expertisc on which one can build from
strength, rather than by propping up weaknesses. They have already uncovered a

-
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move-turtle velocaty
v-change velocily v-add acceleration velocity

bost

Figure 12. Vectors are implemenied in graphics boxes that respond to mouse clicks by repositioning
the vecior.
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few arcas in which children are much more expert than they are usually given
credit for. “Inventing Graphing™ documents onc of those arcas by chronicling
how 8 sixth-grade children engaged in an intense and deeply collaborative joint
design of optimal representational forms for expressing motion. This was a
remarkable display of children's meta-representational expertise, that is, exper-
tise in the capability to invent, critique, and refine representational forms.
[Editor's Note: Because of space limitations, “Inventing Graphing™ will appear
in the next issue of the Journal.) '
The second constructivist onentation is in continuity of activities. Just as one

seeks continuity in conceptual structure, one can try to understand the forms in

which children can effectively engage in self-motivated activities. The point is to
find natura) paths of development toward scientific activitics. “Inventing Graph-
ing” is just as much a story about surprising child interest and competences in
action as it is about competences in conception.

“Inventing Graphing™ describes a group design of a paper-and-pencil repre-
sentation. Although the study has everything to do with the Boxer group’s
educational goals and strategies, it has little to do with Boxer per se. On the other
hand, “Leaming by Cheating” highlights a Boxer microworld (NUMBER-
SPEED) that aims to teach children about motion by building numerical process
models of velocity and acceleration. Sixth-grade children don't know algebra,
the basic analytic underpinning of most approaches to teaching the conceplts in
the child's science of motion. But, instead of aigebra, one can use programming
in various forms to carry the burden of a technically precise and useful represen-
tation. In NUMBER-SPEED, functions are represented as lists, and operations
such as changing speed or acceleration are represented as list-processing opera-
tions. “Learning by Cheating” concerns children subverting the rules of the
microworld: because the rules are built in Boxer, the children can easily re-
program them. But the story has a very happy ending in that the children,
supported by a learning-oriented classroom culure, use their “chealing™ as a
stepping stone to deeper understanding.

In “Learning about the Genetic Code via Programming,” Don Ploger de-
scribes how a centrally important area in biology can be studied as an abstract
representational system. It is not surprising that programming can be an apt
representation for many ideas in mathematics and physics. But it is not obvious
that computational representations can cary much weight in other sciences, such
as biology, where static structure plays a much greater role than in physics.
Knowledge of the structure of a cell (much less of an organism composed of
trilhons of cells organized into complex, interrelating subsystems) cannot be
reduced 10 elegantly simple and “mathematizable™ abstractions like force or
mass. Instead, biology educators need a more diverse representational medium.
Boxer is a good candidate for this task because it provides the capacity for easy
construction and visualization of complex static structures. It is essential that
these Boxer representations are all simultaneously computationally accessible, so
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that the processes creating and modifying biological structures can also be easily
represented.

Ploger shows how a 16-year-old leamed about the genetic code in Boxer by

writing programs to manipulate symbols. The processes central to the flow of
genctic information involve changes in the structure of important molecules. In
Boxer, it is possible to make data objects that represent those biological struc-
tures and to write procedures that change those structures. A major theme in
“eaming the Genetic Code” is that students can invent their own representa-
tional forms, which is also a theme of “Inventing Graphing.”
. In “Leamning about Sampling in Boxer,” Henri Picciotto and Don Ploger
describe the development of a Boxer-based introduction to probability and statis-
tics, taught 1o a group of academically talented 12-16-year-olds during the
summer of 1988. Picciotio, an experienced teacher and curriculum developer,
has a long-time commitment to teaching by providing children with flexible
computational tools. Boxer proved to be particularly well-adapted to Picciotto's
approach, One of the more important cutcomes of the course is that students used
and modified the tools provided by instructors as well as fragments of other
students’ programs. This study demonstrates that a classroom can be a syn-
ergistic community of tool builders and sharers. This is a familiar image in
science, but it is a new and attractive possibility in classrooms.

Michael Leonard’s "“Leaming the Structure of Recursive Programs in Boxer™
focuses on an enduring scientific goal of the Boxer and Logo communities: to use
the technological context as a window into basic leaming processes. Leonard's
work addresses the comprehensibility of programming sysiems and the ways in
which children leamn to program. This is part of a project called “Cognitive
Benchmarks” (diSessa, in press), whose aim is to develop an elaborated view of
what constitutes programming expertise, and thus to provide a better basis for
judgement about how well the Boxer group is doing in designing comprehensible
programming languages and in teaching programming. Leonard tests some early
presumptions about the forms in which programming knowledge appears. His
especially novel contribution is an empirical technique and a view of the acquisi-
tion of programming skill in terms of impasse resolution, a view that places a
child’s goals at the center stage in leamning.
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