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B'"’
Representation, long recognized as a central theme in mathematics education, is also 

B) important in biology education. This study is a step toward greater collaboration between 
jR' ‘ these two enterprises. The topic chosen is the genetic code, generally acknowledged as the 

discovery of the century in biology. This study presents an example of a student who 
initially had considerable difficulty in recalling the essential information related to the 

■Ky genetic code, particularly the process of translation. With Boxer, he created symbolic 
representations for information flow, then created a new representation for the process of 
translation. Three months later, he recalled his program in great detail, and he was able to 

R’y use it as a basis for learning subtle features of the genetic code. Finally, he wrote a 
■Rt ’ program to draw the standard representation for the genetic code. This study demonstrates 

(' that students can potentially learn about biology by creating their own representations for 
y, a topic, or by writing programs to draw standard representation. Possibilities for collab- 

Bfe. oration between mathematics educators and biology educators ate suggested.

lai'*
in order to learn modem biology, students need effective ways to represent 

' biological knowledge. Knowledge representation has been addressed by mathe- 
■ matics educators. Recognizing the differences between the two areas, it is not 
b surprising that, to date, biology educators have rarely cited the research on 
I representation by mathematics educators. This study is intended to promote 
Hgreater collaboration between these two groups. The genetic code is a topic that 
If, is centrally important to biology education. This topic is relevant for mathemat- 
te ics educators because it is an example of using an abstract representation to solve 
I an otherwise complex problem.
I This article describes how the genetic code can be represented using a flexible
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computer system; it traces the work of one student writing Boxer programs to 
simulate some of the most important features of the genetic code. In Boxer, it is 
possible to write programs to construct complex data objects and to control the 
movement of graphical objects. Students, therefore, have a wide range of poten­
tial representations: graphics, data objects, and the programs that construct those 
representations.

Representation in Mathematics
Representations, often in compact or abstract form, convey important informa­
tion about the structure of the objects being represented. Understanding this 
relation is essential. Students often fail to recognize the correspondence between 
numbers and the numerals that stand for numbers. For instance, many third 
graders have written that 7,002 - 25 = 5,087 (Davis, 1984). If the children had 
understood what the numerals meant, they would have realized that the calcula­
tion was off by about 2,000.

There is also a fundamental difference between a representation and the thing 
itself. This distinction is not necessarily difficult. In real life, people have no 
difficulty distinguishing between a menu and the food it represents. But in 
school, children who would never eat a menu often fail to distinguish between 
numbers and the base 10 symbols that stand for numbers. Errors in understanding 
representations can occur even when the answer seems to be in the ballpark. One 
example, the “bus problem” (Carpenter, Lindquist, Matthews, & Silver, 1983), 
has achieved folklore status. Students were told that 1,128 soldiers were to be 
transported by buses that hold 36 soldiers, and asked to determine how many 
buses were needed. Most students were able to perform the relevant calculation 
(31 with a remainder of 12). However, fewer than one third of those students 
went on to deduce that 32 buses would be required. The plurality wrote “31 R 12 
buses were needed. In short, using a representation is not enough: Students 
must also operate on it in a meaningful way.

Fortunately, there are examples of students using representations mean­
ingfully. In a classic example, the young Karl F. Gauss was given an assignment 
in his arithmetic class to add the first 10 integers (Wertheimer, 1945-1959). 
While his classmates were struggling with the computation. Gauss made a dis­
covery. He represented the computation: 1-1-24-3-I-4-F54-6 + 7-I-8-I-9-*- 
10 in a new way. He grouped them as follows: (1 •+• 10) + (2-l-9)-l-(3-l-8)-(- 
(4 + 7) + (5 + 6). Each of these five sums is 11, and 5 * 11 = 55. Another 
representation is:

1-1- 2-1- 3-1- 4 + 5-1- 6-1- 7-1- 8-1- 9-1-10
10 -F 9-F 84--7-F 64- 54- 44- 3 4- 24- 1

11 4- 11 4- 11 4- 11 4- 11 4- 11 4- 11 4- 11 4- 11 4- 11 
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I In this representation, 2 * 5n = n * (n 4- 1). This led Gauss to discover the 
I general principle that the sum of the first n integers, Sn = n * (n 4- l)/2. 
fi Another example of the effective use of representations by math students 
i appeared in the Journal of Mathematical Behavior. It illustrates the importance 

that transforming a representation can make a problem that appears to be difficult 
into a problem that is actually easy to solve. The problem was to prove that 16 
and 18 are the only positive integers that can represent, respectively, the perim­
eter of a rectangle and the area of the same rectangle (Davis, 1985). Although it 
is straightforward to demonstrate that 16 and 18 satisfy this constraint, most 
students (and teachers) found it difficult to prove that these are the only integers 
that do so.

One student, however, offered a strikingly simple solution (Imrey, 1988). Lee 
began with a simple algebraic statement which most students were able to derive: 
ab = la 4- lb. Then, by dividing each side of the equation by (ab), he obtained a 
new representation:

1 = (2/6) 4- (2/a)

Lee recognized that if a is greater than 4, then the value of (2/a) will be less than 
*/2. If a and b are both greater than 4, the right-hand side of the equation is less 
than 1. Hence, at least one term must be less than or equal to 4. At this point, the 
problem becomes straightforward: It can be completely solved, simply by sub­
stituting four values for a. The only pairs of positive integers satisfying the 
conditions are (3, 6) and (4, 4). This study demonstrates that a simple transfor­
mation from the obvious can lead almost directly to the solution of the problem.

Representation in Modern Biology
The focus of this study is on reasoning in modern biology. Research on classical 
genetics, however, is relevant to the general theme of representation. Thomson 
and Stewart (1985) found that students can become adept at manipulating sym­
bols without understanding the relevant genetics. In that case, there are two 
distinct representations: one relating to the algorithms of classical genetics, the 
other related to the biology of inheritance. Students do not coordinate these 
representations.

Much of the cognitive research relevant to modem biology has addressed 
issues of clinical medicine. That work has demonstrated that, unlike physicians, 
biochemists extensively consider normal causal mechanisms (Patel, Evans, & 
Groen, 1989; Ploger, 1988). When reasoning about a disease, biochemists follow 
a set of principles of cell function. But their reasoning differs from reasoning in 
mathematics because there is no convenient representation that is independent of 
the chemical details.

For other topics in biology, however, reasoning is quite similar to mathe­
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matical reasoning. For example, proteins (an important class of molecules) can 
be represented as a symbolic sequence of subunits (amino acids). Frederick 
Sanger used this representation in his research (for which he received the Nobel 
Prize). Sanger recognized that, due to the technical limitations of the time, he 
could not directly determine the sequence of amino acids in a protein. He could 
however, make fragments of the protein, and determine the sequence of amino 
acids in the fragments. His next insight was that the information from two 
overlapping sets of fragments could be used to reconstruct the original sequence. 
Although Sanger had to solve enormously difficult technical problems, the solu­
tion also depended upon reasoning with a symbolic representation that was 
largely independent of the chemical details.

Previously, I presented advanced-placement high school students with a ver­
sion of Sanger’s problem (Ploger, 1990). When given a verbal description of the 
problem, these students did not initially solve it, and some even resisted any 
attempt at a solution. Then they were given a puzzle in Boxer that had two sets of 
fragments (with letters of the alphabet representing amino acids). With this 
representation of the problem, students were able to reconstruct the original 
sequence. One student extended the project by writing a program to solve the 
problem. His program served as the basis for learning activities of two other 
students.

These results indicated that even good students have difficulty solving prob­
lems in biology when the problem is not structured for them. However, these 
students, with relatively little instruction, were able to create and modify their 
own Boxer data structures for the problem. This suggests that Boxer is capable of 
providing many kinds of representations to help students conceptualize and solve 
problems.

Representing the Genetic Code
By 1952, biologists realized that protein is essential for life, and that the instruc­
tions to build protein are somehow contained in DNA. The problem—how does 
DNA specify the structure of a protein—was completely solved by 1966. The 
solution is the genetic code, generally considered to be the discovery of the 
century in biology. Although the basic data are obtained by extremely complex 
chemical methods, much of the reasoning is independent of that chemistry. That 
reasoning requires an effective set of representations.

The discovery of the genetic code depended upon knowledge of the structure 
of deoxyribonucleic acid (DNA). During the research that led to the elucidation 
of that structure, James Watson and Francis Crick found it important to maintain 
their focus by means of a simple, highly abstracted representation of the essential 
substances and processes. As early as 1952, they used this representation as a 
reminder that, at one level, they were dealing with information flow, not with 
chemical reactions. A version of their representation (reported in Watson, 1968) 
IS shown in Figure 1: DNA RNA Protein (the arrows represent the flow of
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^information). This abstract representation has become central in modem biology 
HLehninger, 1982).

DNA —> RNA ---> protein
Figure 1. A representation for information flow used by Watson and Crick.

j • ' The flow of information from DNA to RNA (called transcription) is relatively
simple. Because there are four letters in the alphabets of each component, the 
mapping from DNA to RNA is one-to-one. Transcription can be adequately 
represented by four rules (e.g., “If there is a G in the DNA sequence, put a C in 
the corresponding place in the RNA sequence.”) All of the information from 
transcription can be fully recovered: If the RNA sequence is known, the DNA 

i sequence can be determined without ambiguity.
I The flow of information from RNA to protein (called translation) is much 

. more complex. The four-letter RNA alphabet must be translated into the 20-letter 
. K protein alphabet. A group of three adjacent letters (in RNA), called a codon,

4 codes for an amino acid (there are 4 x 4 x 4 = 64 codons in all). The 64 possible 
% codons must be assigned to 20 amino acids. Because each codon is meaningful, 
- the mapping is many-to-one. Consequently, the information cannot be fully

‘ -• recovered: If the protein sequence is known, the corresponding DNA sequence
5 cannot be determined without ambiguity.

The genetic code is “the little dictionary that relates the four-letter language of 
the nucleic acids [of DNA and RNA] to the twenty-letter language of proteins” 
(Crick, 1988, p. 169). Crick designed a representation for the assignment for 

I ' each of these 64 codons (shown in Figure 2) that has become standard in the field 
” (Lehninger, 1982; Stryer, 1981). It is a matrix with 16 cells: the rows represent 

the four possibilities for the first symbol and the columns represent the four 
' possibilities for the second symbol. There are four entries for each of the 16 

cells, corresponding to the four possibilities for the third symbol. For example, 
' the cell for the codon UCA is determined by the first row (U) and the second 

column (C). The third element in that cell is UCA with the corresponding amino 
!• acid, serine (abbreviated “ser”).
L Figure 3 shows an example of transcription and translation represented in 

Boxer. In this example, a data box called DNA contains the letters CAGAGT.
i The second data box in the figure is RNA; the symbols in this box are 

GUCUCA. For each base in DNA there is a complementary base in RNA. The 
information in DNA is used to determine the sequence of bases in RNA by 
simple base pairing. In the process of transcription, a strand of RNA is built that 
is complementary to the DNA. The third data box in Figure 3 is protein. For 
instance, the symbols in the data box RNA, GUCUCA, are read as two codons. 
The first codon, GUC, represents the amino acid valine (abbreviated “val”); the 
second codon, UCA, as before, represents the amino acid serine.

To emphasize the role of reasoning in the discovery of the code, Francis Crick
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Figure 3. A Boxer representation for transcription and translation.

(1988, p. 93) stated: “We eventually realized that solving the code could be 
viewed as an abstract problem divorced from the actual biochemical details.” 
Although this may not be a precise description of Crick’s realization (the obser­
vation is 30 years after the fact), it is an accurate description of how the problem 
can be conceptualized now.

Learning the Genetic Code Via Programming
Because it is essentially symbolic, the genetic code readily lends itself to com­
puter representation. For instance, David Touretzky (1984) used DNA replication 
as an example in a book on LISP instruction. Replication is straightforward. Like 
transcription, it depends upon four simple rules for base pairing. Touretzky did 
not address the more difficult process of translation.

This study uses Boxer instead of LISP. In Boxer, the distinction between data 
and procedure is made much more concrete than it is in languages such as LISP. 
In Boxer, any important biological structure (such as DNA or protein) can be 
represented simply as a data box. The contents of that data box are visible to the 
student. Furthermore, biological processes (such as transcription or translation) 
can be written as Boxer procedures acting on those data boxes. The construction 
of these data boxes can be as simple or complex as desired. When a student is 
first learning the topic, these procedures can be executed step-by-step, to reveal 
the details. Once those details are understood, the procedures can be executed in 
order to show the result of the process. Therefore, it should be easier in Boxer 
than in LISP for students to observe the construct and reconstruct representations 
of biological components.

This study examines the representations that a student made in learning about 
the genetic code. In particular, it addresses the following questions: What did the 
student already know about the topic? Did he find it valuable to abstract, elabo­
rate, and extend this knowledge using Boxer as a representational medium? Did 
he create new representations? Did he remember what he learned from program­
ming? Did the representation serve as the basis for new learning?
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METHOD
A 16-year-old high school student participated in this study at the University of 
California at Berkeley. The study consisted of five sessions over a 6-month 
period. The first two sessions took place on the same day. During the first 
session, approximately 1 hour, the student was asked to provide a clear and 
concise summary of the genetic code, focusing on the flow of information. (All 
of this subject matter had been covered in his biology courses.) The interview 
was recorded on audiotape. The second session took place immediately after the 
interview and lasted approximately 2 hours. During this session, the student 
began a project in Boxer. The third session, approximately 2 hours, was held the 
following week; the student revised his project. In the fourth session, approx­
imately 30 minutes, 3 months later, the student was interviewed using the repre­
sentations. He was shown a version of the actual genetic code and asked to 
compare it to his simulation. There had been no review of this subject matter 
during the 3-month interval. The fifth session took place 6 months later and 
lasted 1 hour 20 minutes. The student wrote a program to create the standard 
representation for the genetic code. He had available to him a textbook contain­
ing the relevant figure.

Prior to this study, the student had been programming in Boxer for a total of 
18 months. He had learned Boxer in a 6-week statistics course, offered by the 
Academic Talent Development Program at the University of California, Berkeley 
(a program which offers summer courses to intelligent, highly motivated students 
from ages 6 to 16). After that summer course, the student worked on Boxer 
projects once a week after school. In addition to this Boxer programming exfjeri- 
ence, the student had taken 2 years of biology.

RESULTS
The results are presented in five sections. The first section describes an interview 
with the student about the genetic code. The second section describes a Boxer 
program the student wrote on the same day. He made data boxes for the three 
most important components and the two most important processes of the genetic 
code. The third section reports the changes the student made 1 week later, 
including a graphic representation of the process of translation. The fourth sec­
tion summarizes an interview 3 months later, assessing his understanding of the 
genetic code and his simulation. The final section describes a program the 
student wrote 6 months after the study began, to create the standard representa­
tion for translation, from scratch, in less than 1 hour 30 minutes.

Initial Interview Results (Day 1)
The data in this section come from a discussion with the student that covered 
broad issues in modem biology. The exerpts presented here will focus on one 
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important part of that interview: the student’s attempt to describe the flow of 
information in transcription and translation. Although these quotes are only a 
small portion of that interview, they accurately reflect the student’s difficulty in 
recalling the essential information. (A far more detailed examination will be 
prepared as a separate research report.)

The student was not readily able to provide a correct answer, even though he 
knew, in some sense, more than enough information. He had difficulty because 
he was not able to describe the flow of information without introducing details 
from other areas of biology. For instance, he remembered that there are proteins 
in the nucleus that stabilize DNA. At one level of detail this is very important, 
but in describing information flow, that fact is completely irrelevant. He noted (8 
min 55 s into the interview) that: “There are proteins in the nucleus.” When 
asked by the investigator, “Where are we now?” (9:15), the student replied:

Student: In the nucleus. [9:20]
Investigator: We’re in the nucleus. Okay. [9:20]
Student: So it sees the protein and it builds a . . .

What am I doing here? [9:29]
Investigator: I don’t know. [9:30]
Student: I don’t know either [9:33]

Within 20 seconds, the student recovered from this error. He stated, correctly, 
that protein synthesis occurs at the ribosomes. Here, he used his knowledge of 
cell physiology to assist his recall of the genetic code. The investigator asked the 
student the direct question: “So what is the genetic code?” (10:28). The student 
began to reply, then admitted:

Student: Oh, I’m getting confused
I can’t seem to work this out in my mind. [10:52]

Investigator: Well, that’s interesting. [10:54] 
Student: It is

I don’t know.
There’s some link I’m missing here. [11:04]

Over 2 minutes later, the investigator gave a specific question:

Investigator: And then how does the information in RNA get to the protein?
[13:35]

Student: In the ribosomes -
A group of three bases stands for an amino acid. [13:42]

Finally, after 13 minutes, the student was able to provide a reasonable summary 
of the process of translation: “A group of three bases stands for an amino acid.”
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As soon as he said this, he remarked, “That’s what I was thinking of, but I 
couldn’t get to it.” Because he had previously recalled the simpler process of 
transcription, the student had given a summary of the two most important pro­
cesses associated with the genetic code.

The student’s knowledge was insufficiently abstracted and coordinated to 
allow him to answer simple but high-level questions about information flow. 
When the interview reached the point just described, the student had little desire 
to continue the discussion. He was, however, quite interested in creating a Boxer 
representation. This programming activity began immediately after the conclu­
sion of the interview.

Constructing an Initial Representation in Boxer (Day 1)
The student began to write a program to simulate transcription and translation by 
explicitly representing the most essential knowledge. First, he represented the 
three most important substances: DNA, RNA, and protein by three data boxes 
(the names of all boxes are indicated in boldface). He used *DNA to represent 
the information in DNA; *RNA to represent the information in RNA; and 
*protein to represent the information in protein. The student’s representations 
were simpler than the actual genetic code. (The student used different names. 
The names used here are intended to be meaningful to the reader.)

Transcription. Figure 4 shows the result of the student’s simulation of tran­
scription. The process transfers the information in *DNA to *RNA. In the 
figure, there are a total of six symbols in *DNA, XXRROX. The student’s 
version (like the real DNA) has four letters in its alphabet. He used the symbols: 
B, O, X, and R.

The *transcription* procedure has placed six symbols into the data box 
*RNA. For each symbol in the data box *DNA, the corresponding symbol to 
complete a pair is placed in *RNA. The assignment of these six symbols is done 
by a simple rule: B pairs with O; O pairs with B; X pairs with R; and R pairs with 
X. For instance, the first symbol in *DNA is X. Therefore, the symbol R is 
placed in *RNA.
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5 ' The student used the same components for *DNA (his DNA analog) and 
*RNA (his RNA analog). His simulation is simpler than the relationship between 

; DNA and RNA. RNA has four components, three of which are the same as for 
t DNA (A, G, and C). RNA does not have T, but rather U (uracil). Although this is 
5 an interesting detail, it is irrelevant to the central understanding of the genetic 
code.

Figure 5 shows a portion of the *transcription* procedure, which simulates 
the process of transcription. The procedure makes the assignment rule explicit. 
There are two data boxes at the top of the figure: *DNA-symbol and *RNA- 
symbol. The student has used ifs, a multiple “if’ statement, which takes a data 
box as an argument. Inside the data box are four lines of code. In each line, there 
is a test to determine the value of *DNA-symbol, and then an assignment. For 
any symbol, only one of the four tests will be true. In this case, the third test is 
true (the value of *DNA-symbol is X), and therefore *RNA-symbol will be 
assigned the value R. This procedure will assign, for each symbol in ♦DNA, the 
appropriate value in *RNA. All that is then needed is to organize that procedure 
into a larger procedure that examines each item of *DNA and builds the appropri- 

> ate values for *RNA.
fi'

Translation. Figure 6 shows the result of the simulation of translation. Note 
that the symbols in ♦RNA have been grouped in pairs. This is because the 
student has selected a codon (which stands for word) to consist of two symbols. 
(This was at the investigator’s suggestion. It makes no difference whatever to the 
abstract problem. It does, however, make the representation much easier to 
observe.) The ♦translations procedure has just been called. For each codon in 
♦RNA, a word is assigned in sprotein. For instance, the first codon in ♦RNA is 
(R R). The word assigned to this codon is “a” which is the first word in * 
protein. Likewise, the second codon in *RNA (X X) is assigned to “better” and 
the third codon in ♦RNA (B R) is assigned to “language.”

Figure 7 shows a portion of the *translation* procedure. At the top row is a 
command, ifs, which tests the four possible values for the first symbol of a 
codon. Below this row, there are four boxes, nouns, verbs, adjectives, and 
articles, corresponding to the four possible outcomes. The contents of the nouns 
procedure are visible in the figure. This ifs command tests for the second symbol 
of the codon and assigns the appropriate word. Consequently, the ♦translation^ 
procedure assigns a word to each possible codon, based upon the rules the 
student has devised.

Refining the Representation (1 Week Later)
Figure 8 shows the graphical output of a program written by the student to 
explain the process of translation. At the top of the figure, there is a graphics box 
which has a tree diagram. There are four major branches to the tree. At the end of 
each of these branches are the letters R, A, N, or V. (The investigator had
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Figure 6. The student’s representation for *translation.*

Figure 7. A portion of the *traiislation* procedure.
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Bdifficulty remembering the assignment of B, O, X, and R to the parts of speech. 
■At the investigator’s request, the student used the following four symbols; R, A,
■ N, and V. This is a mnemonic device. If R is the first symbol of a codon, the
■ word is an article; if A, an adjective; if N, a noun; if V, a verb. The process of 
O'transcription in this simpler microworld is essentially the same as before. The

pairing rules are: R pairs with A, and N pairs with V. This change was effortless 
for the student to make. It took less than 1 minute to replace the old symbols with 

I the new.) From each of these branches are four subbranches. Therefore, each of 
the 16 possible codons are represented in the tree. (The student’s code is simpler 
than the actual genetic code, which has 64 possible codons.) The processes are 
represented by the actions of a sprite. (A sprite is the Boxer version of a Logo 

. turtle. It is a graphics object that moves in response to commands such as 
“forward” and “turn-right.”) In the graphics box, the sprite is on the A in the 

w first row.
w The process of translation is a two-step process: (1) use the first codon to 
S. determine the part of speech, and (2) use the second codon to determine the exact 
B word. In Figure 8, the sprite has reached the second level of the tree (the symbol 
R R underneath the top-level symbol N). Beneath the graphics box are two data 
< boxes. One data box, codon, contains the symbols in the codon. The other data 
fc box, message, describes the state of the simulation. The information in message 
1,; is the output of a program that uses standard data construction commands. The 
S student was easily able to adapt his data construction procedures to build a wide 

range of messages. The structure of the diagram is precisely the structure of the
S') calling program.

An Assessment Interview, Using the Boxer Representation
(3 Months Later)
The student was satisfied with his program when it had reached the state shown 

ij in Figure 8. He turned his attention to other topics in Boxer. For 3 months, he did 
V not engage in any activity concerning the genetic code. Then, the investigator 

attempted to assess the student’s understanding in an interview.
s At the beginning of the assessment interview, the investigator asked the stu- 
■ dent to describe the genetic code. The student was able to reply directly: “Each 
H’ block of three nucleotides codes for one amino acid.” (Recall that it took him 

over 13 minutes to reach this answer in the initial assessment.) The student was
I then asked about the properties of his simulation.

J. Student: In mine, to make it more simple—each nucleotide is only . . . they only
I come in blocks of two. And then instead of coding for amino acids, they

■; code for words in a sentence. So . . . that’s just to lower the sample space,
v so there won’t be as many possibilities. And the rest of it works the same—
r* I have four, and each one is paired. So they work like that.
i Investigator: Ok, good. Now, there is one part that I guess is a relatively fine feature, but
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your model actually captured it. That is—how many possible codons are 
there and how many . . .

Student: Right. That there are more possible codons than things to be coded for—
both in the real world and in the model. There is some duplication. There 
are two different codes that code for the same amino acid, or three even. 
And it works the same way in my model.

The student’s explanation indicates that he understands what a codon is. He gives 
a precise example of a codon from his own simulation, and then describes the 
difference between his simulated codon and the codon in the genetic code. Then, 
the investigator attempted to determine whether the student understood the im­
portance of the position of a symbol in a codon. The student was able to recall 
what his simulation did.

Investigator: So in your actual simulation, if they had a mutation of the first symbol in a 
codon, versus the second symbol, how would that affect that?

Student: If it was the first one, it would disrupt the entire ... the meaningfulness of
the sentence, probably. But if it was the second one, the sentence would be 
different; and might not make perfect, but it would be grammatically 
correct.

Investigator: Ok, and what’s the analogy to the real code?
Student: I’m not really sure about that. I just assumed it basically works the same

way; but I’m not real sure about that.

Then, the investigator showed the student Figure 9 and asked him to explain the 
process.

Student: That, in this case, the third choice really doesn’t matter; because glycine
will be chosen no matter what. But that’s pretty rare—that might be the 
only one, is it? Where the third codon doesn’t even matter?

This reply indicates that the student is able to use his representation to understand 
a feature of the genetic code that he did not know before. In the genetic code, the 
third symbol in a codon is often irrelevant. In many cases, it can be changed 
without affecting the amino acid being coded for. The student did not know this 
as fact, but he was able to understand the concept because in his simulation, the 
different positions in a codon had different affects on the word that was coded for.

A Program to Generate the Standard Representation
The student wrote a program to create the matrix, previously shown in Figure 2, 
which is the standard representation for translation. He had access to the relevant 
figure (Lehninger, 1982). The central procedure is shown in Figure 10. Notice 
how the context-dependent meaning of A is captured explicitly in locations in the 
hierarchical structure of the program. The first line of the figure shows a com-

I
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S mand that runs a procedure for the first letter of the codon. The student has 
» defined the four possible values for a symbol as procedures. (The student wrote 
»the Boxer command: run [item 1 codon]. This can be interpreted as; run-the- 
B value-of [first-symbol-of codon].)
f The functioning of this program can be illustrated with the codon “G A C.” 

The procedure will first run the first symbol in the codon in the outermost box. 
Here, there is a procedure defined as G, that is the open doit box. In that box, it 
runs the second symbol of the codon, A. Here, that is defined as a procedure that 

j contains four data boxes. In that environment, it runs the third symbol of the 
2 codon, C. The value is “asp” [aspartic acid].

The determine-amino-acid procedure provides a concrete representation for 
‘ the redundancy of the genetic code. For instance, if the first symbol in a codon is 

G and the second symbol is U, it does not matter what the third symbol is. The 
amino acid will be “val” (valine).

The student’s procedure, takes apart a data object (representing a codon), uses 
that information to determine the appropriate procedures, and then builds a 
complex data object (the complete matrix, which was previously shown in Figure 

t 2). He completed this entire program, from scratch, in 1 hour 20 minutes.

Summary
1 The student was initially unable to give a concise summary of a centrally impor-
2 tant biological process, even when he had more domain knowledge than neces- 
! sary. In particular, he was not able to recall protein synthesis until he recalled the 
I processes associated with a particular cell structure (the ribosomes). More gener- 
I ally, he was not able to describe the essentials of the genetic code in terms of

information flow, without referring to details of the biological mechanisms.
1 That same day, the student created a simulation of the genetic code in two 

phases of work. In the first phase, he created a program with three boxes to stand 
for DNA, RNA and protein. His simulation was simpler than the genetic code, 
but it represented the important features. He used four arbitrary symbols, se­
lected pairing-assignment rules, and wrote procedures that simulated transcrip­
tion and translation.

One week later, the student created a tree representation for the process of 
translation. He created a tree that had four branches at the top level, and a total of 
16 branches at the second level. When a codon was translated into a word, a 
sprite traversed the tree. The tree modelled the calling structure of his program. 
This is no accident; His program could be easily modified to show its progress 
with sprite movement in the tree diagram. The selection of the first branch 
determined the part of speech; the selection of the second branch determined the 
precise word.

Three months later, the student was able to recall the properties of his Boxer 
representation in detail, and to describe the relationship between his representa­
tion and the genetic code. In particular, he remembered that the two symbols of
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his codons had different meaning. He was able to use his representation as the 
basis for understanding an important property of the genetic code. In the real 
code, the third base of a codon often does not determine the amino acid. In sharp 
contrast to the initial attempt, the student now can describe the genetic code 
accurately in terms of information flow.

Finally, after this preparation, it was easy for the student to program the 
representation for the standard representation. In so doing, his program captured 
some of the patterns of the genetic code at a fine level of detail.

DISCUSSION

The student used Boxer to abstract, elaborate, and generalize the central prin­
ciples by making explicit representations of the most important components and 
processes. Programming makes it easier for students to build and explore flexible 
and useful representations. This activity was supported by Boxer’s structural 
features, especially the capability to take apart data objects easily and to build 
more complex data structures. It is easy to begin programming in Boxer, because 
variables are visible. It is easy to make simple extensions because variables can 
be modified by program control. It is possible to make major changes because 
variables can be constructed to any level of complexity the student wishes. Boxer 
programs provide immediate feedback, which can be used to refine the represen­
tation. Furthermore, when the representation is in a computational medium, 
students can easily modify and extend their work.

This study demonstrates the value of learning subject matter via program­
ming. The act of programming forces students to choose what to represent for a 
particular program, encouraging them to abstract the problem from the details of 
the particular situation. Students become highly motivated to write programs 
that work. Consequently, they pay close attention to details of the program 
representation—not because the teacher told them—but because they want to 
create a good piece of work. And to complete that work, they must not only 
observe the representations, they must actively create them.

This representational capability is especially useful for learning this crucially 
important topic in biology. The discovery itself depended upon two conceptual 
shifts in the representation. The first shift was to abstract the problem from the 
biological details. The second shift was to focus on the details of information 
flow. The problem has been solved by biologists, and the principles are simple. 
Despite this simplicity, it is very easy for students—even very good students—to 
become mired in the wealth of details sunounding those general principles.

During the activity, the student wrote programs to represent the process of 
information flow. In so doing, he made explicit the rules of transcription and 
translation. He spontaneously created a representation for the process of transla­
tion that was useful for him. The student’s representation was a tree, which 
differs from the one used in standard texts (Crick’s matrix). There is, of course. 
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I nothing wrong with Crick’s matrix. But because it is virtually the only represen- 
i tation of translation used in standard texts, it is easy for students to lose sight of 

the fact that it is a representation, not the process. By creating their own repre- 
? sentation, students can gain an important understanding of the distinction be­
tween a representation and the thing itself. Moreover, they can understand the

* process as something dynamic.
ff, After 3 months, he was able to remember the details of his representations. 

This fact does not, of course, prove that Boxer representations are easy for 
students to remember. It does, however, suggest that students may remember

• best what they actually do.
Although the results are encouraging, I do not wish to overstate the claims. 

This student was certainly above average in intelligence and motivation. But he 
had incomplete knowledge of a crucially important principle, and he was able to 

I ■ integrate his knowledge in a long-term project, which he undertook on his own 
initiative. Although there is an investment in time and resources in teaching a 
student Boxer, there is also a large dividend in spontaneous activity leading to 

’(i productive thinking. This is a dividend that can be repaid with compound interest 
’’ as the student applies his Boxer representational expertise to other subject areas, 
1,' such as physics or mathematics, per se.

' Towards Cross-Disciplinary Research
. In both mathematics and biology, a problem can appear difficult when the student 
,i cannot find a good representation for it. It becomes easy when the student finds 
I'l', an appropriate representation. This representation emphasizes the symbolic 

I ' nature of certain areas of biology.
‘ 15 One issue where mathematics and biology educators could productively col- 
'■ laborate is the concept of a function. The flow of information in both transcrip­

tion and in translation can be understood as a function because each DNA 
i t, sequence determines one and only one RNA sequence, and RNA sequence 
1 uniquely determines a protein sequence. The transcription function has an in- 
i verse (each RNA sequence determines one and only one DNA sequence), but the 

translation function does not (any given protein sequence could be coded for by a 
number of RNA sequences). Hence, the genetic code provides a useful context 

j for explorations that can be essentially mathematical.
' On the flip side, the mathematics education community suggests pathways for 

■ the integration of descriptions of problem solving into research. George Polya 
(1945/1957) described an approach to problem solving that makes good sense to 
experienced problem solvers. The direct application of Polya’s ideas to education 

h has been problematical, however. The suggestions (as presented) did not seem to 
I help students who were not familiar with them. Polya’s ideas do provide guide- 
b lines, but it is necessary to provide much more support than the text of How to 
B solve it and to customize that educational support to the student (Schoenfeld, 
I 1990).
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Biology has its own elder statesman. Like George Polya, R-ancis Crick made 
many interesting observations about the role of problem solving. Crick devel­
oped a very powerful representation for the genetic code. He also noted some of 
the educational implications: “Some people still find DNA hard to under­
stand. . . . Really the ideas needed to grasp the structure are, if properly present­
ed, ridiculously easy, since they do not violate common sense, the way quantum 
mechanics and relativity do” (Crick, 1988, p. 48).

By themselves. Crick’s observations are not likely to be of direct use in 
biology education. But, in an important way. Crick’s ideas have many potential 
educational benefits. The genetic code, which 40 years ago was beyond anyone’s 
comprehension, is now within the grasp of a diligent high school student. Inte­
grating Crick s ideas into the biology curriculum is a major undertaking. Biology 
education is not, in my opinion, simply a matter of finding the right way to 
present the information: It depends upon giving students the opportunity to 
represent the information in a way that is meaningful to them.

In light of the many differences between biology and mathematics, it is not 
surprising that, to date, mathematics educators and biology educators have had 
very little to say to each other. But there are some interesting parallels between 
the two, and this sittiation can change for the better. This study is advanced to 
encourage communication between mathematics educators and biology edu­
cators for the investigation of how students learn by constructing useful 
representations.
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