CHAPTER 6

Notes on the Future of Programming:
Breaking the Utility Barrier

ANDREA A. diSESSA

In preparing this chapter I felt obliged to look at a number of other dis-
cussions of the future of programming. Few of them mention anything
resembling the issues discussed here. Instead, probably the most prom-
inent theme is the "complexity barrier —the tremendous difficulty and
cost involved in creating and maintaining huge programs. This is, no
doubt, a serious and enduring problem. But it is the most serious one
for professional programmers, not nonprofessionals who, at least in
terms of numbers, will dominate future use of computers. More than
numbers, I believe the ultimate social and cultural impact of computa-
tion will be determined to a great extent by what we can cause to hap-
pen when technologically unsophisticated users sit down at a machine.
The hope I share with many others is that computation can significantly
enhance intellectual development and productivity for most, if not all,
people. (Two exemplary references are Winograd, 1984a, 1984b.)

What role will programming play in this? Some of my favorite
antagonists in this regard feel that computers will totally disappear into
the woodwork as far as ordinary people are concerned, the way electri-
cal relays and motors and control micro-processors have already disap-
peared. Even if they don’t disappear, certainly, it is said, the ordinary
person will need to know as little about programming as about repairing

126 ANDREA A. diSESSA

an automobile—that’s a job for specialists. Then the future of pro-
gramming would indeed fall back into the province of specialists and
strike the complexity barrier head-on.

If one were to judge from present programming languages, 1 might
well agree. They are clumsy, inelegant, hard to understand, harder to
learn, and just don’t do very much very easily. So I am saying the
future of programming in the large-scale scheme of things is not evi-
dent in what we currently have, but will depend largely on future forms
and contexts for programming that we invent for nonspecialists.

What might computers do for nonspecialists? What should pro-
gramming be like for them? If I were to pick a single image, it would
be the computer as an interactive, constructible and reconstructible
medium. "Interactive' deserves a great deal of discussion, but it does
not need it. The degree of interactivity is the well-recognized key
difference between computation and all previous media. "Constructible
and reconstructible," however, are just as important, but much less dis-
cussed. The written word would not be half as powerful as it is if most
people couldn’t write. As a tool for accomplishing information related
tasks, for thinking, for inventing, for developing oneself intellectually,
text would be next to useless, except as a way to convey to others what
some "expert," who could afford to hire a scribe (read "programmer")
wished to convey. We need in interactive media the equivalent of
notes to yourself in margins, crossings out, personal summaries, and
your own essay or even book—little things in bits and pieces that can
be put together into a masterpiece, but don’t need that scale of effort to
warrant doing. Even great masters of interactive media, the equivalent
of a great author or poet, would be limited unless they could play,
tinker and create in pieces, rather than waiting for the long-loop to the
scribe and back. Surely there will always be the equivalent of technical
editors and publishing houses, but just as surely, there needs to be the
equivalent of pencils and paper for everyone.

So programming will mean being able to construct and reconstruct
in interactive media. This is why the automobile engine metaphor is an
inappropriate way of thinking about all computers. If a machine is to
serve one very specialized role, such as providing mechanical power, it
ought to be hidden and of no concern. But if the purpose of the
machine is flexibility and personal adaptability, we had better figure out
how to give users maximum control. Expressive power and nuance are
incompatible with invisibility and inaccessibility.

Programming languages viewed in this way will certainly be, in many
ways, much different than those of today. In the first instance they had
better be far superior to present languages at interaction. Long, silent,
invisible algorithms are much less the point than being able simply to

6. NOTES ON THE FUTURE OF PROGRAMMING 127

arrange to observe and control an ongoing process. Languages had
better make modification of existing structures and processes very easy.
They had better accept bits and pieces of whatever the medium sup-
ports, certainly text, programs, and pictures, to be recombined easily
into a new product. They had better respond to the complex, inter-
leaved activity structures of humans much better than any set of iso-
lated programs can do. See the chapters in the section on User Activi-
ties, Section IV of this book.

There will, however, be many similarities between present and
future languages as well, at least for some time to come. There are cer-
tain things one simply needs in order to describe a complex process.
Representing state, controlling availability and flow of information,
deciding what happens when: These seem very likely to remain salient,
in one form or another. The meaning of programming will change, but
I am certain that the means of construction and reconstruction will be
powerful and complex enough that no one will be embarrassed to call
them programming languages.

Computational
Nirvana

Utility Barrier

Nonprofessional
User

128 ANDREA A. diSESSA

The complexity barrier has surreptitiously changed into the utility
barrier. The challenge for the future is to make programming into
something that is simple enough and useful enough that everybody will
want and be able to learn how to grasp and stroke with this new pencil.
Complexity is still an issue. But it is complexity with an emphasis on a
different range of the spectrum. In contrast to battling huge programs,
if we can allow a broad range of simple but useful things to be done
transparently, we will have won more than half the battle. And com-
plexity is by no means the full story. Please note that utility is the ratio
of value to effort expended. Utility can be increased by decreasing the
denominator, with which complexity is intimately involved, or by
increasing the numerator. We need to worry as much about value,
about the uses of programming, as about making it easier to do.

I do not wish to play futurist here and wax poetic about possibilities
we can barely imagine. Instead, I wish to look conservatively to the
near future—in some cases, the recent past seems not yet to have been
noticed—and make the simple remark: From an engineering point of
view, it is clear that, far from reaching an equilibrium, we have at best
crossed a threshold in terms of making computation accessible and use-
ful to everyone. If we wish to, we will be able to make rapid changes
in what programming looks like, and in the context for learning con-
struction and reconstruction in an interactive medium.

Putting programming in terms of utility rather than as good in
itself is a position that might surprise some who know the his-
tory of our work. " We' are the Logo Group at MIT, and its
descendants. The language Logo, our best known product to
date, was developed in the aura of general intellectual skills
that can be developed in computational environments, and of
deep mathematical and scientific ideas that can become part
of everyday experience through programming. Thus, many
might expect me to write this note about designing program-
ming languages on the basis of what powerful ideas one could
build into them. But I have come to believe several things
that move utility to first place.

First, as a matter of fact, we have had much more success
building microworlds, computational environments for open
exploration of particular clusters of ideas, on top of a pro-
gramming environment rather than into it. [nterest and the
many things that we want to teach people are mostly at a dif-
ferent level than the generalities of programming per se.
Second, the need for a lingua franca of interaction is great.

6. NOTES ON THE FUTURE OF PROGRAMMING 129

Muiltiple microworlds, each strongly tuned to its own particu-
lars, may be too disparate to allow any economy of learning
the interactive medium. In fact, the pressures of commonality
go beyond the individual. Designing a new interactive
medium will certainly be a long term and gradual social pro-
cess in which what eventually solidifies must serve the every-
day purposes of many, yet be tailorable gracefully into techni-
cal domains. Natural language, for example, is useful for
everybody, but easily accepts technical terms and conventions
of exposition for specialists. Third, no matter how valuable it
might be to have learned programming, it will be harder, and
in other ways less enticing a job, without perceived utility
along the learning route. This is a major theme of this
chapter. Finally, it seems to me that the good things intrinsic
to programming are very robust and will not go away if we
put utility in a more prominent position as a design goal.

I consider three dimensions of change in programming. Each can
bring us noticeably closer to breaking the utility barrier.

Since complexity is a problem (bad) and utility is a goal
(good), perhaps a more parallel wording would be the "use-
lessness" barrier. But complexity is bad like sex in a Puritani-
cal society (interesting, nonetheless), and uselessness is bad
like yesterday’s garbage. So I'll stick to the utility barrier.

PRESENTATION

The first type of change is presentational. These are not modifications
to the underlying structure of programming, but only to how it is visu-
ally (and, potentially, through other senses) presented and manipulated.
Presentational changes will not, in general, affect the ultimate perceived
power of a language, but most certainly they can dramatically reduce
the effort involved in learning and understanding it. My points will be
in the form of examples.

Beyond Logo

Logo’s roots are in the teletype interfaces that were available when it
got its start. The communication format between user and machine is
linear and "conversational." The user says (types) something, and the
machine says something back. One small problem with this format is

130 ANDREA A. diSESSA

simply that you cannot even point to something you "said" a few lines
ago in order to "say" it again. The trace of what was done is, in compu-
tational terms, a useless artifact and cannot be, for example, turned
into a procedure. Initially, things even got worse with the demise of
hardcopy terminals; in addition to having to type over tried out com-
mands, users had to remember what they just tried if it scrolled off-
screen. Of course, versions of concrete programming (making a program
essentially by doing, step by step, what you want to have happen in the
program) can be built in Logo, albeit somewhat clumsily. Various
popular versions of what [started calling "instant" (single key activa-
tion) programs a number of years ago incorporate this feature. But this
is not the ordinary way one programs in Logo.

A second disadvantage of conversational interaction is that large-
scale structures are difficult to notate and manipulate as a whole. The
Logo END command is really no command at all, but a syntactic
marker of the boundary of an object (program). Unfortunately, END
can easily be confused with parts of the program because it must look
just like another piece of the conversation and cannot be connected
visually with the previous part of the conversation, the start of the pro-
cedure definition, with which it should really be connected.

A more profound but subtler problem is that you cannot directly see
and manipulate the state of the system on the screen. Instead, you
must send a request to see some state (e.g., PRINTOUT), and if you
want to change it, you must send another request (e.g., MAKE or TO).
Recent microcomputer implementations of Logo incorporate a screen
editor to ameliorate these problems to some extent, but this is only a
patch. One still must make a major mode switch, entering the editor, if
you want at all to pretend the screen shows the state of the system.
And the details of the relation of the editor buffer, the definition pro-
cess and the defined state of the workspace are both invisible and sub-
tle.

Here’s a hack to show the subtlety. Suppose you want to
delete all but one procedure from your workspace. It is pain-
ful to type ERASE APPLE, ERASE BEAR, ERASE CAT, ...
So what is frequently done is to load the editor with the whole
workspace, EDIT ALL. Then use a few simple edit com-
mands to delete everything but the wanted procedure. Then
exit the editor, clear the whole workspace, reenter the editor
(the buffer is not lost) and reexit again, which redefines the
one procedure you wish. This is the very opposite of a direct
manipulation system.

6. NOTES ON THE FUTURE OF PROGRAMMING 131

The bitmap display, a pointing device, and enough memory can
solve all these problems. In Boxer (it’s all boxes!), the language we are
designing as a successor to Logo, we believe we have done this. Com-
putational objects such as programs are visual units, boxes, and are
trivially manipulable as a whole, somewhat like a large character in a
text editor. The program that appears as a box in Figure 6.1 can be
deleted by pointing to it and pressing the rubout key. Similarly, it can
be picked up and moved around as a unit.

In Boxer we have changed the conversational interaction paradigm
to "looking at and directly altering the state of the system." Boxer is
"editor top level': You are always able to change directly or use any-
thing you (or the computer) have put on the screen. This automati-
cally gives you a simple form of concrete programming since you can
simply select a set of lines you have typed and executed, and box them
to make a program out of them. More fundamentally than that, once
one learns the few basic editing actions to point, pickup, move and
delete, one can inspect, construct, or modify anything in the system
without learning any more commands. The programs in Figure 6.1 can
be edited just by moving the cursor into them, deleting a few characters
and adding some new ones. The editor constitutes your feet and finger
tips for moving around and building your computational world.

We call this profitable illusion that one sees and directly manipulates
the system on the screen naive realism. 1t is, in a sense, an old princi-
ple, but it is rarely applied to computational structure. The principle
has many implications. It makes the system easier to use in that you
can always see what you are doing in changing or adding to the system.
A small set of editing commands can replace all the separate structure
creating and modifying commands. If you can remember or imagine

Aut REPEAT 4

FORWARD 160
RIGHT 99

ROOCF :

FORKBFED 100
RIGHT 30
FOR
R
F

-

10
LIARD 100
IGHT 60
OPLARD 100

FIGURE 6.1. A simple program definition in Boxer. The tab is the procedure’s name.
The box labeled ROOF is a subprocedure written in place.

132 ANDREA A. diSESSA

what some structure should look like, you can create it. The visibility
that comes with naive realism also makes many aspects of the system
easier to understand, particularly its large scale organization. For exam-
ple, procedure/subprocedure relations may be made absolutely expli-
citly (Figure 6.1).

Over long time scales, seeing the structure of the environment
rather than only a trail of a recent "conversation" should pay handsome
dividends, especially for those who may have difficulty keeping system
organization in their heads, children for example. In order to find
something in the system, you may simply wander around looking for it.
(See also Figure 6.4 and surrounding discussion.) Note that the ability
to make an audit trail is not lost from Boxer. All it takes is the discip-
line to type rather than point. More elaborate and automatic audit trail
mechanisms, of course, may be programmed.

Boxer makes another contribution toward presentational change that
goes hand-in-hand with the naive realism just described. The geometric
configurations one sees on the screen express fundamental semantics of
the language. 1 call this the spaital metaphor. For example, contain-
ment implies inheritance. Procedures and variables that are defined in
a box are accessible only in that box, and in recursively contained
boxes. Thus, the important modularity constructs of environments and
namespaces are plainly visible. This use of regions to represent
namespace environments is a concretization of the "contour model,"
which is frequently used to explicate these ideas.

We have also taken pains to make sure that dynamic as well as static
structure of the language is visible. If one chooses, the execution of a
procedure can be watched. The essential features of this visibility are
very simple. Commands making up a procedure are highlighted succes-
sively as they are executed; returned values appear in place of the pro-
cedure that returned them; and one has the rule that to watch the exe-
cution of a procedure called by name, a copy of the procedure defini-
tion will replace the name as the first step in executing it. (Details can
be found in diSessa, 1985). Compare Figure 6.2 to the little man
model shown in Figure 10.1 in Chapter 10 in this volume.

An Iconic Presentation

Let me give one other example of potential presentational changes in
programming. Quite some years ago, Radia Perlman and Danny Hillis
constructed a device known as a slot machine. Children programmed
by inserting cards representing commands into rows of slots, which
represented programs. Not only could one see and directly manipulate
the programs and their pieces, but also the sequential activation of

6. NOTES ON THE FUTURE OF PROGRAMMING 133

COUNT -
H—MN—=051F
COUNT :
H—P—=0-53F-
COUNT :
gy
H—MN—=5T6~
€T N—1t
PR
PRI
PRINT N

FIGURE 6.2. The display of a procedure stopped in midstream.

program steps, subprocedure calls and returns, could be directly
observed as lights lit up under each card when that step was executed.
Apart from avoiding typing, and adding concreteness to computational
objects, the slot machine provides substantial help in making a mental
model of the operation of a computational system like Logo.

With the advent of high resolution bitmaps and graphical objects like
sprites, one can easily implement a slot machine on the video screen,
moving icons around like cards with a joystick or mouse. The screen
slot machine can be freed of many of the limitations of the physical
one. On a screen, it is easy to invent spatial/graphical representations
for general input parameters and conditionals which did not exist on the
slot machine. Adding symbols, e.g., by typing a new word, is trivial in
the screen version whereas making a new, physical card is not so easy.
Most important, the process of abstraction can be represented easily on
the screen—e.g., a spatial sequence of card-icons forming a program
can slide together over one another like a spread out deck of cards
being pushed back together and be given a top "cover”" icon, becoming a
single unit like all the supplied primitive card-icons. There does not
seem to be any reason that nearly the whole of a computer language
like Logo could not be presented in this graphical, concrete way.
Though it has limitations that will be discussed in the section on direct
manipulation, it is a very attractive introductory presentation to pro-
gramming.

134 ANDREA A. diSESSA

In passing I note an interesting theoretical issue. This iconic form
of programming represents an attempt to use spatial and object
knowledge to replace the linguistic means Logo uses to promote
comprehensibility (see Chapter 10). Looking at the set of bugs and dif-
ficulties students have with such a system as compared to present
Logos should provide an insightful comparative study.

STRUCTURE

The second type of change in programming is change in structure. This
goes beyond the presentational changes mentioned above and signifi-
cantly alters the underlying computational mechanisms and structures.
While it might not be apparent to the user because of syntax or other
presentational issues, the structure of a system provides some bedrock
characteristics.

Traditional motivations for changes in structure have been increased
modularity, preventing and catching bugs, precision of expression,
mathematization of programming, and the like. In view of mounting
an assault on the utility barrier, priorities become reordered. Looking
back at the ratio of value to effort, one comes immediately (in the
numerator) to expressive power—how quickly and simply does the
language describe situations users can immediately perceive in terms of
existing goals and needs. And one comes (in the denominator) to
understandability. To be sure, ease of use plays a role in defining the
work needed to accomplish something, but I have been constantly
impressed with how much effort humans will expend if they value the
result and understand what they are doing. In this section, I largely
ignore ease of use. As long as it is not confused with understandability
and perceived value, ease of use may decide which product succeeds in
the marketplace, but not which paradigm of computation will succeed.
(Compare Norman’s remarks on first-and second-order issues in
Chapter 3.)

When it comes to expressive power, one must talk about the tasks a
user wishes to accomplish. Structure can be important. While all pro-
gramming systems may be formally equal in power (Turing equivalent),
some may be radically better adapted to some purposes than other sys-
tems. However, I defer discussion of this to the section on context,
except where it is unavoidable.

When it comes to understandability, the structure of a language does
not stand in isolation, but relies in general on presentation as a major
channel of communication to the user. Thus the shift from print- to
heavily graphics-based interfaces can precipitate a shift toward visual-
spatial programming languages, as exemplified by the icon

6. NOTES ON THE FUTURE OF PROGRAMMING 135

programming system. But there, no change in structure was implied.
With Boxer, however, we have found many small, and some not so
small, ways that the structure of programming can be profitably
changed to mesh with new presentational means, to which we turn
briefly.

Structural Innovation in Boxer

Variables are different in Boxer than in any other languages for reasons
of understandability and usefulness. The meaning of variables in Boxer
includes the familiar set and fetch protocol, but variables are turned
into genuine places in which different things can be stored. The place
metaphor cannot be supported very well by the simple association of a
name with a data object. For example, a Boxer variable can be shared
not only by having another procedure use the same name, but also by
an actual reference to the place of the variable. This reference is what
we call a port in Boxer. Even if you change the name of the variable,
the program will still share its value through having a port to it. Ports
as part of data objects give a hyper-text functionality. This is as valu-
able concretely, as it is in programs. For example, it allows one to
create cross referenced and non-hierarchically organized documents.
One can think of ports as analogs of traditional pointers, except objects
shared with pointers do not have a unique place of existence like the
target of a set of ports. Instead, objects shared with pointers belong
equally to all owners of a pointer to them. To get a grip on what this
slight change in structure means to comprehensibility, imagine what a
bizarre world it would be if possession were not largely synonymous
with physical location, if several people could hold, look at, and even
change the same object at the same time. (To be fair, Boxer does not
eliminate this kind of thing. But it makes it an advanced topic rather
than an entry level one. One needn’t program with ports. At the same
time, the issue is better presented visibly.) Figure 6.3 shows the
display of a port. Though in this case the target of the port is on
screen, that need not be true.

This 1s a variable: Datc

Bananas Peaches

and this 15 a port to 1t: gPort
[Bananas Feaches]

FIGURE 6.3. A port and its corresponding target box.

136 ANDREA A. diSESSA

We could continue the list of subtle, but not insignificant differ-
ences between Boxer structures and those of other contemporary
languages. For example:

1. Boxer does not have the same QUOTING mechanism as Lisp,
Logo or Smalltalk, but instead has one with a simpler interpre-
tation. The equivalent of quote is a type marker, data, and data
objects are simply unevaluated by the interpreter. The quote is
not stripped in evaluation.

2. Boxer does not distinguish intrinsically between atomic and
compound data objects in order to eliminate a class of type bugs
beginners have.

3. Actor-oriented programming with class and subclass hierarchy
is not primitive in Boxer as it is in Smalltalk, but can be built
with box structure.

Each of these structural changes was motivated by utility, making
the language simpler and more powerful. But they are not dramatic. 1
don’t believe Boxer will succeed or fail on the basis of its innovative
structures—presentation and context (to come) are its strong points.

Beyond Procedural Languages

So far only procedural programming languages (Basic, Logo, and soon,
we hope, Boxer) have made significant inroads with nonprofessional
programming. To be sure, spread sheets border on offering general
computational power in a new form. See Kay’s article (1984). But at
this stage it is more tease than substance. Visicalc is more than usually
flexible for an applications program, but not yet a really programmable
medium. Actor-oriented programming, as represented by Smalltalk,
has some significantly different structures than run-of-the-mill pro-
cedural languages. But, Smalltalk’s strengths are really at the scale of
systems—it is the first genuine example of a fully integrated medium
taking advantage of high resolution graphics. Its aim as a personal
dynamic medium puts it squarely in the line of development of interest
here. But, by and large, the designers of Smalltalk have attacked the
complexity barrier rather than the utility barrier. The basic computa-
tional mechanism is more complicated in Smalltalk than in Logo.
Actors, classes, and instances are undisputably useful, but they are lev-
els of organization on top of functions and variables, not simplified
replacements. The things one can do quickly and easily with the basic

6. NOTES ON THE FUTURE OF PROGRAMMING 137

system and unprofessional skills are not advanced enough to be a popu-
lar medium in the sense of this chapter. Thus, Smalltalk is more a
meta-medium than a medium.

Prolog is also not a breakthrough in understandability. Its logical
semantics seem quite orthogonal to advances in visual presentation that
motivated Boxer and, in a different way, Smalltalk. But Prolog really
does offer a potentially dramatic shift in the kind of thing done with
programming, so it will warrant a second look later.

Let me turn to a "new," as yet to be fully defined, example to illus-
trate another class of near future possibilities for changes in structure.

Device Programming

Device programming is motivated by the image of an electronic or
mechanical device consisting of a number of components of a few
classes, like resistors, transistors and capacitors; or pipes, pumps and
reservoirs. These components each have relatively simple behavior and
achieve the functionality of the device by being hooked together at
their terminals into a network. Computationally, we want to have
graphical components that can be manually assembled into devices by
connecting their inputs and outputs with "wires" (lines drawn on the
screen). The wires communicate messages of an arbitrary symbolic
kind, which could, for example, represent flow of substance or electri-
city by passing numbers representing amounts. Each component knows
when it gets a message at an input and can compute and send output
messages as it sees fit. Device programming is structurally a signifi-
cantly different form than contemporary procedural languages because
of its explicitly parallel nature of computation, and its explicit represen-
tation of data flow rather than sequence. On the other hand, device
programming can simulate a function as a component with one input
and one output. Activation of the function amounts to simply giving it
an input. Furthermore, a component can be built out of very little
more than a procedural programming language in which to express the
actions to be taken to compute outputs from inputs.

Naturally, it would be important to have a general abstraction
mechanism so that a network of devices could be made into a com-
ponent. Some set of free inputs and outputs in a device could "extend
beyond the boundary" of the device to act as terminals of the abstracted
component. Visually, the parts of the device-become-component can
shrink and/or acquire a new surface form to hide detail. Likely one
would like the surface form to show some small part of the internal
state of the device.

138 ANDREA A. diSESSA

Device programming is attractive because it has such a simple and
graphic method of combining elements to make compound things.
There is reason to believe it can have some intuitive accessibility that
the hidden data flow and complex sequencing of pure procedural pro-
gramming does not. Lastly, it opens doors to more easily simulating an
important class of physical computations, thus aiding in our understand-
ing of the world. One can even engage in the delightfully recursive task
of constructing a computer out of computationally implemented com-
ponents, emulating every level of abstraction of a physical computer.
All of these characteristics of device programming—intuitive accessibil-
ity, important and interesting application, and even ease of use—are
illustrated in the contemporary computer games Rocky’s Boots and
Robot Odyssey.

Device programming, like most new ideas, is not entirely new by
any means, but a crystallization in a new context of a collection of old
ideas. In fact, the first system I know of that substantially followed this
outline was made 20 years ago by Sutherland (1966). The reason the
idea is timely again is that powerful processing and high resolution
graphics, along with the particular concern for creating an easily accessi-
ble popular medium, define a niche into which device programming
may well fit nicely. It is interesting to remark on how this niche rede-
fines past conceptions similar to device programming. UNIX pipes, by
their very name, suggest the right topological metaphor. They are also
a parallel processing system. However, pipes are structurally one
dimensional and presentationally nongraphic. They provide no easy
opportunity for output, let alone input, at intermediate stages of the
pipe. Pipes are not intended to be a means of implementing programs
on a small scale, but rather, they are a way of combining existing rather
large chunks. Most other parallel processing constructs, Simula co-
routines for example, are at best intended to control graphical objects,
not to be graphical, nor do they make use of device topology to define
the communications network in a program.

CONTEXT

Continuous incremental advantage. The third dimension of change
in programming is context, what you do with your programming sys-
tem. Turtle graphics, whereby drawings may be created by issuing
commands to a mobile graphics cursor, is a crucial part of the advance
of Logo over previous languages. It is motivating; it allows children to
set goals immediately that they understand (drawing pictures), yet it

6. NOTES ON THE FUTURE OF PROGRAMMING 139

can evolve naturally and slowly into a medium of contact with profound
mathematics (Abelson & diSessa, 1981; Papert, 1980). Again the old
story of natural language tells the tale. It is an incredibly complex and
large learning task which, nonetheless, nearly every child masters
because it can be mastered one tiny bit at a time, and is useful to the
child at every step along the way. The steps are small, but the range is
large: A child gets a cookie by learning how to ask; a university profes-
sor gets recognition not only for his ideas, but also for presenting them
well. The principle really deserves a name—continuous incremental
advantage. If we want anyone to master any complex but powerful tool,
it had better offer continuous advantage to the learner for learning
more, and the bits of learning had better be in manageable (incremen-
tal) chunks. The importance of the principle is not only having small
steps in learning, and motivation for those steps, but so that at each
stage the learner gets structured feedback on competent performance,
feedback in terms of achieving understood goals.

In learning Logo we have found some blocks, or at least apparent
plateaus in continuous incremental advantage (Papert, diSessa, Watt, &
Weir, 1980). For very young children, procedures seem to constitute a
small barrier. They are more difficult than necessary to master, and
don’t do all that much beyond packaging the picture the child is draw-
ing. Many children prefer to type out a stereotyped set of commands
over and over rather than to make them into a procedure. This is one
case where more work is done to avoid a not firmly understood but
more efficient process. For older children, procedures are more pro-
ductive, but variables seem to stall them for a while. Effective use and
understanding of list processing has similar problems.

Table 6.1 shows how Boxer compares to Logo with respect to tran-
sparency and incrementality in the important early activity of making a
definition.

Data objects can be built in a similar way and turned into a variable
simply by adding a name. The value of the variable can be changed at
any time under program control, or directly with the editor.

Boxer Data Worlds

With regard to continuous incremental advantage, Boxer’s concreteness
not only provides smaller, more understandable increments, but it also
enlarges the scope of programming’s context to include text production
and manipulation, and the organization and manipulation of many other
sorts of data. If a programming system is literally also a child’s book
and pencil (text editor in modern parlance), and if he can, bit by bit,
modify, extend, and personalize not only what comes in his book, but

140 ANDREA A. diSESSA

TABLE 6.1
COMMANDS

Logo Boxer

1. Type a set of commands to try them out. 1. Type a set of commands,
or select and collect from pre-
viously typed text.

2. Type TO <name>. Screen goes blank. 2. Mark the commands

You’'re in the editor. (push a button and draw
pointer across). Then press a
key to make a box.

3. Recall or type over from pencil and pa- 3. You may now point to the
per the list of commands tried out. box to execute it.
4. Exit editor. 4. If you like, add a name to

the procedure.

5. Type the name to execute. 5. Type the name to execute.

6. If you like, shrink the box
to hide its contents. Or you
may move it entirely off the
screen which is the currently
visible part of the Boxer
world.

also the form of the presentational medium, then programming
becomes a learnable-in-tiny-increments and constantly useful extension
to written communication, something with which children are in con-
stant contact. A simple example of such modification is to add a new
editing command, or to use a variable as a means of keeping around a
template for electronic mail messages or other "forms." Hierarchical
structure, boxes in boxes, which Boxer makes so prominent and easy to
generate, can be used by children to organize and reorganize their per-
sonal computational world (Figure 6.4). Note that there need not be
any such things as files and filing commands. Such use may seem
trivial in view of the the power and subtlety of variables and hierarchi-
cal structure in the hands of expert programmers, but simple instantia-
tions provide for continuous incremental advantage. More advanced
use of Boxer’s degree of integration are also possible. Because every-
thing in the system is a computational structure, computing on any text
(say, computing a reorganized format for a notebook) is simple to
arrange.

6. NOTES ON THE FUTURE OF PROGRAMMING 141

ANSWER JPEl

7 +

B

8
5
2

-
w (|| |0

x

[z][s][e] [+]
L) lslle] =]
Ll le]is] L«]
e J L =] /]

This text 1s here to show that you can type anyuhere.

/

1}

FIGURE 6.4. The top level of a Boxer world. Small gray boxes have been shrunk to
hide detail. A subbox may be "entered" by expanding it (with a keypress) to full screen
size.

In comparison to iconic programming or programming by direct
manipulation, Boxer’s text orientation may seem conservative, if not
reactionary. But the main reason we chose to move in that direction
was to promote a synergy between the written word, including all the
incremental advantage it offers, and the advantage that programming
and programming structure offers to written communication. QOur judg-
ment is that text will not fade away as a dominant medium, but will be
transformed and improved by computation and programming.

To solidify this notion, consider a thought experiment. Imagine
Boxer as a future publishing medium for educational materials. A stu-
dent might buy a digital optical disc containing a Boxer book. Figure
6.5 shows a "page' (box) from that book. Box structure allows
hierarchical presentation with details suppressed at each level by
shrunken boxes. The table of contents of the book may be the book,
viewed from the top level. Within a "section" (box), graphics boxes
provide illustrations. Graphics boxes are like most boxes in that they
can be made with a keystroke, expanded and shrunk, moved around or
deleted like a large character. They are computational objects. They
can be named, ported to, and referenced in programs. But graphics
boxes also come equipped with a set of primitives for making and
modifying pictures. As an example, generalized turtles—movable,
touch sensitive (to the mouse and to each other) graphical objects—
may be created in graphics boxes. (A paint program in Boxer is not

142 ANDREA A. diSESSA

TURTLE-PLACE | et

Turtles are little graphics creatures that can be
moved around with simple commands. Point to one of
the following, and press "doit."
FORWARD 100
RIGHT 90
Here are some simple programs. Try them, and look inside!
SOUARE : — CIRCLE: — DUOPOLY :

Here is a port to a related topic: fPart—

/7171

FIGURE 6.5. A page from a Boxer book.

viewed as defining graphics capability, but as an optional program writ-
ten to simplify construction of a certain kind of data object, a graphics
box, the way one might write a program to simplify construction of pro-
grams or more familiar data objects such as records.) So the illustra-
tions may easily be dynamic, controlled by programs written into the
text. The simulation programs, of course, are inspectable, and change-
able, so students may experiment freely, learn from the way the simu-
lation is written, and they may even clip pieces of the program out of
the book for their own purposes, such as game program writing.

Citations to other sections of the book may be made through ports.
Students may write annotations into the book. They may provide their
own summary view of the book by collecting ports to selected sections
into a box, together with their own notes. Any tables written into the
text are also automatically data bases, available to be used for further
analysis or computation.

Note how much work it would take to produce such a book. Basi-
cally, the author would just type in the text (including box organiza-
tion), assemble pictures and type the programs that control the graphics
or that provide particular facilities not built into Boxer. Instead, or in
addition to programming, the author might hire a programmer or take
programs from public domain Boxer books.

6. NOTES ON THE FUTURE OF PROGRAMMING 143

It is easy to imagine teachers making fragments of Boxer books,
dynamic worksheets, in the course of a day’s work. Undoubtedly, pro-
fessionally produced books would be published containing fragments of
programs and ideas the same way worksheets or lab kits that constitute
a limited, but potentially very significant, part of today’s learning cul-
ture for teachers.

To the level that I have described this hypothetical book, the stan-
dard Boxer interface is the means of construction, and, as well, the
means of consumption and reconstruction. That this is true is an
important characteristic of the kind of medium we want to have. One
can step easily from the role of consumer to that of producer. The fact
that Boxer has this property is in large part due to its visibility and prin-
ciple of naive realism. Constructing an interface to an application is
often trivial because, for example, output from a program can be pro-
duced simply by putting a program variable or port to one on the
screen. Input can be equally trivial, since typing into that variable
changes it.

The constructable interface. Naturally, for special purposes, one
may want input and output farther from the default paradigm. We are
in the process of designing a slice of Boxer that I call the constructable
interface through which more specialized interactions can be made with
incremental programming. Indeed, this is a new context of continuous
incremental advantage for programming. In the past, programming
environments like Logo, Basic, and Pascal have been conceived of as
relatively or absolutely fixed, not seriously user adjustable. In
Smalltalk, the user interface is totally redefinable, but the cost of this
flexibility is that fiddling with the interface often can involve fiddling
with complex, highly refined system code, or it might be a huge project
of supplying a complete replacement for that code. Our hope is to steer
a middle course that avoids these extremes and provides more realistic
incremental advantage.

The constructable interface in Boxer at present has two parts. The
first consists of "bells and whistles" and adjustable parameters on boxes
with user interface functionality. For example, keystrokes and mouse
clicks can be redefined to run arbitrary Boxer functions when per-
formed within a given box, boxes can have demons associated with
them to take definable actions on entry or exit of the cursor, and boxes
can be frozen at any size (overridable by explicit "expand' or "shrink"
commands) to allow selectable display of the interior of a box, not just
all or none.

With definable mouse clicks alone, it takes about 10 minutes to
make a screen-based calculator from scratch, where you point and click

144 ANDREA A. diSESSA

to press the buttons (boxes). An arbitrary amount of the internal
structure of the calculator, registers and so on, can be shown. The sur-
face form of the calculator shown in Figure 6.5 involves no graphics at
all; it was simply typed in using the Boxer editor. More generally, we
imagine users building or modifying little Visicalc-like interfaces for
doing jobs like data presentation (graphing) and analysis (easy entry
and sorting of data fragments).

The second part of the constructable interface implements more
extreme changes in the interface. For this we use the interior of graph-
ics boxes, which structurally do not allow precisely the same "text edi-
tor' interface as the rest of the system in any case. Thus, the interior
of a graphics box will not have the very well-elaborated and universal
interaction of the rest of Boxer, but default behaviors and a few
appropriate high-level primitives to build interactions. Examples of the
former are: (a) Graphics objects are automatically highlighted
(selected) as the cursor passes over it; (b) clicking "expand' on an
object expands it to show the data that define its state (position coordi-
nates, special procedures to define behaviors like animation, or other
change of visible presentation); (c) any Boxer code can be activated on
selecting an object and pressing a mouse button or key. Examples of
the latter include the process of following the mouse cursor, changing
default behavior, etc.

I would like to close this section with two small, less parochial notes
on the important topic of context. The first is about Prolog, or, more
generally, about logic programming. Much has been made of the
elegance and conciseness of such languages in expressing certain facts
and relationships in a form that is executable. Just as much has been
made about this as a proper way of using the high performance,
multiple-processor hardware that is soon to be available. In relation to
the complexity barrier, this is appropriate. In relation to the utility bar-
rier, it is less so. I have already stated that Prolog does not obviously
accept present technological advances that can improve understandabil-
ity, such as integration of visible properties with semantics (e.g.,
Boxer’s spatial metaphor) or presenting images of the computational
mechanism in process. Arguments have been presented, in fact, to the
contrary: that the invisibility of mechanism and relative uncontrollabil-
ity of Prolog makes it difficult to program and, especially, to debug.
But Prolog offers the glimmerings of a substantially different and excit-
ing context for programming.

In Prolog, one makes relational assertions in a data base such as
"John loves Mary." or "John is-a man." Rules of general value may be
written, such as "If X is-a man, X is-a person." Then the data base may
be queried by making variabilized statements like "X is-a person,"

6. NOTES ON THE FUTURE OF PROGRAMMING 145

which returns all values of X that make the statement true. Thus logic
programming is in substantial ways about expertise, and the hope can
be that Prolog or future versions will allow incrementally learnable
advantage in "expertise about something' over common-sense reasoning
or noncomputable "writing down facts and generalities." Ennals and
Kowalski are pursuing this possibility where children may, in the end,
play with and even write their own tiny expert systems (Ennals, 1983;
Kowalski, 1979).

Finally, to close an open loop, anyone who develops a general dev-
ice programming system may well provide an exciting new set of con-
texts in which to learn and appreciate programming. (This is not to
slight present versions, like Robot Odyssey, but their aims are quite lim-
ited with respect to being a general medium.)

DIRECT MANIPULATION—WHERE'S THE
PROGRAMMING?

The concept of direct manipulation as a future kind of programming
has acquired a good deal of support in recent years, particularly because
of its more attractive features in simplifying the programming process.
(Chapter 5 by Hutchins, Hollan, & Norman discusses these hopes in its
first sections. Readers would be advised to look over those sections
before continuing here.) I would like to comment on the status of
these hopes.

The plan for this section is to understand direct manipulation by
situating it along the three dimensions of change in the meaning of pro-
gramming: presentation, structure, and context. The overarching
question is what exactly does direct manipulation have to do with pro-
gramming as defined here? By and large, I shall assert that direct
manipulation does not define or even suggest any major change in com-
putational structure or context beyond present programming. So my
major discussion will be on how direct manipulation can re-present pro-
gramming. We shall find that direct manipulation has difficulty with
particular aspects of functionality intrinsic to programming. There are
limits that may not be evident at first sight on what we can expect
direct manipulation to do for programming. The section concludes by
rediscovering direct manipulation in what, given the perspective on the
future of programming in this chapter, is a proper relation to program-
ming.

146 ANDREA A. diSESSA

Direct Manipulation of Standard Programming Objects

To begin, it is important to distinguish between tasks accomplished by
direct manipulation. The task might be to operate on computational
objects, which might be more or less conventional objects in a program-
ming system. If this is the case, then what we are talking about is not a
change in structure, but a change in presentation. Boxer is a good
example of a system that permits direct manipulation on more or less
conventional computational objects. Boxer makes all computational
objects visible and manipulable in a uniform way. Adherence to naive
realism assures that the visible representation and the underlying reality
are minimally disparate. And the uniform text representation of all
objects assures a rich manipulation language (the Boxer editor). Visible
reality and a rich manipulation language bode well for a successful
direct manipulation system in the straightforward sense of those terms.
Naturally, I see an important future to such systems. But Boxer is not
what direct manipulation advocates have in mind. It is structurally
more or less a garden-variety, general purpose, computational system.
It contains a lot of "code," and has such things as syntax errors.

One may, of course, try to turn procedural structure more or less
directly into nontextual forms, like iconic programming, slot machine
style. But in consideration of a simple-minded "conservation of com-
plexity." this tack will have limited success compared to the prospect of
eliminating error and providing instant accessibility to first-time users.
Arguments below detail other limitations of this general line.

Manipulation as a Presentation of Programs

On the other hand, the task accomplished by manipulation might be not
to construct computational objects, but to demonstrate or represent
them. This is a considerably more optimistic image of what direct
manipulation might bode compared to replacing words on a one for one
basis with icons. But, again, this does not necessarily offer substantial
changes in structure, but only presentation. If one considers paradigms
such as procedural programming, logic, and constraint-based program-
ming, then it appears that manipulation as a programming language
belongs firmly in the procedural camp: The basic programming meta-
phor is demonstrating a sequence of actions.

How much of the procedural paradigm can direct manipulation
carry? Here, the programming language community is in the midst of
substantial research. One can point to such examples as Gould and
Finzer’s programming by rehearsal (Gould & Finzer, 1984), where

6. NOTES ON THE FUTURE OF PROGRAMMING 147

routines are taught (programmed) by manually running through the
sequence of actions that one wishes to teach. The actions are essen-
tially all selecting from among preprogrammed actions of a troupe of
computational actors. The system gets much of its character and power
from the set of initially supplied actors. In its present state of develop-
ment, the system doesn’t feel like a general programming system; not
even its implementers chose to build the supplied troupes with the sys-
tem itself. My suspicion is that this will not give those who learn only
the rehearsal level of the system enough flexibility for it to be widely
adopted as a style of programming, that is, a reconstructible medium.

Halbert’s (1984) programming by example system and Lieberman’s
Tinker (1984) attack more directly some of the fundamental problems
of direct manipulation as a representation of programs. To understand
what these are, we need to look at some of the fundamental functional-
ities that define procedural programming. This will put us in a better
position to make general comments than examining particular systems.
It also seems appropriate in a paper on the future of programming to
say something in detail about what the essence of programming is, and
what are the invariant structures we will find, in one disguised way or
another, in any near-future programming system.

I will use a description of a general computational system provided
by Newell (1980, recharacterized and slightly reorganized). Table 6.2
shows a taxonomy of functions. The four major areas, abstraction,
representation, computation and 1.O. appear in column 1. Column 2
contains the operators Newell uses to exemplify key subfunctionalities,
and column 3 contains my characterizations of the subfunctionalities
from column 2. The bracketed enumerations mark functions that may
be problematic for direct manipulation’ and they are discussed below.

Abstraction. Abstraction is the first functionality. In its simplest
interpretation, abstraction means elevating from instances to classes.
Variables and the literal/computed distinction are very simple mechan-
isms that provides much of this functionality to contemporary program-
ming languages. But these pose a fundamental problem for direct
manipulation. How do we express in the manipulative paradigm, which
selected items are to be regarded as instances, which as classes, and
along what dimension of generalization are we to define the class, if
variabilization is intended? Much of Halbert’s work is to solve this
problem. Even this work assumes that the objects manipulated are the
items to be abstracted, rather than the potentially much more difficult
problem of abstracting on procedures. How does one say, "Look, do
what I just did, but such and such a part of that was just an example of
what might be done."

148 ANDREA A. diSESSA

TABLE 6.2
TAXONOMY OF FUNCTIONS

Abstraction Quote controlling reference;
variable/ literal distinc-
tion [1]
Assign naming (2]
Copy supporting isomorphism

as well as identity

Representation [3] Read symbol at position fetch
R from an expression
Write to position R in an mutate
expression

Compute Do sequence
Exit if ...

Control [4]

Continue if ...

I.0. Behave output
Input input

Naming. Abstraction also means having complex entities as units,
substantially functioning objects in the system. Naming is at the core
of this functionality. Here, direct manipulation is on a slippery slope.
Pointing can be quite effective in some circumstances, but in order to
have broad access to many entities, which is often needed in present
computational systems, one would like to have some easily reproducible
symbol. Once one allows this, however, text becomes such a powerful
competitor, that it is unlikely any gestural or other method of specifica-
tion could effectively compete. After all, text evolved over eons to
serve precisely this role. Once one allows textual names, and has any
sort of written representation for programs, then it seems to me a text-
based programming is not far behind.

Even a seemingly strong point of manipulation, demonstrating
sequence, begins to appear problematic without suitable abstraction
mechanisms like mnemonic naming. For debugging purposes, repro-
duction of the gestures made to demonstrate a program is a very weak
replacement for all the intention and context that existed in the head of
the direct manipulation programmer. Not being able to use the expres-
siveness of language within a program seems a dubious improvement.
Not being able to annotate beside the "code" seems unnecessarily

6. NOTES ON THE FUTURE OF PROGRAMMING 149

restrictive. Not having a visible notation seems fatal. Debugging was a
weak point of an early and ambitious piece of work that mixed manipu-
lation with static program structures to represent programs (Smith,
1975). For reasons of debugging alone, I have much more hope for a
hybrid text and direct manipulation system than for any attempts at
pure manipulation systems.

Symbolic representation. If one thinks of representation (in the
sense of building complex objects that model noncomputational systems
through attributes or assertions) as a separate functionality, then again
one seems to slide directly into symbolic presentations for the same
reasons as for naming. It is plausible to construct these representations
and write programs that manipulate them by direct manipulation, but
easily reproducible symbols and variabilization are still issues. A
strongly hybrid system is again the likely outcome.

Control. Control is a serious problem for manipulation. I know of
no workable gestural indication of conditional branching. Compared to
a simple IF ... THEN ..., it seems unnecessary to try. So once more, it
seems some symbolic representation enters into the system with this
functionality.

Direct Manipulation as a New Context

As far as contexts are concerned, direct manipulation does not by itself
suggest anything new. It, of course, motivates a particular class of
domains, in particular those where substantial interaction or processing
can be assembled by organizing visible units. But that, by itself, is a
weak heuristic.

Where have the high hopes for direct manipulation gone? Could it
be that direct manipulation has nothing much to do with programming,
but is instead a very general, thus weak, heuristic for constructing
interfaces, or a trend in applications programs to draw icons in high
resolution, to allow pointing, poking and moving those icons around in
order to do a few things, but certainly not to program?

Let me sketch a class of ways to achieve most of what I believe real-
izable from direct manipulation while maintaining a true programming
medium. To start, we would like a system which can support an "object
metaphor" in the sense that graphical objects with a standardized set of
manipulations on them such as copy, move, connect and recognize a
pointing operation. This is meant to be the surface level of most "pro-
grams' written in the system. However, beneath this level must exist a
full computational system to define the semantics of the objects and
specialized meaning of their object manipulations. For example, the

150 ANDREA A. diSESSA

objects could open into data structures, programs or complete environ-
ments that contain multiple programs and data. So far so good, but the
key is to establish a rich set of connections between the computational
semantics and the object manipulations so that object manipulations
are, in fact, reconstructing the computation. One must be able to bind
interface operations to computational ones: touching to activation, con-
nection to data flow, copy to copy, movement to context switching.

If all this sounds familiar, it should. This is precisely the intent of
the constructible interface of Boxer, particularly its graphics box com-
ponent. So, what I have in mind is opening up graphical objects, the
generalized turtles described earlier, into Boxer structures that define
them. Some of the connections between interface operations and com-
putational ones are already in place in our current implementation. So
the plausibility of these arguments on the relation of direct manipula-
tion to programming will soon have a strong test. If we can do our
design responsibly, Boxer should become, in part, a medium for build-
ing, using and modifying what everyone will recognize as direct mani-
pulation systems.

Summing up. Direct manipulation does not appear to offer any sub-
stantial new structure or even, of its own, any new context for pro-
gramming. Even as a different presentation of procedural or actor-
based forms, there are several areas of functionality where text or other
symbolic presentations are so strong, that at best we should expect a
general purpose language to be strongly hybrid in ways akin to the rela-
tion of Boxer to its constructible interface. Indeed, I believe that direct
manipulation of symbolic computational structures will become stan-
dard, especially for nonprofessionals. But except for a few very special
cases, I do not believe direct manipulation will soon become even an
acceptable substitute for symbolically presenting or representing compu-
tational structures.

I cannot claim any finality to this brief critique of direct manipula-
tion. The line of argumentation presented here is subject to at least
three criticisms, which I will very briefly counter. First, the functional-
ities abstracted may be abstracted too directly from present day pro-
gramming so that the conclusion that form is hard to change is essen-
tially built in. Independent of details, however, I believe these func-
tionalities are indicative of a class that could be the basis for refined
argument. Second, one may ask what difference it makes if direct
manipulation is not programming. Flexibility and other virtues that we
need in a medium are not synonymous with programming. Here, the
more experience with particular systems, the better. When we have
examined the empirical constraints on flexibility, etc., of many systems,

6. NOTES ON THE FUTURE OF PROGRAMMING 151

I think it may well be easier to convince the direct manipulation
enthusiast that those problems fail into categories like those above.
Finally, invention has a way of revamping our assessments of possi-
bility. Two examples of invention that might have impact here are the
advent of quite substantial machine intelligence and radically enhanced
input devices. Intelligence might, for example, figure out a
programmer’s intended level of generalization in pointing to an object,
and represent it, even for the programmer’s use, in other ways. Ges-
tural input at a level significantly beyond pointing and poking (in con-
cert with voice, intelligence, etc.) might give new meaning to manipula-
tion. In comparison to the rich manipulation language of the physical
world (consider a watch-maker’s or a machine tool-maker’s craft), the
manipulation available with present machines is a travesty. See
Buxton’s contribution, Chapter 15. But these innovations are quite
beyond the conservative, near future stance I took in this chapter.

SUMMARY

This chapter centers around the notion that a cluster, including ease of
use, comprehensibility and perceived value—in short, utility—will be a
major factor determining the extent to which programming will enter
the lives of most people in the future. Although most chapters in this
book deal, appropriately, with questions of "how" with respect to inter-
faces, I have attempted to bring to center stage the prior question of
"interfaces to what?" The image of computation as an interactive
medium of unprecedented breadth and power, with programming as the
means of construction and reconstruction in this new medium, estab-
lishes a context in which we may set our goals and judge the results of
our work.

The concept of utility that must be employed in this context is not
simple. To succeed in enticing individuals and society at large to learn
a complex and subtle device, that device must offer "continuous incre-
mental advantage," motivation to take each step forward at each stage
and at each level: from day one, to expertise; from immediate gratifi-
cation to the noble goals of intellectual advance of civilization. In this
regard, no individual or group of designers can pretend to substitute for
the experiences and judgment of a hugely diverse society. But, while
computer professionals are rapidly crystallizing computational environ-
ments out of their needs and aesthetics, few are attempting to give
nonprofessionals a chance to experience a medium of minimally con-
strained possibilities. We must do better.

In changing programming from its present to future forms, we have
three major dimensions of change at our disposal. We can alter the way

152 ANDREA A. diSESSA

we present computation to the user; we can alter the structures of com-
putation themselves; or we can alter the contexts of application of these
structures to do different things. While they are conceptually distinct,
these are not independent dimensions. Each can influence the other.
Means of presentation may select different structures as optimal; dif-
ferent structures may make new applications possible; and important
applications may carry with them suggestions for presentation.

This chapter has looked at a span of near future changes to the
meaning of programming. This yields some expected conclusions, and
some more surprising. Programming is a relatively complex task that is
not likely to become trivial through any near future change in any of
these dimensions. On the other hand, there are several promising
moves we can make that offer improved utility with changes along all
three dimensions. 1 believe we can look forward to an exciting future
for programming as a popular medium that can extend the reach and
grasp of us all.

ACKNOWLEDGMENTS

This paper contains many ideas that have been developed and honed by
a group of people associated with Logo and Boxer, a group too large to
enumerate. Discussions with Brian Silverman about device program-
ming have been provocative. The constructible interface in Boxer is
being developed jointly with Jeremy Roschelle. The discussion of
direct manipulation was stimulated by suggestions by Don Norman, Ed
Hutchins, and Jim Hollan. The presentation of this chapter has been
improved by suggestions from the Asilomar group, particularly Bill
Mark, Don Norman, Steve Draper, Clayton Lewis, and Mike Eisen-
berg.

