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Abstract: Open toolsets are a new genre of software that involves a greater number of
smaller units than conventional educational “applications.” The units are intended to
be highly modifiable, extendable, and combinable with each other. Primarily with
examples created in the computational medium, Boxer, I illustrate open toolsets. 1
suggest how they can be constructed and what learning properties they may have. In
particular, I argue that open toolsets may allow very different development
communities, involving teachers in essential ways. Finally, I outline areas of research
that need to be done to support the best development and use of open toolsets.
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Introduction

In this paper, I wish to introduce, explain and advocate a new genre of educational
software. My interests are mainly in mathematics and science education, but I am quite
sure what I say here will travel well into other disciplines. After introducing the
notion of “open toolsets” and the standards by which they should be judged, I will
spend a significant amount of time on some technical issues. This is because
technology sometimes really makes a difference in what we can accomplish
educationally, and it happens that this new genre of software is only just now
becoming technically feasible.

Open toolsets are, at first blush, just what the name implies. They are an open
collection of tool-styled software units that are aimed toward learning in some
particular subdomain, like constructions in geometry, system dynamics, particular
pieces of ecology or evolutionary theory. “Open” is meant in several senses. First, each
tool in the set has the usual properties of a tool. That is, it helps accomplish tasks and is
pedagogical to the extent that those tasks are educationally relevant. Tools, in general,
trade off explicit representation of educational goals, which may be more evident in
other, more didactic software, for a sort of authenticity in which software is
instrumental to the goals of its users.

My motivations for developing tool-styled software are both aesthetic and
instrumental. Aesthetically, I am committed to maintaining a sense of personal agency
and responsibility in the users of educational software, teachers and students alike.
This aesthetic goal also has instrumental overtones. If we want responsible, self-
motivated learners and thinkers, we need to set up learning environments where
those orientations are cultivated. But, I also persist in reminding that the educational
experiences of our students are not just steps toward practical ends—for example, to get
and keep good jobs—but they are also an expression of the values of our civilization.




We cannot escape deciding how we want our offspring to experience life in school,
beyond any practical measures of utility. I want them to feel directly empowered.

The more direct educationally instrumental value of tools, for me, follows from a basic
orientation toward knowledge—that it is cultivated best in the service of goals
understood by learners. I won't explain this presumption in detail here, except to note
two things. Working within learners’ goal systems serves “motivational” ends,
keeping them engaged. But this also has epistemological ends. Goals help refine
knowledge by providing an understood “measuring stick” to determine if current
knowledge is powerful enough. Understood goals have high epistemological leverage.

So far what I have said needs only the “tools” part of the open toolsets moniker. The
“sets” adds an additional dimension. These days, I believe software generally comes in
too few and too big chunks. Flexibility is a key issue. The primary way to achieve
flexibility in a big software system is by adding an endless stream of features. I am not
the first person to note the relentless commercial pursuit of features and the downside
for consumers. Mike Eisenberg (1995), for example, writes eloquently about this issue.
Elegance, comprehensibility and mastery generally just fade away when software
systems become too complex. Although a full-time user may appreciate a huge range of
specialized features, when software is used educationally, we frequently pass from one
piece to another as our specialized needs for learning evolve. So, in general, students
and teachers just don’t have time or need for exotic features hidden in a maze of
options, subtools, preferences, and the like. The route advocated here is many simpler,
easier to understand tools, compared with fewer, more complex ones.

There is a place for complex, broadly useful tools. I have been a long-term advocate of a
very rich set of generic capabilities, like text and hypertext processing, graphical,
network and programming facilities as the basis of students’ experience with
computers. This is the very concept of “computational medium” that has motivated
my own work with computers in education for a decade and a half (diSessa, 1995). But
the concept of a computational medium suffers the same “problem” as generic literacy.
Knowing how to read is only useful if there is a literature about the subjects you want
to know something about. (And, incidentally, learning to read is best accomplished in
the context of reading about something you care about.) So, open toolsets is a candidate
for the content “literature” that will be the basis of learning particular things with
computational media. These toolsets will interpolate between the best general-purpose
environment we can imagine, and the scores or hundreds of learning micro-contexts
we must create for students to become mathematically or scientifically literate.

 We've gotten as far as “tools” and “toolsets.” But why the apparent redundancy of
“open toolsets,” if the very meaning of tool connotes a degree of openness? The answer
is that I want to emphasize toolsets that will never be finished and complete, but will
always be open to changing old tools and adding new ones. Changing old tools is the
easier of these desiderata to grasp. Tools like hammers and saws are flexible in one
way—they don't “care” what they are used for. But they are not in themselves
malleable and changeable. With electronic tools, if we are clever, we need never be
limited in this way. Although, again, this is not a trivial cleverness. Almost all current
software tools are much less changeable than I believe optimal for open toolsets.

The second part, adding new tools, is simple enough in principle. But there is still
another level of openness. The key to this other level is that open toolsets work best
with an important degree of synergy among components in the set. Each tool needs to
be open to working with an unlimited range of new tools that might be added to the




set. Merely having the toolset running on the same machine is far from sufficient.
Having a toolset with components that can work flexibly together is critical, but still
insufficient, Instead, the ultimate principle of synergy is that tools need to be
interconnectible and combinable in ways that are not anticipated by the initial toolset
builders. Indeed, they need to be combinable with other tools that may be added to the
set in the future.

I would like to begin to articulate the criteria by which the success of open toolsets may
be measured in more definite terms. To be sure, such software must support good
learning by students in classrooms. As I said before, this learning will be critically
dependent on the activities that we foster among students and teachers. There is quite a
lot to think about with regard to this, and at least as much to design. But my emphasis
here will be in a different direction. The idea of open toolsets is motivated in
substantial degree by issues of the appropriation of technology deeply into existing
cultures, and the co-development of technologies and new cultures.

I like to think about technology fitting and developing “social niches.” These are the
broad, repeatable patterns of production and consumption defined by the multiple
social constraints of value, capability and interest that impinge on genres of technology
and their use. The simple idea is that any software type, open toolsets in particular,
must suit many people’s interests and ways of working. These pose strong constraints
on what types of software exist and can come to exist.

Let me illustrate social niches by talking about what I propose for a new mode of
software development for open toolsets. Currently almost all software development is
done by teams of experts. Teachers and students, if they are involved at all, are testers
and commentators. The paradigm I have most hope for with open toolsets is that these
will be developed in larger groups, which include teachers and students doing
important work in the design. Over an extended period of time, tools are tested and
modified, activities are designed and shared, as a community with solid ties to the
educational practice converges on a toolset that is both powerful and flexible enough to
serve a wide range of local styles and interests. There may well be software developers
(programmers) in the community, but far more time will go into building a joint
culture around the toolset than into “coding” per se. We need to reverse the emphasis
on code and interface and put it more appropriately on activities and cultures.

Is this a viable image? It certainly has attractive properties. But there are important
uncertainties. First, how do people make money out of this scheme? The first law of
capitalism is that, unless someone expects to make a lot of money, the whole program
is unlikely to succeed. There are some scenarios that lessen this threshold. For
example, if open toolsets prove extremely valuable in some experimental context,
government in some form may decide it is in the public interest to facilitate their
development.

A second critical issue is the expertise of teachers. Are there enough creative and
thoughtful teachers for that subculture to take a substantial role in “software
development,” even if it is a very different form of development and a different form
of software at issue? I am more confident than most people that there is a tappable, or
at least developable subculture of teachers who can lend an important realism and
“bottom up” sensibility to software development by contributing to open toolset
creation. Even if this works within development communities, will the miniature
communities that build toolsets be representative enough that other teachers, not in
the development community, can easily join in? These and a host of other complex



and uncertain issues about the viability of this paradigm are basically asking, “can we
foster an effective social niche for open toolsets?”

Without proposing to answer such questions—we just may not know the answers
without trying—let me review the rationale for open toolsets. First, an open toolset is a
flexible collection of smaller, less “expensive” to build parts. We want to preserve
initiative and ownership for students and teachers by designing a flexible base for
learning and instruction, a base that grows and can continue to grow organically
without ever imposing straightjacket-like constraints. Students will do “work” they
understand and with which they can personally identify using these tools. Teachers,
also, will be served by the toolset. They can exercise their personal style, teaching
sensibilities and sense for their own students and local context in designing and
modifying activities with the tools, and even modifying the tools themselves (and
combinations of tools) involved in activities. These properties can help with the
critical task of teachers’ appropriating technology into their professional practice. Open
tools “meet teachers half way” in giving them more control over the technology. This
extends further the fact that open toolsets may be developed in substantially different
ways than current software; the school community may have a much more substantial
and sustained role than at present.

No new idea is completely new. Open toolsets are an extension of many current ideas
about learning with technology. They are in the same spirit as “constructionist” and
microworld approaches to learning, popularized, in particular, by Papert and the MIT
Media Lab (Epistemology & Learning Group, 1991). I also already mentioned Eisenberg,
at the University of Colorado, in connection with his attempt to combat complex but
still inflexible applications via programmability. Another project that is working
toward many of the open toolset goals is the SimCalc project (Roschelle & Kaput, 1996).

Technology

Technically, how do we create these open toolsets? One obvious possibility is that each
tool is a separate application. This is certainly compatible with the general framework
of current computational systems. But it poses a range of limitations and problems that
have become the subject of a lot of discussion and attempted “fixes.” First of all,
applications tend to be large and complex. Because the operating systems currently
available supply only a limited range of services to users, applications must build from
scratch, and they frequently duplicate each other’s basic services. A good example is text
editing. Almost every application does or can make use of text processing, but anything
beyond the most basic services are built anew for each application. This is not only
technologically inefficient, but leads to difficulties in learning—each implementation
of a service will have idiosyncracies that users must learn in moving from application
to application.

Other limitations of using separate applications are weaknesses in sharing data and in
interaction. Each application typically has its own data types. You are lucky to be able to
cut and paste text (and usually you will lose formatting) and simple pictures, much less
a complete interactive object. Why shouldn’t a business document contain an active
spreadsheet? Or why shouldn't a student’s science report contain both the data she used
and the analysis tools, so the teacher can check the analyses or run a different one to
show, for example, how a different conclusion is also supported? In terms of
interaction, it is currently very difficult to connect different tools-as-applications.
Suppose you want to connect a nice simulation, say of an ecological system, with a
statistical analysis tool and a graphing tool. This is sometimes possible these days, but



as often it is awkward, and too often it is just plain impossible.

There are three movements in contemporary computing that are related to each other
and to the problems described above. First, “scripting” is really just the ability to control
an application (or a component—see below) with a programming language. This
means applications can at least use each other’s resources. You could, for example,
have a script that sent some data to an analysis tool, and returned a graph-as-picture to
your “home” environment (say, a text editor). You can essentially create a new
application by gluing together resources provided by multiple existing applications.
Clearly, this is in the spirit of open toolsets, and it is an important step toward realizing
their promise.

“Component computing” is an attempt to allow multiple, small “applications” to work
together efficiently. Microsoft established one standard, OLE (object linking and
embedding) with a follow-up called ActiveX. Apple and IBM pursued another standard
(OpenDoc, now apparently defunct). A newer possibility might be most familiar to you.
The programming language Java, which is most visible in network applications, has a
standard that allows multiple little “applets” on the same page of a net browser. Each
job you want to do might require a different collection of several small applets, rather
than several big applications. “Document-centered computing” is a slightly different
way to describe component computing. The idea is you should always work on the
basis of the document you want to create. The resources you need for the different parts
of the document (text processor, picture editor, analysis tool, spreadsheet...) should just
come with the document. You should not need to run off to load a big, separate
application just to work on a piece of your document.

In this paper, I will use a rather different technological basis for making open toolsets
feasible. 1 will use Boxer, the system we have been designing, implementing and
testing for quite some time at the University of California, Berkeley (diSessa, Abelson,
& Ploger, 1991). Boxer has some advantages over the movements described above. In
particular, it makes full programmability by a simple programming language (simpler
than Logo for beginners, we believe) the heart of its capabilities. But it also has
disadvantages. The most obvious disadvantage is it is not “industry standard,” and
therefore it is not ubiquitous. I won’t continue the discussion of advantages and
disadvantages of Boxer here, even though these are interesting and important. That is
because the point of this paper is to paint a picture of what open toolsets might be like,
and what they would achieve educationally.

Before we can begin serious assessment of the educational possibilities of open toolsets,
I want to give a more detailed sense of what such tools might be like. I will do this by
describing a number of examples, implemented in Boxer. For more technically
oriented readers, I note that the capabilities that make these examples possible come in
three levels. First, any component system allows a level of combinability. Second, some
possibilities described below also require programmability. Finally, a few (such as
graphical/computational objects; see Vectors, below) require a computational medium,
like Boxer, where every object is computational.

A Visible Calculator

Let me begin with a trivial example—a simple calculator. I do this mainly because
everyone knows what calculators are and how to work them. So, what is new in this
example is exactly what makes this an open tool, unlike the calculator you have in
your desk drawer, or more appropriately, the one on your computer. You should be




able to see clearly just exactly what “opening” this sort of tool can mean.
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Figure 1. A “visible calculator” (left) and some of the surrounding environment (right).

Figure 1 shows a Boxer “open calculator” (the box on the left) and a few pieces of the
surrounding environment (on the right). This is pretty much generic Boxer. Boxer is
an environment constructed out of boxes that contain text and pictures. Text and
pictures, themselves, can contain more boxes, and hence more text and pictures, in
meaningful box-chunks. Here, the calculator is a box. It contains, for example, a keypad,
which also is a box, and on and off buttons, which are boxes that happen to have a
graphical “boxtop” presentation (icon). You can “flip” the graphics to see the real box
underneath. Each of these, the calculator itself and its parts, might be considered
components in a component computing model. In particular, in Boxer you can cut,
copy and paste any box (and text and pictures, of course, also). This means you can
move your calculator into any workspace or document you like within Boxer. You can
also paste a copy of the calculator in a document to leave as a permanent part if it, for
example, to allow users of the document to do their own calculations with the data
provided. Why shouldn’t a tax form come with a calculator, or a written assignment
for a student come with the tools s/he needs to do the assignment? Why shouldn’t you
be trying out the calculator in Figure 1, rather than just looking at it?

e Open tools can be cut and pasted into any document or work environment, and left
there for any future work.

Boxer adds a new and important sense to “open” in the tools it allows. The boxes that
serve as display devices, result, op (operations) and entry, show you the actual
working state of the calculator. They are, in fact, simply variables in Boxer, which are
nothing more or less than named boxes. You are literally looking at a part of the
working mechanism of the calculator, not just a display. In this case, I (as designer)
decided it might be more useful to see the two numbers you are going to operate on
and the operation that is going to be performed, in contrast to just the standard single
number display. This form of openness, showing the works of the tool, is pretty simple
in its implications here, but not completely trivial. For example, you can see what is
going to happen when you push the enter (=) key; you don’t have to guess. Did you



accidentally push / rather than +? What happens if you press 123 + 54, and then
decide you meant 123 - 54? Do you have to start over, or can you just press -, then
enter (=)? (It happens that you can just do the latter, which is nice.) What is the
difference between pressing enter (=) the key once and twice? Since you can see the
“internal” state of the calculator, you know what happened and what is going to
happen. When tools get more complicated than a calculator, being able to easily show
some of the internal state and workings is even more of an advantage, as later
examples will better illustrate.

e Open tools can be open in the sense of “transparent.” They can show users what is
going on.

The calculator has an important property, trivial modifiability. The keypad is nothing
more than some text typed in a box. So, if you happen to like a different arrangement
of keys, just do it! In fact, I added the pi to the calculator since I frequently do scientific
calculations that need it. To add it, I positioned my typing cursor and typed “p” i”. Not
a difficult task. And if you don’t want that “key” in the keypad, just select and cut.

* Some aspects of open tools may be trivially modifiable. Accomplishing a change in
the tool may be almost as easy as thinking of it.

Of course, modifying ops (operations) and £ns (functions) may be just as simple. Sin
(sine), cos (cosine) happen to be built into Boxer, so inserting them was as easy as
typing three characters. Similarly, a log function or tan function come and go from the
tool with a few keystrokes. Modifiability and adaptability are halimarks of open tools.

Now, trivial modifiability just may not do the job. Not every function or special
number is built into Boxer. Suppose you need a statistical function, like standard
deviation. Suppose you need a financial function like average-yield, in order to
compute the average yield of an investment that appreciated 50% in 5 years. (Note in
Figure 1 that av-yield actually appears in this calculator!). The calculator was
written so that any function that you can write in the Boxer programming language
can be added to the calculator by cutting and pasting the function into the calculator
works, and, again, adding its name to the appropriate keypad. In this case, av-yield
has been pasted into a hidden part of the calculator, its closet. Every box has a closet, so
this is something most Boxer users, especially tool users, know how to find and use.

e Boxer open tools are always open to “extensive modification” as well as trivial
modification. You can program extensions or changes in how the tool works.

If a tool is well-written and you understand Boxer programming, “extensive
modifiability” may be nearly as simple as trivial modifiability. This means a lot for
Boxer literate folks. If means they can't be straighjacketed by any supplied tool. But it
means just as much in a community that includes Boxer novices. If a novice makes a
suggestion, frequently a more expert colleague can just make the change on the spot.

We haven’t even gotten to the more interesting aspects of this calculator.

s Open tools interact well with their environment. They are an integral part of a
flexible workspace.

It happens that you can click on any number outside of the keypad to enter something
to compute with. This may seem trivial. It may just save a few keystrokes. But fluidity
is not to be underestimated. If you take half the drudgery out of a job, a lot more
learning can occur. And, this same principle, excellent integration of a tool with its
environment, has deeper and more important forms than saving keystrokes.



Examples to come will illustrate this.

Getting data into the calculator suggests that one might want easy ways of putting data
out. The actions result->item and result->box allow you, respectively, to
replace any number outside your calculator with the result, or to append the result to a
box. So, the calculator has as many external memory registers as you like, and those
can be within explanatory text (Experiment 1, ... in Figure 1), if you so choose.

e Boxer Open tools are computational in several senses. Sense (a): Since Boxer has (is)
a programming language, it is exceedingly easy to capture, reflect on, and change a
process.
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Figure 2. A record of a simple calculation (left), and one using variables (right).

The record box in the calculator automatically saves a record of the calculation you
perform. This turns out to be terribly easy to program. Every operation on the
calculator, a mouse-click here or there, winds up executing a Boxer command. The
record is just a slightly modified listing of these commands. Many Boxer tools and
microworlds benefit from such recording capability, which might be called “macro
construction” in some systems. Not only can you review your work, checking for
mistakes, but you can edit the record and re-run it (action do-record). Figure 2
shows two such records. The first is quite ordinary: adding up a series of numbers and
taking the square root. (That is a convenient notation for the result of the previous
calculation. It is handy to use with prefix operations.) The second record uses a special
computational feature: Instead of clicking on a number, we clicked on the name of the
variables rate and years, which therefore appear in the record. This still computes
the “formula” entered, which is, in this case, the result of compounding a certain rate
of interest for a certain number of years. But, since record contains symbolic values,
you can easily edit rate and years, and then do-~record will compute a new
result. Again, this really entails almost no extra learning: Any user of Boxer knows
how to name a box to create a variable. And it requires almost no effort for the
developer: Inside the calculator mechanism, within the Boxer code that runs it, a
variable is always as good as a explicit number.

o Computational sense (b): Boxer open tools can make use of a wide range of
computational structures to make them both more flexible and easier to construct. For
example, the written representation of a process can always be abstracted by using
symbolic names, variables, in place of explicit values.

Since computational sense (b) may be unfamiliar, let me further exemplified. This
calculator politely explains obscure errors by replacing the introductory text “Andy’s
handy dandy...” with a message. Many Boxer tools are similarly informative.

e Boxer open tools are often self-documenting; they can “talk to you.”

Of course, this idea is not special to Boxer tools, but could be implemented within any
tool or component. However, Boxer makes this sort of thing particularly easy. The
introductory text happens to be just another (unnamed) variable that is set by the
calculator mechanism according to its internal state. (Boxer allows unnamed variables



by using a special structure called a port. You may use a port to a box in any place you
might have used the name of the box.) The generalization of this fact is critical for the
open toolset program. For moderately expert Boxer programmers, creating a tool like
this calculator is very easy, given the wide range of simple but useful computational
capabilities built in to Boxer.

Here is yet another example of computational sense (b). The part of the calculator that
re-runs the record is essentially a one-line program that sequentially executes each
row of the record box as if it were a programming statement. The whole calculator
was about a day’s work for me, and most of that was design rather than coding. “A
larger number of simpler tools” is well within reach if each tool takes a day or so to
create. And, once again, we can turn our efforts to activity design and improving the
tools through extensive use rather than “getting it right the first time.”

Let me begin showing some tools whose pedagogical use is more novel than the
calculator’s.

A Simple Graphing Tool

Figure 3 shows another Boxer open tool. It is a simple graphing utility designed mainly
to show time-parameterized data. Again, this was essentially a one-day design and

programming project. The basic operations of the grapher are controlled by a pulldown
menu that appears when you press your mouse button anywhere on the graphing tool.
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Figure 3. A graphing tool (left) and some of the surrounding environment (right).

Integration with the work environment in this case includes several capabilities quite
similar to the calculator. In particular (after using the pull down menu to select
graph-data), you can just click on a box full of numbers to graph them. In Figure 3,
the top two boxes to the right of the graphing tool were graphed, changing the color of
the graph in between. A similar capability is that one can direct the graphing tool to
create a graph in real time, as a simulator runs or as some data arrives from an
external probe. In this case, the ability to script the graphing tool is important. You can
just “ask g plot a-point”, where a-point is whatever datum you want to
plot. After you collect a set of data in a graph, point by point, you can also “ask g
data,” which results in handing you the set of values last plotted (see the third item
in the column to the right of the calculator in Figure 3). Of course, you can cut, copy
and paste the graphing tool wherever you wish. In case you don’t want a copy of the
full tool, but just the picture it shows, you can use another generic Boxer capability.
Snap g (snap as in “snapshot”) returns a copy of just the graphics of any tool like



this one.

“Recording a process,” like the calculator’s record feature, takes the form of a
pulldown menu option to draw a graph with the mouse. Ask g data then fetches
the numerical data that you entered graphically.
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Figure 4. “Flipping” the graphing tool box shows its settings.

Figure 4 shows the built-in options that you can adjust for producing graphs. As I
mentioned before, you can “flip” any graphics box to see its “real” box contents, and
these options are on the flip side of the graphing tool box. You can adjust the label of
the graph, the maximum x and y values, the places where tick marks are shown on the
axes, whether the graph plots negative as well as positive values, whether the scale
(maximum y) is automatically computed for a given set of data, and the width and
color of the graph lines, as well as the background color of the graph. In showing these
options, my real motivation is to show another aspect of an open toolset. Tool
building is recursive! These options were created by cutting and pasting other existing
tools into the graphing tool. In particular, the little subtool that allows you to drag and
drop new colors onto the color variables was taken directly from a general tool library
we are accumulating. Similarly, the “radio buttons” that allow selecting some options
were taken from the same library. Finally, the pulldown menu that controls the
graphing tool was also taken directly from that library (as were the on and off buttons
in the calculator).

o Existing open toolsets make building new open tools much, much easier.

As a token of the many uses that a graphing tool like this may have, and also to
illustrate the teachers’ role in an open toolset development community, let me
recount an experience. At a workshop to introduce some high school teachers to Boxer,
I found myself demonstrating this little graphing tool to a mathematics and science
teacher. His eyes lit up as he suggested that this would be a fine way to have his
students get an intuitive idea of how a derivative relates to a function. He imagined
that the student would draw a function, and the graphing tool would overlay its
derivative. Figure 5 shows the essence of his wish, which we realized in about 5 to 10
minutes. It is a little program that scripts the graphing tool, named g, to (1) change the
graph color to red, (2) draw a graph of the pair-wise differences in the data of the
existing graph (which, presumably, the student had drawn), and (3) change the graph
color back to blue for the next student-drawn graph. (Differences is a one-line



program that a fluent Boxer or Logo programmer can create almost instantly.)

]dr:w derivativel

ask g
change graprh red
plot-data differences data
change graph blue

Figure 5. A program that overlays the derivative on a drawn graph.

Here is the generalization: Good tools suggest interesting uses to teachers. Even if the
teacher is not up to programming the modification or extension, another, more
technically expert member of the community can often quickly extend an open tool in
the way the teacher would like. Then it's off to the classroom to see how this works.

Vectors

This example is of a tool type that is both particularly powerful and also particularly
characteristic of Boxer. Several years ago our group developed a course on physics for
sixth grade students (diSessa, 1995). As part of the course development, a graduate
student, Bruce Sherin, programmed an extension toolset that allowed us to use vector
quantities in Boxer in pretty much the same way as one usually uses numbers. First, a
special keystroke created a vector, which appeared as an arrow within a box. One can
adjust any vector by dragging its tip with the mouse. Of course, vectors are scriptable,
so any program can also command a vector to change. In addition, similar to the
grapher, the flip side of a vector shows its coordinates, which are directly editable. Like
any object in Boxer, a vector can be named. In addition, the toolkit provided
commands to add vectors (add vectorl wvectorl), to multiply a vector by a
number (mult vector number), and to have the vector have effects on other
graphical objects (move vector causes a Boxer turtle to move the length of the
vector in the direction of the vector).
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Figure 6. A vector microworld in which students drag velocity or acceleration
vectors to control a space ship.

Adding vectors to Boxer in this way is nearly the same as adding vector literacy to the



range of competencies that can be fostered within this medium. It is about as powerful
as having numbers on the keyboard and numerical calculations in a programming
language.

Figure 6 shows a simple exercise microworld built using vectors. In it, students are
requested to drive a space ship around the earth and moon by adjusting the
acceleration or velocity of the ship in real time. The task is quite entertaining and
challenging. It was a significant part of our instruction on how to understand such
things as velocity and acceleration as vectors, but also on how to think about complex
motions in terms of vectors.

One of the nice things about this microworld is that nearly the complete code for it is
right there for students to inspect or copy. The procedure tick shows what happens
“each tick of the clock.” First, the velocity is incremented by the acceleration (i.e., the
velocity is changed to its old value plus the acceleration). Then the space ship is
directed to set its heading in the direction of the velocity’s angle of pointing. The
ship then moves according to its velocity, and, finally, the ship makes a dot. The
other procedure, go, simply repeats tick over and over, along with check-
vectors, which allows vectors to be changed while the space ship is also moving.
Check-vectors is part of the vector toolset.

Tt should be evident how simple the vector toolset makes it for teachers or curriculum
developers to make a very wide range of exercise microworlds for students. We used
vectors dozens of times in the original physics course and in subsequent versions. For
example, we made a simple tool that allowed students to analyze (in terms of velocity
and acceleration) stroboscopic images they had created of tossed balls. In addition, most
of what was given to students was exceedingly transparent. Students were expected to
look at the code of the microworlds, like the space ship simulation in Figure 6, and
learn from it.

Most impressive, vectors became thoroughly incorporated into the student culture.
Many students made video games using vectors and the fragments of vector code they
learned in exercise microworlds. Thus, a simple toolset that nonetheless introduces a
powerful idea (vectors) flexibly into a computational environment like Boxer showed
to us all the promise that we feel open toolsets may have in many other instances;
evident utility to curriculum designers, teachers, and also students.

e New graphical/computational objects, like vectors, may be among the most flexible
and powerful of open tools for curriculum developers, teachers and students.

In case you believe vectors are a special case—and certainly they are in some
respects—Figure 7 shows a structurally similar tool. In this case, we are entering the
area of genetics and evolution. The basic command, new~-c¢reature, creates an
animal (they are called “scats”) with a certain genetic makeup (Figure 7a). The animal’s
scale is a random number between 20 and 30 and its eye-color consists of one
green allele and one blue one. If you flip the scat’s box, shown in Figure 7b, you see that
its insides consist of computational versions of its phenotype and genotype. In this
case, the genotype scale translates simply into the phenotypical size of the animal.
The scat’s eye-color is a bit more complex. The two alleles, green and blue, interact,
with the green allele being dominant. Thus a green-blue genotype results in a green
phenotype. You can change the genotype directly “inside” the scat and see how the
phenotype (automatically) changes.
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Figure 7a. New-creature produces a graphical/computational object.
7b. The “flip side” of the object shows its computational structure.

With such a toolset, it is easy to set up a simple situation where scats breed with one

another and produce offspring. Then you can “play Darwin” by selecting the scats you

want to breed for

the following generation. You can select for size, or eye color, or

whatever you like. It happens that scats are easily extendible to add other genetic

characteristics, and you can also change the little program that “expresses” (computes)
the phenotype in terms of the genotype. Or write a different program for selecting scats

to breed, and so on.
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Figure 8. A configuration of a modeling kit that allows exploration of creatures (triangles)

Figure 8 shows a

living in balance with their food (gray squares).
toolkit to allow modeling of both ecological and evolutionary



phenomena. On the left is a field in which creatures (the triangles—let’s call them
turtles) wander around, foraging for food (the gray squares—they are actually green).
Each turtle has built-in properties, like its age and energy level (corresponding to
stored calorie reserves). In addition, the kit has built-in functions to “birth” new
turtles of any specification, to cause a turtle to die, to generate a certain number of
food squares, and so on.

The configuration of the toolset shown is arranged to facilitate a certain kind of
experiment. The init command sets up a certain amount of food and a certain
number of turtles. In Figure 8, the gray Boxer boxes on the right are actually shrunken,
but they may be clicked on to open and make available their insides.

The generation command runs the simulation for about one life-span of a turtle.
Info provides helpful information to users while the models are running, similar to
the greeting box in the calculator. Get-information contains resources to find out
many things about the current state of the model: like the number of live turtles, their
ages and energies, the amount of food available, and so on. The model contains the
specification of how turtles work, and it is meant to be adjusted by students. The
history box is simply an empty place in which students can keep notes about their
various experiments. The last line in the menu just puts a graph of the population of
turtles and amount of food into the history box. You shouldn’t be surprised that the
graphing tool described above is used to generate those graphs. So, again, available
tools make building additional tools easier.
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Figure 9. The progam that defines behavior of the creatures, and two graphs of their
population (black, jagged) and food supply (gray, smoother). The first graph
shows “boom and bust,” and the second a relatively stable, limited population.



The top part of Figure 9 shows the initial turtle model—what the turtle does each
“tick” of the clock. This has four parts: what happens during the normal course of
living; the conditions for and affect of giving birth; the conditions for dying; and the
foraging behavior (in this case, move is just some random motion).

The first graph in the bottom part of Figure 9 shows a typical behavior of this ecological
system. It shows the turtle population (darker line) quickly but irregularly increasing
while the food supply diminishes. This “boom” is followed by the expected “bust” part
of the cycle; with food greatly diminished by many, hungry turtles, the large turtle
population quickly dies off, leaving the food supply to replenish gradually in the
absence of turtles. Keeping a stable population, in fact, is quite a difficult task, as 1
discovered myself when I first started to play with this modeling kit. My first solution
was simply to put a cap on the population of turtles. 1 inserted a condition for birth
that there be no more than 8 turtles. While this is artificial, it is effective, as shown in
the second graph in Figure 9.

The first trial of this modeling kit with students actually was with student teachers in a
secondary mathematics and science teacher credentialing program. The initial
pedagogical difficulty was surprising. The student teachers of biology—who were quite
steeped in the details of complex, real biological systems—rejected the possibility that a
simplified mathematical model like this could tell anything about the real world. Even
the “expected” boom and bust cycle was not convincing. 1 think this is not an accident
of the population of teachers. Instead, knowing how mathematical modeling makes
sense, in view of the simplifications it must make, is an important instructional goal.

The way this group of students completed their study illustrates some important
points about open toolsets. In particular, they used the modeling kit in ways I had not
anticipated. While I had provided means to get information about the live population,
they wanted to do a post mortem on dead turtles to see why they died. Because the kit
is open to inspection, they could easily delve into the internals of the kit to find and
examine dead turtles.

The solution the students eventually found to solve the boom and bust problem is
also illuminating. They noted that all the turtles age together, give birth together, and
die of old age together. (From their post mortem, they discovered that almost all the
turtles were dying of old age, not food insufficiency. The turtle population was dying, it
turned out, not because lack of food was starving them to death, but because
insufficient food kept them from having sufficient energy to give birth to a new
generation!) So, the teachers changed the birth conditions to allow turtles to give birth
over a longer age range. The resulting more diverse population, in fact, turned out to
be significantly more stable! Before, the simulation produced a sequence of critical
periods when the whole population is fertile together. At those times, the turtles must
have sufficient energy to propagate, or the population perishes. Now, given a greater
range of ages, “out-of-synch” turtles may weather tough times to propagate when food
has regrown. Again, I did not anticipate this sort of change in the model. However,
because the model was simply a program that the students could change, it could easily
accept their innovative and excellent ideas.

Reflections on the Research Program

I find the possibilities of open toolsets intriguing. (1) They appear to offer new
directions for learning with excellent properties. (2) They may solve some difficulties
in current computer-based instruction, like how to make software adaptable in the



classroom. But open toolsets are also intriguing for pointing out how little we know
about those possibilities. They even suggest that the generality of our current research
paradigms is limited with respect to answering important questions. Let me explain.

I would divide a research program on open toolsets into three overlapping levels. The
first is the one we know most about. It is the learning level. Most educational research
on mathematics and science instruction documents and seeks to explain particular
conceptual difficulties that students have in learning particular subject matter. This
level finds a new context in the use of open toolsets. But, presumably, we can continue
our research on student learning into these contexts. This includes both cognitive
studies of individual difficulties and more socially oriented studies of learning-in-
context.

The second level begins to outstrip current interests and paradigms of study. This is
the level of “tools and activity structures.” I mentioned earlier how important interest
and personal (and communal) involvement is for the success of open toolsets. One
example was the fact that vectors were taken up into the student culture, with
consequent greatly extended learning time. Students simply cared to use vectors to
accomplish goals they understood, so the properties of vectors in accomplishing those
goals became important to them. A great deal of lip service is paid to motivation,
especially in designing instruction. However, our understanding of the details of
interest patterns, particularly how they can evolve, and their connection to
competence and material support (like open toolsets) is extremely meager. I am struck
at how little study is conducted that looks at any long term, felt-to-be-coherent
engagement of students.

The third level focuses on “social niches and patterns of appropriation.” Change in
cultures and communities is a critical barrier that we face in improving education.
There has been a significant amount of study of issues relating to this, largely under
the rubric of reform. But almost all of this is in ancient correlational forms. There is
hardly any structural study of the evolution of cultures and communities, and even
less concern for the role of artifacts (like open toolsets) in facilitating change. Social
theory and science, technology, and society studies focus on either stability, or on case
studies of change. Neither are particularly apt to prepare us to design better for change.
In particular, what current research can tell us whether open toolsets have better social
properties than other forms of software? This is not necessarily an issue of turning our
attention to societal, structural matters that bear on education. The process of
appropriation, and change of community practices and values, happens in every
classroom that changes to adapt to a different material support system.
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