Reference and Data Construction in Boxer™

Andrea A. diSessa

Graduate School of Education
University of California
Berkeley, CA 94720

Boxer is an integrated computational environment encompassing a broad range of
functionality, from programming to text editing, interactive graphics and data base
activity. It is currently in the process of design and implementation at the University of
California, Berkeley, and is intended largely for educational computing at all levels,
from early elementary school into university. This note describes features from two
sets of mechanisms in Boxer: The first specifies how one can refer to computational
objects in Boxer, and the second specifies how one constructs compound objects.
The common thread is that both of these exemplify important tradeoffs that one must
make in designing systems for unsophisticated users, for example, easing the first
stages of learning at the cost of formal simplicity of the system as perceived by experts.

*This work is supported by the National Science Foundation under grant numbers
MDR-85-96025 and MDR-86-42177.

Introduction

In recent years the importance of finding principles that aid in designing easier-to-use
computational systems has come to be more and more appreciated. Particularly in
educational circles, it is apparent that, while there can be significant benefits from
programming, the task of learning that skill is far from trivial. Even such seemingly
simple ideas as variable and procedure take surprisingly long to master. Luckily, the
increasing availability of more computer power at less expense means that we can
consider substantially altering the appearance, structure and means of interacting with
systems in addition to looking for better methods of teaching and hoping (vainly) for
smarter students.

In this paper we will take a brief look at two pieces of design in Boxer to suggest ways
to think about the design of complex systems so as to be maximally understandable
and useful for unsophisticated users. In the next section we will briefly describe the
fundamental notions behind Boxer that are intended to lead to learnability. These,
however, are only to introduce Boxer and have been described in greater depth
elsewhere [diSessa 85]. The more particular concern of this paper is a discussion of
two of the more specific features of Boxer's structural design that contribute in smaller,
but not insignificant ways to understandability. The first of these is the way Boxer
handles the problem of referring to computational objects. This involves some
straightforward means of using computational objects that are not permitted in many
conventional languages because of limitations in their user interface. It also involves
some more sophisticated notions that allow a broader range of reference types to be
used more simply in Boxer than in many other languages. The second feature of
Boxer's structural design that interests us here is the way in which complex data
objects are constructed .

Basic Boxer

The most basic notion behind Boxer is to increase understandability by increasing the
bandwidth between the user and the computational system. We do this by insisting
that (essentially) all the state of the system be directly viewable on the display. Indeed,
the user should be able to pretend that what is on the screen is the computational
system itself. Additionally, we want the user to have direct, immediate and fine-

grained access to adding onto or changing the system. In Boxer, the full capabilities of
a text editing system is constantly available to alter the system as one might alter a
textual document. Together, visibility and manipulability mark a major shift away from
standard "conversational" paradigms of interacting with computational systems where
one sees the system only in bits and pieces by requesting part of it to be displayed,
and where one alters the system only by sending commands that, invisibly, alter the
state of the system.2

Dat
L SE

REPEAT 4 TIMES:

FORWARD SIZE
RIGHT S0

SQUARRE
FORWARD SIZE
RIGHT 30 FORWARD SIZE

RIGHT1290 FORWARD SIZE

Figure 1. Named procedures appear in Boxer simply as boxes with a
name tab attached. Variables are similar, but are marked as
data.

Figure 1 shows two of the basic structures of Boxer, two small programs using Logo
turtle graphics commands (HOUSE and the subprocedure, SQUARE, used in HOUSE)
and a variable (SIZE, which is also used in HOUSE to set the scale of the drawing).
These structures are simply typed into Boxer. Just like the alphabetic characters,
boxes are created with a single keystroke and thereafter expand as text is typed into
them. In contrast to seeing the name of a variable or its value, or the text of a
procedure in a definition, what is depicted in Figure 1 are the variable and the
programs themselves. Within the conversational paradigm, there is no notation for the
fact of a variable having a particular value, but only for the action of giving it one, or
the action of reserving space for one (declaring a variable). The difference between

2 Compiled languages are usually even worse than "conversational" interpreters. The
state of the system is affected only in large chunks, e.g., a complete program, with
long turn-around times between user interventions. After the program is compiled,
except for watching its side effects, there may exist only very indirect "debugging
systems" to make finer grained inspections and changes. :

this and Boxer's state orientation is not only in visibility, but also in manipulability.
Thus, if one wanted to change the value of the variable, one could simply edit what
appears on the screen. If some command or program alters the value of the variable,
what appears on the screen will automatically change. Pressing the delete key would
cause the variable to disappear and to become undefined. Changing the text in the
label of the variable "undefines" the old variable and "defines" the new one, to use
convertional conversational terms. With regard to programs, it is simple in Boxer to
point to each of the lines in a procedure and to execute them, one at a time, to see
their effect. This is the sort of feature that is important to understanding the complex
state transitions in the unfolding of procedure execution.

Having such direct, full and fine-grained access to computational objects is at present
essentially unknown in computational systems. The conjecture is, of course, that
having this kind of access greatly increases the perceived reality and ease of learning
about programming.

Besides increased visibility and manipulability, Boxer strives to use spatial
arrangement to express important system semantics. The aim is to capitalize on every
learner's capability to see, understand and manipulate spatial structures, in order to
make computation more "familiar" and easy to learn. For example, boxes are strictly
hierarchical; they may appear inside one another but may not overlap. Containment
thus makes an adequate representation of the important relation of "part of." If you
want some variable to become part of a program, if you want a variable to have some
substructure (so that it becomes a record with fields), or if you want a particular
procedure to be a subprocedure, you simply put the appropriate pieces inside the
desired object.

| My Wor 1|
BRI AR

| School Work (=i Turtle Hocld: [

Lunar Lander |9

[R Picture i

3 <X
N

SMILEY!!

Figure 2. A user's entire environment can be arranged in boxes,
and inspected and changed by moving around inside
them.

Figure 2 shows an extreme form of the use of this spatial structuring in that a
hypothetical user's entire computational world is organized by boxes. If he wishes to
view or change the parts of his "papers" box, he merely points to that box and expands
it with a keystroke. We defer to other writings [diSessa and Abelson 86, diSessa 86]
for the details of these and other uses of spatial arrangement in Boxer to show, for
example, how parts of drawings are box-parts of the boxes that represent the
drawings.

Reference in Boxer

Many conventional languages never let you get your hands on computational objects
themselves. Instead, you create them by name and always refer to them by name.
So-called object-oriented languages like Lisp and Smalltalk improve the situation a bit

by allowing users to have access to data objects through keeping and passing around
pointers to those objects. Yet, even this ability is restricted in that both Smalltalk and
older Lisps don't allow one to deal with procedure objects in the same way as data.
Boxer's concreteness means that we have no choice but to let users handle all objects
in essentially the same way. And, indeed, one can literally pick up and move with
editing commands any computational object, data, procedure, graphical object, etc.,
without having to resort to the intermediary of a pointer. This implies particularly that
procedures have more reality as objects in Boxer and are more parallel to data
objects, lending a cleaner systematicity than in conventional languages. For example,
while many languages do not have any mechanism for creating unnamed procedures,
in Boxer, one can have them in the same way one has literal data objects. Visually, all
this entails is a box without a name. Figure 3 shows a box that can be used in place of
the name SQUARE in HOUSE (Figure 1). This procedure also contains a variable in
place, rather than using the named variable SIZE. Figure 4 shows how to change
such variables under program control without using names.

REPEAT 4 TIMES:

FORKARD rDat
ISG

RIGHT S@

Figure 3. The subprocedure (SQUARE) and variable (SIZE) of Figure 1
may be used directly in place rather than having a separate
definition referenced by name. Specifically, this box can
replace "SQUARE" in HOUSE.

Concrete accessibility of all computational objects in Boxer means it is often simple to
create non-standard objects out of standard pieces. For example, one can simply
insert a procedure box into a data box and, by doing that, make all of the capabilities of
a variable available to the procedure (e.g., the ability to change it simply, and the
ability to pass it as an argument into and return it as a value from a function). Even
more foreign to most languages, one can package clusters of definitions in data boxes,
and thus create and make it possible to pass around entire environments of
procedures and data. A standard way of using this capability is to think of a data box
containing a set of procedures and data definitions as an "actor" with a set of attributes
(local variables) and private capabilities (procedures). In Boxer, one may tell such an
actor to exercise its capabilities or return part of the information it holds with a generic

command TELL, as in TELL JOE FORWARD 100 (Joe is a turtle), TELL BANK
WITHDRAW $100, or TELL BANK BALANCE-OF-ANDY'S-ACCOUNT (this last TELL
has more the meaning "ask"). Smalltalk and other message passing languages have
this capability by virtue of special features and built-in structure. Boxer has it mainly by
virtue of concrete accessibility and the unconstrained combinability of any sort of
computational objects.

When a data object is referenced by name in Boxer, the default meaning that we
support is "information transfer." That is, a user that types SIZE expects to get the
information contained in the variable SIZE. This meaning is supported structurally in
declaring that on accessing a variable, the value is copied. (In fact, our
implementation does not literally copy in these instances, but operates so as to
maintain the illusion for the user that it has done so.) Lisp and most similar languages
typically pass information by passing pointers to that information, not copies of it.
While that is sometimes useful, and it is certainly efficient, it is frequently confusing to
novices who, on changing part of an object, discover they have changed another
object which happened to share structure via pointers. Thus, the copying discipline in
Boxer is really a modularity principle to simplify the lives of novice computer
programmers by preserving the main effect of "information flow" of accessing
variables, without the potentially confusing aspects that full-blown sharing via pointers
can bring. Without going into detail, Boxer also maintains a standard copying
semantics in the use of procedures so that one won't have the untoward possibility that
the execution of a procedure might, as a side-effect, change its definition.

For more advanced applications, copying semantics can be limiting. Boxer provides
three methods of getting around such limits. In the first instance, TELL, as mentioned
above, allows one to reference and change a genuine object, not always simply the
information (i.e., a copy of the contents) of an object.3 More profoundly, we have
introduced into the language as an advanced construct the concept of a port that
directly embodies a "reference to particular computational objects" rather than the
default "reference to information." Ports are discussed in the next section, and
following that, we look at the final mechanism for advanced reference, flavored inputs.

3 Actually, simply setting a variable is also a limited form of this.

Ports

Ports are basically views of an object from some remote part of the Boxer system.
They function in most respects identically to the object viewed by the port. For
instance, the ports in Figure 4a view the variable X. Changing X or either of the ports
with the editor or under program control changes all of them. For example, either
CHANGE X (CHANGE is Boxer's "set the variable” command) or CHANGE PORT-TO-
X has the same result, that X and all ports to it are changed. The second line in the
figure changes X without using its name, but only a port "reference" to it.

DQF;T"'T"'_" ort
1s 1is is i
‘ some data. ;2;2 é:ta.

CHANGE VARIABLE: rPort NEWVALUE : [Data

This is This is some new,
some data. improved data.

Data
Data
Data
555-1212
D.tu

Data
BT vz 51ow |
rt

555-1212 |

Figure 4. a. A variable, X is "viewed" by the port PORT-TO-X. A change
in either changes both. Executing the CHANGE statement,
which contains another port to X, changes X and the two ports.
b. A typical use of ports to share data. The telephone number
of Joe and Mary Blow is shared; Mary's telephone data is a

port to Joe's.

Ports are a powerful referencing mechanism that can, in fact, replace naming. One
may generally use a port to a data object in the place where one would ordinarily use
the name of a variable. Indeed, one can use a port to a procedure where one would

ordinarily use the procedure name. Hence, one can program entirely without names!
There are two reasons why this is not a beginner's mode of operation. First, as
already mentioned, ports implement sharing. With shared structure, one must be quite
careful about changing objects; other'objects may'see those changes via ports to the
changed object or to parts of it. Logo, for example, deliberately avoided any
appearance of sharing. Secondly, we-conjecture that operating at the level of text,
using names instead of visual reference (ports) to remote objects simplifies the life of
the beginner by allowing him to apply his common linguistic sense in producing
slightly stiff, but still reasonable approximations of English as a means of
programming.

In general, we have tried to maintain the principle that one can always use the name of
an object in the place of the object and still get the same effect. This dictates how
named ports should operate; they should respect the "reference to an object”
semantics (not "reference to some information"). Instead of a copy of the information in
the port, one should get another port to the object viewed by the named port. Thus
ports exhibit a kind of "stickiness" that propagates throughout the system when they
are used, maintaining contact with the original data or procedure. This stickiness
extends to ports that are contained in data boxes, so that, for example, any reference
to the variable A-PIECE-OF-DATA in Figure 4b will maintain the fact that a sub-part of
it, TELEPHONE, will always be the same as the corresponding subpart of ANOTHER-
PIECE-OF-DATA, to which it is linked by a port relation. Stickiness is necessary in
order to maintain the function of ports as referencers of computational objects, hence
sharers that create fully operational links between particular objects in the system.

Flavored Inputs

When one knows in advance what kind of object one is creating, or when one only
uses an object in a single way, the choice between making a data object (information
reference) or a port (object reference) can support the distinctions one wants.
Unfortunately, it is impossible always to know this in advance, and, as well, one often
needs to treat objects in different ways according to circumstances.

Boxer handles this by having explicit conversions, i.e., a PORT-TO operator that
generates a port to an object, and a COPY operator that makes a copy and thus
terminates the stickiness of ports. But in addition, Boxer has a more subtle mechanism
that adds context sensitivity to reference type. One can specify the kind of reference

for each input of a procedure. We call these "flavored inputs." The default type of input
respects the type of reference specified by the object referenced. Data objects get
copied, and ports become ports through which the Procedure may manipulate the
actual referenced object, Alternately, port flavored inputs force iject reference. Thus,
what might be referenced ordinarily as information (data), may be referenced as an
object. In fact, the first input to TELL, which specifies the object to talk to, is port
flavored, and one may talk to data objects that otherwise provide only copies of
themselves. (It usually does no good to "talk to" a copy of an object. The reason is, for

example, if you intend to change an object's internal state, talking to a copy of the
object doesn't do any good.)

We also have 3 third type of input flavor that causes the input to be interpreted directly
as data. The second input to TELL is of this flavor, and this causes TELL JOE
FORWARD 100 to pass Joe the literal message FORWARD 100. A normal input would
execute FORWARD 100, "expecting” FORWARD 100 to return some message data that
would then be passed to Joe for execution. Note that, after all, TELL is not really an
exceptional way to get object reference, but an example of the use of flavored inputs in
order to invisibly get the appropriate reference.

The mechanisms described above are not the formally simplest ways of getting the
range of functionalities envisaged. For example, it would almost certainly be formally
simpler (1) not to distinguish data boxes from procedure boxes at all, (2) to have all
named reference occur in the form of object reference (pointer- or port-like reference),
(3) to have procedure activation specified by special markings, and (4) also to have
copying specified as another special marking.4 But our judgement is that this would
be only a formal simplicity which beginners would not appreciate because of a
plethora of initially incomprehensible syntactic marks in common expressions.

To take the example of an existing language, Scheme (a dialect of Lisp) references
procedure objects in exactly the same way that it references data objects. But the unfortunate
side of this simplicity is that one must use explicit syntax in order to cause g prc?cedure to
execute. The Scheme syntax is not complex, merely enclosing an expression |.n
parentheses, but our intention has been to keep explicit structure out ?fthe earliest
expressions a user learns. Logo also maintains substantially more visible structure than

4 In fact, we tried out a variation of this suggestion.

Boxer in simple commands such as "dots" and "quotes" in setting variables, e.g., MAKE "X:
X+1.

Flavored inputs mean that TELL can magically work properly in most instances without
the user having to realize that a special kind of reference is needed, and thus having
to add special markings. If the user does things much more complicated than
stereotypical use of these invisible conventions, he is likely to run into trouble. But that
is precisely the time to introduce the more advanced concepts and syntactic marks that
explain the normal case and allow for exceptional cases to be handled, rather than to
burden the beginner with difficult notions (as reference is) or initially incomprehensible
syntactic markings.

We can summarize: Boxer has made an attempt to provide a very low threshold by
simplifying the lives of beginners, while at the same time providing some of the
important advanced functionality of modern programming languages like object-
oriented capability and message passing. It has done this at the expense of a formal
simplicity that might provide only general, context-independent mechanisms suitable
for the range of functionality wanted. Instead, we chose to slightly complicate the
language, from the point of view of an expert who knows it all, so that beginners can,
for a long time, avoid thinking about things like reference and the complexities of
sharing. The trick is to find slightly more complex structures than the minimal formal
ones, but ones that can operate invisibly and correctly as long as beginners stay with
simple uses of the commands they learn.

BUILD

This section briefly describes yet another kind of structure in Boxer that was invented
for a particular functionality, though more generic structures could well suffice at the
expense of additional cognitive load for beginners. The functionality is the
construction of compound data objects out of literal or computed parts. In languages
like Lisp or Logo, this is handled largely with generic kinds of operations, namely
function invocation on parts that are, by default, assumed to be evaluated unless
quoted (marked as literals). For example, Logo includes operations called LIST,
SENTENCE, FPUT and LPUT that work as follows:

Xis[AB], :Yis[CD], :Zis"E

then

LIST :X 1Y evaluates to [[AB][CD]] SENTENCE :X:Y evaluates to [ABC D]
LIST :Z :X evaluates to [E [A B]] SENTENCE :Z :X evaluates to [E AB]
LIST"Z :X evaluates to [Z[A B)] SENTENCE "Z :X evaluatesto [Z A B]
LIST [Z] :X evaluates to [[Z] [AB]] SENTENCE [Z] :X evaluates to [[Z] AB]

FPUT :X :Y evaluates to [[AB]CD] LPUT :X:Y evaluatesto [CD [A B]]

FPUT :Z :X evaluates to [E A B] LPUT :Z.Y evaluatesto [C D E]
FPUT "Z :X evaluates to [Z A B] LPUT "Z .Y evaluatesto [C D Z]
FPUT [Z] :X evaluates to ((Z] A B] LPUT [Z] .Y evaluatesto [C D [Z]]

The problems with this paradigm of compound data construction are three-fold. First,
the actual construction of the data object is the province of the internals of the
constructor function, hence must be understood and imagined as an abstract
operation without visual support on the screen. The second problem is actually an
extension of this first: What is actually seen may be visually counter to what is
produced. For example, LPUT places its first argument at the end of the object it
constructs. Compare LPUT :X :Y to FPUT :X :Y above. Finally, construction by function
invocation is very difficult for deep structures as evaluation must be propagated
explicitly to the lowest levels. For example, if one wanted to produce

[[1 [2 [3 <the value of X>]]]],
one would have to type something like
LPUT LPUT LPUT LPUT :X [3] [2] [1] .

In contrast, Boxer uses a spatially-oriented mechanism in which one makes a template
of precisely the form that one wants. The parts that need to be evaluated are marked
with a |, meaning evaluate, or @, meaning unbox. The single construction function is
BUILD, which causes the | and @ operations to be carried out. Figure 5 shows
expressions in Boxer that carry out the equivalent to some of the Logo expressions
above, including the particularly problematic LPUT LPUT LPUT LPUT :X (381 2] [1] []-
Note also that Boxer has only one data marker, a data box, not the " and [] of Logo.

BUILD [-m_ta: gvaluates to Dat a——
I 1y

[DﬁatBﬂ [DCatDj

BUILD rDat evaluates to Dat
[sX oy | [Feco]
BUILD D_;t.'z oy svaluates to -D_L,atr =D
lZ X 8 Dat Dat
(£ [As

BUILD rData— evaluates to -Data—
Dat gy Data—

i Dgtaa—t—' i -Daat.a————
a Dat
' [3ax] ExEl

Figure 5. Some examples of BUILD.

Finally, we have extended the use of | and @ to top-level execution. In code to be
executed, these markers effect a preliminary pass that constructs a line of commands
to be executed. This gives easy-to-visualize methods for doing things such as
countering default reference types. For example, in order to compute the name of a
box to be told, rather than specifying the name literally, one can use:

TELL @FUNCTION-TO-COMPUTE-THE-NAME-OF-A-BOX <whatever>
(The @ is used instead of ! here since functions return data in data boxes, which is not
what TELL expects to see.)

Another example: Suppose in using TELL, one wanted to specify that some part of a
message should be evaluated before the message is sent. For example, if one
wanted to tell Joe to move forward the global value of X rather than his personal X,
one would say:

TELL JOE FORWARD !X

rather than

TELL JOE FORWARD X

Conclusion

In this paper | have described two kinds of mechanisms in Boxer and the rationale for
their particular forms. | have described mechanisms that provide for a broad range of
reference types, but which should not severely complicate the system for beginners
who need only the simplest "information transfer" type of reference, or who use only
simple cases of "object reference" for message passing (TELL). Indeed, the
mechanisms are deéigned so that early use of these structures is entirely invisible, and
just typing a textual command "does the right thing."

I have also described the mechanism we have designed in Boxer to eliminate some of
the complexity of constructing compound structures. This also has a small cost to
experts in that it introduces non-standard operators, like BUILD, ! and @.

Because of the tension between formal simplicity and providing a seemingly easier
learning curve, the design decisions explained above are open to debate and to
empirical testing. That testing will not be simple as it must seriously take into account
long term use of the system. We must beware touting introductory simplicity that might
cause long term difficulties or limitations. We must beware decrying transient
incomprehensibilities that quickly evaporate with more experience. Despite such
difficulty, the reason for providing our design rationale in papers like this is precisely to
open discussion that can clarify and generalize, or, on the contrary, refute our claims
with empirical results or better argument. We believe laying open one's design
rationale for discussion is one of the best ways to proceed with the task of designing
new and improved technological artifacts while at the same time advancing the state of
our scientific understanding of principles of simplicity and understandability.

References

[diSessa 85] .
diSessa, A. A. A Principled Design for an Integrated Computational Environment,
Human-Computer Interaction, Vol. 1, No. 1, 1985.

[diSessa 86]

diSessa, A. A. Notes on the Future of Programming: Breaking the Utility Barrier, in
User-Centered Systems Design, D. Norman and S. Draper (eds.), Lawrence Erlbaum
Associates, Hillsdale, NJ: 1986.

[diSessa and Abelson 86]
diSessa, A. A. and Abelson, H. Boxer: An Expressive Reconstructible Medium,
Communications of the ACM, in press for September, 1986.

