
Interactive Learning Environments
2003, Vol. 00, No. 0, pp. 000–000

Reflections on Component Computing
from the Boxer Project’s Perspective

Andrea A. diSessa
Berkeley Boxer Project, Graduate School of Education, University of California,
Berkeley, CA, USA

ABSTRACT

The Boxer Project conducted the research that led to the synthetic review ‘‘Issues in Component
Computing.’’ This brief essay provides a platform from which to develop our general
perspective on educational computing and how it relates to components. The two most
important lines of our thinking are (1) the goal to open technology’s creative possibilities to the
broadest range of people possible, and (2) to do so on the basis of a single architecture, a
computational medium, that includes the possibility of constructing and modifying interactive,
dynamic constructions by all participants.

INTRODUCTION

This note situates the Boxer Project’s thinking about component computing

within the perspective of our larger body of work. In ‘‘Issues in Component

Computing’’ we took pains to present a balanced view, based on data.

Here, we make sure our broader agenda and predispositions are not hidden.

Readers can then make their own judgments about our objectivity in analysis. In

addition, in ‘‘Issues in Component Computing’’ we attempted to keep separate

analytically distinct threads (e.g., as represented in our use of models as partial

specifications); this is a chance to weave threads together in a way that makes

best sense, given our general philosophy of educational computing.

Democratization
The Boxer Project’s general approach to educational computing has been, first

and foremost, to attempt to make the technology itself as open and broadly

DISESSA-3

Address correspondence to: Prof. A. diSessa, University of California at Berkeley, Graduate
School of Education, EMST, 4533 Tolman Hall #1670, Berkeley, CA 94720-1670, USA.
E-mail: disessa@dewey.soe.berkeley.edu

1049-4820/03/0000-000$16.00 # Taylor & Francis Ltd.

useful as possible. We feel it is an unacceptable compromise to design systems

that, a priori, exclude teachers and students from direct, creative contributions.

In ‘‘Issues in Component Computing’’ we discussed openness mainly for

teachers in order to keep the report brief and to focus on areas common across

component projects. But, in other places we have systematically tried to

explain and document the value of open technologies for students (diSessa,

2000).

Our position is not that we know how much teachers and students can

gain from open environments; that is still at least somewhat uncertain.1

Instead, we believe it is unacceptable to presume – in the face of the

extended and just-begun period of social adjustment to the affordances of

technology – that shutting out non-technology expert contributions is the

right way to go. The presumption that ‘‘one-way’’ media (experts make

things that users merely use) are best for education is almost certainly a

self-fulfilling prophecy. Empowering teachers with open technology is not

an established fact so much as a challenge that is both plausibly met and

also well-worth taking on. It is a challenge that has at least encouraging

existence proofs, and one that could, if we avoid it, threaten the best that

can be achieved.

Cumulative Expertise
Instant competence with ‘‘transparent’’ technology is an illusion and dan-

gerously restrictive assumption. Instead, just like reading and writing,

competence with technology will prove its value as an extended accomplish-

ment. These are, of course, very broad and deep issues on which the current

state of the art has only a small bearing. For example, experiments with

technology-naı̈ve teachers just begin to set the grounds for adequate

assessment of how much value, ultimately, teachers can gain from open

technologies. We do not take high-levels of technological expertise as sensible

prerequisite for engagement with computer-based learning. But neither is it

sensible to presume high levels will never be accomplished, at least in a

particular minority of teachers who might contribute creatively to the

educational software pool, or show the way for other teachers.

1To be fair to our own work, we feel we know that students can gain an enormous amount from
the use technology that accepts their creative input. For teachers, data is less clear.

2 ANDREA A. DISESSA

THE LADDER MODEL AND OTHER MODES

OF DEVELOPMENT

The LaDDER model has many attractive properties, especially within our

larger framework of democratizing technology and empowering teachers. In

particular, the model is particularly well-adapted to grass-roots development

by teachers, and, more broadly, it is a good representative of methods to

attempt to create autonomy among teachers. Teachers involved with LaDDER

collaborations build their own capability to work independently, as well as

contributing to a product. In contrast, integration teams predicated on ‘‘experts

only’’ technology don’t obviously build autonomy or an intimate under-

standing of the specific affordances of technology for learning. Member-

sustained communities may not provide enough support even to bring teachers

seriously into the design enterprise.

The LaDDER model would seem also to soften some of the problems we

discussed concerning discoordination across community, such as developers’

need to continue to develop without waiting for educationalists to ‘‘catch up.’’

In particular, teachers and local developers can do a lot of work without

primary developers. Furthermore, educational design may always work best

with iterative refinement over extended periods; the LaDDER model supports

this without primary developers’ being constantly on call.

The toolset idea is integral to the LaDDER model: building tools that are, at the

same time, flexible, yet also adapted to some particular area (e.g., to a curricular

area). In addition, gradual development of toolsets and curricula supports the

co-development of communities and technological resources, which has much

to recommend it in view of the growing recognition that social structures are

integral to any technological accomplishment (Bijker & Law, 2000).

Obviously the LaDDER model does not do all things well. We do not think

it works well in early stages of designing infrastructural technology, such as

Boxer, E-Slate, or the component infrastructure of ESCOT. Even the

development of a family of compatible toolsets (perhaps built on a common

core set of components) may work well in conjunction with LaDDER

instances, but almost certainly such development needs other organizational

supports, such as might be provided by a two-legged model. Similarly, we

believe that procedural programming provides better conceptual support than

wiring for certain topics at least (diSessa, 2000, chapter 2). The E-Slate

project, its commitment to wiring for component interconnection notwith-

standing, shares this perspective.

REFLECTIONS ON COMPONENT COMPUTING 3

Although we emphasized the LaDDER model and toolsets here, our

broader approach is much more eclectic. See diSessa (2000).

Technology Specifics
Programming plays a special role in our general point of view in several ways.

First, we consider it an independently attractive activity for at least some

curricular areas (e.g., motion and geometry). Second, in terms of component

interconnect, we feel wiring is too specialized to be the ‘‘right’’ interconnect

method in all instances. In ‘‘Issues in Component Computing’’ we noted that

we chose to have images in our image processing toolkit automatically connect

to ‘‘nearby’’ graphs. Programming affords a wide variety of interconnect

protocols (see Parnafes & diSessa, 2001); primary developers may want to

fabricate special-purpose interconnect protocols for certain tools or toolsets.

In addition, programming constitutes a significant way of adapting

components to particular circumstances – not only in the construction of a

toolset, but also in adapting individual tools or constructions using tools for

teachers’ quite specific purposes. Since, as we argued, adaptability of

individual components is much more important than is generally recognized,

making it broadly accessible socially seems the best default strategy.

Boxer uniquely aims to have a common form for all loci of programming.

We have a rich container that entails the capacities: (1) to use already-

constructed software; (2) to do such minor things as add or edit text; (3) to

copy, connect or re-connect components; (4) to open components for

inspection or modification; and (5) to program for direct pedagogical

purposes or to construct a component or a learning environment from scratch.

Having a single locus for the accumulation of technical competence

maximally leverages any technical competence that users develop. Learning

about Boxer structures and programming in any capacity transfers to other

capacities. Students who learn to program can also disassemble and adapt

components (Azevedo, in press). Having a single locus of competence also

means that we do not have to decide in advance on any particular model of

social factoring. We do not have to decide in advance, for example, whether

the LaDDER model will work, but only when secondary developers do all the

work of adapting or creating resources in schools. We can see how much

teachers and students can contribute to this process without moving to

different technology.

We emphasize that the cost-benefit trade-offs for teacher and student

acquisition of technical competence are not transparent in the current

4 ANDREA A. DISESSA

educational computing scene. That almost everyone might drive and

automobile, or that universal literacy might become the norm in modern

civilization would have been impossible to foresee. Our project, more than

most, aims to experiment with technology that does not foreclose at least the

possibility of the broadest impart of technical competence.

CONCLUSION

From the Boxer Project’s perspective, components are not a panacea or

universal prescription for success in educational computing. In fact, the idea

of components, by itself, may miss both of our fundamental commitments: (1)

important constituencies such as teachers and students may be shut out of

autonomous creativity. (2) Fluent transitions among and redefinition of levels

(inside and outside components), such as afforded by a top-to-bottom uniform

medium, may be foreclosed or forever isolated within particular communities;

competence with technology may have an arbitrarily enforced ceiling. Instead,

for us, components obviate the anachronistic assumption that tends to be

made, explicitly or implicitly, among advocates of programming for wide-

spread consumption: that everyone should make everything for themselves.

ACKNOWLEDGEMENTS

This work was supported by a grant from the National Science Foundation, number REC-
9973156, to Andrea A. diSessa. The PI of the sponsored work reported here has a financial
interest in PyxiSystems LLC, which is the owner of the Boxer software.

REFERENCES

References are included in ‘‘Issues in Component Computing.’’

REFLECTIONS ON COMPONENT COMPUTING 5

