¥

T ECHNTIZCAL R EPORT- G3

Social Niches for Future Software

Andrea A. diSessa
University of California, Berkeley

May, 1988
THE BOXER GROUP ‘
Graduate School of Education iy g, This: groject ke SUpEERRL I RS
. q ; i Rl 3.2 0y by the
University of California, Berkeley : g,%}: NatiahEl Selanes Foundaion
sl ot :

Bbr}\clcy, CA 94720 %,NH‘F Opinions expressed are those of the authors

and not necessarily those of the Foundation

415-642-4206

This research is supported primarily by a grant from the National Science Foundation to Andrea A. diSessa. We also gratefully
acknowledge a contribution to support students from the Apple Corporation, and a contribution of equipment from Sun
Microsystems. To appear in diSessa, A., Gardner, M., Greeno, 1., Reif, F., Schoenfeld, A., and Stage, E., Towards a scientific

practice of science education. Hillsdale, NJ: Lawrence Erlbaum.

Activity Structures and Social Niches

Considering that computers have been with us for some time, I am surprised at the primitive state
of our critical capability to judge their usefulness in educational settings. What I see often are
arguments at very general levels -- "computers are dynamic, interactive and can respond
patiently in an individualized manner.” To be sure, one can rely to some extent on such
generalizations, but most confidently in retrospect rather than in anticipation of good educational
outcomes. Engineering and science are driven by expectations and promises like these, but
anyone who has engaged in design or science knows how these can fail in the details -- for some
reason, the promises just don’t get down to brass tacks; general goals and possibilities don’t
really tell us what to do. Critical judgments of particular software are also too often driven by
face validity. It is as if one could see quickly and easily the features that lead to deep learning.
One hears that the software contains a lot of information; it offers the user immense freedom; the
simulation is dynamic and interactive; ideas are rendered concrete and manipulable; the program

satisfies a checklist of "good educational software" rules and has a clever user interface.

I do not wish to dismiss any of these as unimportant. Yet at the same time, I wish to highlight a
class of critical criteria that appears to be difficult or impossible to see "in the software.” I can
introduce the topic with a set of questions that I compulsively ask students when they present to
me a piece of "educational software,” say, a microworld, from which they are sure children will
learn: What exactly is it that children will be doing with this software; what will they think they
are doing with it; why should they do what you think they should do; and how is it, exactly, that
they should learn from what they do? What happens if they have different purposes, and if they
should see the program in a different light than you intend? Why shouldn’t the child get the

wrong answers just to see what happens, or turn your science microworld to artistic ends?

More compactly, I believe the single most important heuristic for evaluating software 1s to try to
simulate the child’s activity structures involving the full spread of his motivations, his capability

to describe what he should be doing, what he can make of the things that do and don’t happen in

response to his initiatives, and so on. In fact, I claim that these activity structures are the things
to be evaluated, not the software per se, and that it is in these structures that we can see not only

how well children will learn, but also what they will learn.

This is evidently a knowledge intensive evaluation technique. It must bring to bear everything
we know about the consumers of our products, not only first impressions. This evaluation entails
long-term trajectories and possibly subtle turns of meaning for people who may be very different
from ourselves. If you cannot answer the above questions about how students will perceive and
interact with software, you have not even begun to evaluate it. Quick arguments about face
validity and first impressions are intriguing, but it is proper to remain skeptical until activity

structures can be analyzed.

The title of this paper emphasizes that student/machine couples are not the only level of analysis
important to this kind of assessment. Any personal activity interfaces with social levels of
activity. Group commitments and patterns of cooperative learning always contribute another
level of dynamic to activity structures. At the very least, classroom social structure both among
children and between the child and teacher must allow what we judge to be productive individual
activities. More profoundly, activities are deeply affected by social concerns even if they are
engaged in individually. This becomes more evident if we lift our gaze from the sanctioned
school and classroom culture to the family and peer group.! Motivations of individuals reflect
communal judgments of what is appropriate in various circumstances, including whether it is
appropriate to think or "try." Overall, we want to think about activity structures as fitting into

niches defined by interest, need, capability and judged appropriateness, both at individual ‘and

social levels.

1. See Penny Eckert’s discussion in diSessa et al. [to appear].

It is not my aim to contribute theoretical or empirical results to this important area. For that I
must defer to experts such as Saxe and Lave.? Instead, I take a designer’s point of view and
through these concerns introduce the general frame that we (the Boxer Project Group at
Berkeley) have been developing to anticipate and, in part, to evaluate the effects of the work we
are doing in developing a general purbosc computational environment. What follows are some
of our particular images, our simulations of future activity structures involving the system we are
designing. They may be less certain than post hoc studies. But as designers, we cannot escape
the fact that the likelihood of our success depends, in large part, on our ability to imagine what

has never been.

The Concept of A Computational Medium

The Boxer Project is aiming to test the feasibility of filling a rather grand and still hypothetical
social niche, that for a computational medium. We are trying to produce a prototype of a system
that extends with computational capabilities the role now played in our culture by written text. It
should be a system that is used by very many people in all sorts of different ways, from the
equivalent of notes in the margin, doodles and grocery lists -- all the way to novels and
productions that show the special genius of the author, or the concerted effort of a large and well-
endowed group. In a nutshell, we wish to change the common infrastructure of knowledge
presentation, manipulation and development. More modestly, we want a general purpose system
to serve the needs of students, teachers and curriculum developers, something that is so useful for
such a broad range of activities that the community as a whole will judge it valuable enough to

warrant the effort of learning a new and extended literacy.

Already the choice of target niche defines many of the properties of the system. Notably it will
be complex and non-trivial to learn. Like written language, it will gain its foothold by being

learnable in small chunks that are by themselves useful, and by paying back the substantial

2. See also diSessa et al. [to appear].

investment made to learn it over a lifelong usefulness. My most compact description of the
learning process is learnability through "continuous incremental advantage;" the system at each
stage gives the learner an additional capability she wishes to have by learning a little bit more
about the system, throughout the whole course of intellectual development. The child gains by
learning a word, say, "cookie," and the adult gets a job by filling out the application competently,

or gains in professional prestige by eloquently expressing her ideas.

What does a computational medium look like? Begin with written text, for it is certainly true
that a computational medium would be forsaking a fundamental and established niche if it did
not build on this already well-established medium. With only modestly enhanced capabilities,
including automated ease in editing and formatting, computers in the form of text processors are
already taking over in professional settings, and even in schools, from pens and typewriters.

This is, however, only the beginning of what we visualize as a computational medium.

The next jump comes when we free text from its purely linear form. Hypertext has captured the
imaginations of media enthusiasts, and similarly we see a move in this direction as providing
important new possibilities (so long as the extension is not so complex and specialized as to
preclude use in the simple manner that a basic text processor represents). What hypertext
supplies is the ability to chunk information into packages, and to link, providing non-linear
connectivity from package to package so that users can peruse a hypertext in a broadly flexible
way, and so that, on the other side, writers can collect and structure their ideas gradually,
capturing in the physical layout an appropriate slice of the organization of those ideas, not just a

linear slice.

For Boxer, our new system, we have added two simple hypertext capabilities to text. Text can be
chunked into boxes, which are always part of text in some larger box. Thus, the basic structure
of Boxer is a hierarchy of text and boxes (that contain more text and boxes) in arbitrary

combination. Any box can be named, if that is deemed appropriate.

Boxer can be thought of initially as an extended text processor. In
addition to ordinary text, one can insert at any point a box to "chunk
additional material.

A unit of thought of arbitrary size can be
put in a box and moved or deleted as a unit.

A Book
This box simulates a large structure, like a book.
Any box-part may be name for reference.
Chapter 1]]]]

Overview: This chapter is about big and little
things, contained in Section 1 and Section 2
respectively.
[Section 1: Big | |
[Gection 2: Little |3

[CThapter 2 |

Note that detail in the book has been suppressed by shrinking lower level
boxes and boxes in which we are currently uninterested.

Finally, one_can view and “zoom" to remote bcxeslthrnugh ports like the
following. The port happens, in _this case, to view a box that is also
currently visible near the top of this figure.

A unit of thought of arbitrary size can be
put in a box and moved or deleted as a unit.

Figure 1. Boxer documents are a simple form of hypertext, chunked and
hierarchically organized with boxes, and cross-referenced with ports.

Figure 1 shows some text and boxes that were merely typed directly into the system. When the’
user wishes to have a box-chunk of text, she just presses a key that makes a box. The box
expands as text is typed or moved into it to accommodate whatever the writer wishes. From one
point of view, boxes are just "large characters” that can be selected, deleted, cut or pasted the
way other text is in a word processor. The small grey boxes in the figure have been shrunk,
hiding the detail contained inside. Shrinking and expanding are key-stroke (or mouse-click)
operations. The user can effectively zoom into any visible box, temporarily forgetting its
context, by expanding the box from its normal size, after which the frame of the box occupies the
full screen. We believe Boxer’s éapability to suppress or show detail with nothing more than a
key-stroke will be an important but easily understood expressive extension to ordinary written

text. It can carry many important ideas -- notably, it is a much better representation than static,

linear text of levels of understanding and the process of zooming into details, yet being able to

"shrink" back to get an overview when necessary.

Linking, that is, direct access to remote comners of a Boxer document is provided by a kind of
box we call a port. Ports are simply views of some box, the "target," which may exist anywhere
else in the user’s Boxer universe. An editorial change to either the port or its target results in
changes to both. Ports make good cross-referencing structures, and one may trivially transport
oneself to the place where the target of the port exists if one wants to see more about that
context. The box at the bottom of Figure 1 is a port whose target is the top-most box in that

figure.

Of course, graphical images are important, and Boxer has graphics boxes that contain pictures.
Graphics boxes also contain mobile and interactive entities we call sprites, which can draw and
can be simply taught to respond to clicks from the mouse. These are the basis for Logo turtle
activities, but also they add the capability to define modes of interaction with Boxer that were not
built in. Thus we have extended text now to include images that can be both dynamic and

interactive.

Finally, we add to what we have so far the capability to program. This already separates Boxer
from essentially all hypertext systems. However, Boxer is unique in that not only does it contain
a programming language, it is a programming language. Incremental learnability is provided in
that anyone who can create and inspect a simple document in Boxer knows almost all the
mechanics of creating and inspecting programs. Further, joining programming to (hyper-) text
processing adds utility and flexibility. For example, anything that is typed into Boxe;r is
accessible data, to be manipu]atcd‘at will. So, if we keep a personal journal as a box containing
entries (more boxes), one can write a simple program to rearrange all the entries in the box into
some other ordering, say, based on topic headings rather than chronological order. Programming
is the glue that permits arbitrary recombination of the capabilities of the system or any

documents written in it, giving as full control to the user of a document as to its author.

(GRAPHICS:

circle I man

repeat 36 [Foruard 5 vee | right 45
right 18 Toruacs 59
ac
left S0
forward 60

back 60
right 4S5

vee

neck: Td 30
left 99

circle

body: Meft 90
forward B0

vee

clearscreen
man
hideturtle

Figure 2. Program definitions appear precisely where they are useful.
A general utility such a CIRCLE appears in its environment of use. VEE
is only useful in the MAN procedure, so is located there. Units such
as those identified as NECK: and BODY: can also be chunked with boxes.

We caution the reader not to think of programming necessarily as an esoteric thing, as computers
themselves were once considered. When programming becomes much more useful and
incrementally learnable, it should, we hope, take its place beside written language as a complex

skill, yet one which every literate person is expected to master to some appropriate level.

Figure 2 shows some familiar Logo-like programming activities that are carried out by typing

commands into a kind of box we call a do-it box.

The social niche for a computational medium is much too large and complex to be described in
any simple terms. In fact, it is misleading to think of it as a single niche at all, but rather we

should think of it as occupying a large collection of niches. Indeed, a medium in our sense must

3 We can usefully

justify its existence by being able to play chameleon for multiple roles.
describe more specific social niches to first approximation as "genres," in analogy to various
forms of written language. Accordingly, we are about to enumerate some new and (hopefully)
important software genres that future learners will learn and recognize, taking care that we do not
mistake superficial features of a genre for the network of social and personal activity structures
in which the form works. Books may be pulp novels, which fit into a particular network of

activities and interests, or they may be technical monographs, which fit into quite another. It will

be our obligation to make such distinctions where appropriate.

Tools

Some scientists have tried to define human beings as tool-using animals. While contemporary
comparative psychology does not allow such simplifications, it cannot be in doubt that important
and special characteristics of humans and their civilizations can be seen in the tools they use.
Especially relevant to us are technical and scientific cultures, which are rich not only in physical
tools, from pliers to computers to particle accelerators, but they are also rich in intellectual tools.
A scientist or a mathematician may use little more than a pencil, yet his life is full of "intellectual
instruments" -- well-womn patterns of thinking that accomplish particular, frequently needed
goals -- handed down from previous generations of his culture. In contrast, classrooms are
substantially impoverished with respect to tools. Not only are they poor in physical resources,
but children rarely come to the point that what they learn serves important functions for them in
accomplishing what they wish to accomplish. Teachers are not much better off by these

standards, though perhaps test booklets, mimeo sheets, blackboards and even "manipulatives"

can count.

3. Here, common terminology fails us. One generally does not think of written language as a
medium. Instead, its many physical manifestations are individually "media," such as books,
magazines, newspapers, etc. We should probably be describing written language and our

proposed computational medium as "abstract media," which have many physical
manifestations.

We imagine, then, that a computational medium can provide the substrate to support a new tool-
rich culture in schools. Children will learn by using, inspecting and even crafting tools to
support activities they understand, and teachers will be much better supported for their own
activities than at present. The transition to a culture that values its computational tools enough to
spend substantial effort to support them has already happened in some corners of society -- and
for secretaries and "just plain folk" as well as for programmers and scientists. The same can

happen in schools.

With our emphasis on activity structures, we must say more about learning with tools. How

might people learn, or fail to learn, with tools?

We can pass quickly through initial promises and expectations about tool use, which are widely
extolled. Tools may give children and teachers capabilities in simple and concrete form that they
need to engage in activities they want to engage in. In science, especially, tools can allow
students to approach a different class of problems, say, more open ended and exploratory ones
[cf. Robert Tinker’s work]. Itis said that tools can take over the menial tasks, say arithmetical or
graphical ones (such as point plotting), to allow students to work at the more important higher.
levels of deciding on approach and interpreting results. Now let us enrich these near-platitudes
by taking a first pass at how using tools may fail to engender learning because of inadequate

attention to the activity structures in which tools are embedded.

It is actually quite easy to generate examples of how leamning with tools may fail. Elementary
school children’s use of arithmetic is a good example. First, arithmetic can and perhaps should
be viewed and used as a simple but powerful intellectual tool. Yet it is almost never learned in
contexts in which it can be seen to be powerful. Instead, arithmetic is learned as an abstract
practice, with the sole feedback to students on their capabilities at the tool level, rather than at the
use level. Teachers say this sum is right, that multiplication is wrong. Not surprisingly, children
do not build a real sense of number, or approximations or other parts of understanding arithmetic

that connect to effective use in context. We discovered in early use of Logo that children’s use

of number (in directives to the Logo turtle) was too fragile and failed them for the practical tasks
they faced [Papert et al., 1979]. They had no sense of a "little” or "a lot more," of scale or
measurement capabilities of numbers. For example, students often considered 101 to be much
bigger than 99; they chose numbers according to patterns -- 10, 11, 12 --- rather than according
to meaning or need; and they frequently did not distinguish between distances and angles. At
least some of this was quickly remediated in the turtle context, where numbers did things for the

children.

There are other ways to see the problems of learning arithmetic out of use-context. Children may
learn to operate the tool, but when arithmetic turns to "word problems,"” one finds that the tool is
frustratingly difficult for students to use. It was learned in a way too disconnected from contexts

of use.

Finally, even if children do learn to operate the tool in context, their understanding is likely to be
fragile. The principles by which the tool works are never examined, alternatives are not
understood, so children invent and perpetuate "bugs" in their procedures that they have no way
of correcting on their own. Interesting corroboration of this mode of failure comes from research
on how people understand calculators. Without inducing or being taught the underlying
principles of operation of a calculator, but only teaching how to use it on some class of problems,
users flounder in a sea of arbitrary button pressing when faced with even modestly different
problems. In contrast, if users are taught or induce a model of the internal workings of the

calculator, they can much more easily adapt the tool to new uses [Halasz & Moran, 1983].

At higher levels of instruction, no one questions that algebra is an important tool in leaming,.say,
physics. Yet we see the tool mistaken for the deeper principles of the domain. One of the most
prominent and well-documented types of failures in physics instruction is precisely of this sort.
Students think of physics as learning equations, hence ignore the need for a semantics beneath
the terms in the equation [diSessa, 1985]. In problem solving, students are not surprisingly stuck

at the tool level and solve by exploring the combinatorics of terms in equations, rather than

-10 -

exploring the more fundamental space of physics concepts as they apply to the problem [Larkin

et al., 1980].

Lillian McDermott [in diSessa et al., to appear] provides a final example of a similar failure. In
geometric optics, students are taught to use ray tracing and a few standard methods that work for
a relatively broad class of problems. But, again, the tool seems to become the domain for
students. The characteristics of the particular methods become the characteristics of optics, and
one sees bizarre conclusions drawn about the world that are, in reality, reflections only of the

tool provided to look onto the domain.

We can crystalize these reflections into an "ideal scenario” for the activity structure involved in

deep and synergistic learning of tools and subject matter. In brief, we propose:
- Tools in context
- Understanding underlying principles
* Bottom up: Tools through design
* Top down: Inspectable tools

In more detail, tools should be introduced in a problem context that is, in some sense, thoroughly
understood. In part this is to insure that the tools are clearly distinguished from the domain to be
learned; in part this learning in context is to insure that selection and application principles of
tool use are clear. To the extent possible, the features of the situation that motivate the tool and
the approach to solution that the tool represents (and alternate approaches to the problem) shéuld
also be understood. In simplified cases, students should be able to carry out manually the tasks
for which the tool is designed. This is aimed, in part, at making clear the principles by which the
tools work, and to provide for alternative approaches when the tools themselves might fail. In the
best case, students should build at least a simplified approximation to the tool, or specify the

basic properties of the tool.

-11 -

Where the bottom up approach, tools through tool design, is impossible, we would like to have
tools built of pieces the student understands, and inspectable tools that allow students multiple
partial views of their construction -- views that illuminate operating principles and use, or views
that show (at an appropriate level of detail) the processes through which the tool accomplishes its

work.

In a nutshell, students should be able to explore and hand-simulate tools; they should understand
the usefulness and limits of tools in context; and they should be able to find alternatives when a
tools fail. On a grander scale, we would like to encourage a community of teachers and students
whose instincts are to build and share appropriate tools, not only in the clean and widely
applicable style that we are used to seeing in scientific tools, but also for more everyday and

particular tasks.

Returning to arithmetic, the literature shows that arithmetic can be taught according to these
principles. Gaea Leinhardt [in press] documents a wonderful case of teaching a subtraction
algorithm by thoroughly exercising the problem context, making sure students understand the
resources they have (principles), and only after setting the scene, allowing students to invent the
algorithm-solution. The inventive capability of students can be channeled through adequate
preparation into deeper understanding and away from the prolific but unproductive invention of

bugs.

Tools in Boxer

Figure 3 shows a very simple tool built in Boxer, a "turtle odometer," which keeps track of how
far a turtle walks in its meanderings. Such a tool can be built from scratch in about 10 minutes
by a competent Boxer programmer. The point-and-execute menu on the left is simply typed in
place, and allows the student to reset the odometer or "dump” its value (as DISTANCE: ...) into a
HISTORY box so as to keep track of data in experiments with the turtle. Here the student is

investigating the length of a binary tree as the number of levels of branching is changed. The

213 =

(A) ki [Work space |

[TURTLE ODOMETER | -
[DISTANCE | 400 |
DATI
MENU
reset-odometer '

i ,2,3,4 with
save-data lﬂg;“i %SYE] 1,2,3,% wi
clear-history DISTANCE: 1€@

DISTANCE: 200
DISTRNCE: 309
DISTANCE: 389
Now try changing the size:
[(ARCIENT-HISTORY |44
(B) HISTORY |

Trying level 1,2,3,%,5,6 with
size = 59; factor = =P

DISTANCE: 169

DISTANCE: 166.6
DISTAMCE: 211.1
DISTANCE: 2%0.7
DISTANCE: 258.5
DISTANCE: 2¢3.7

Figure 3. A turtle odometer. a. The total length of a tree diverges
as number of branchings increases. b. The length of the tree converges
in a different experiment.

tree has been programmed and is being executed from the box in the upper right of the screen.
Of course, the student may type directly into the history as well. The menu item "clear—histbry“
puts the current history into the box called "ancient history” providing a long-term log of
activities. Capturing process in this way is extraordinarily easy in Boxer, and we expect it not
only to ease and enhance use of tools generally, but as well to provide a better basis for reflection

on the processes of investigation in addition to focusing on results. Note that the student has

uncovered a very simple pattern in the length of the tree -- 100, 200, 300, 400 -- increasing

e

linearly with number of branchings. Figure 3b shows the quite different pattern when one
changes the FACTOR (ratio of size of branch to stem) from 2 to 3. Now, the total length of the
tree will converge with increasing level, never getting greater than 300. Another interesting
investigation would be the lengths of spirals of various kinds (some diverge in length when they
wind inward, some do not). Or, a surprise is in store for a student who checks the length of the
path of one of four turtles situated at the four corners of a square and directed to walk constantly

toward their clockwise neighbors.*

The turtle odometer illustrates some of the reasons a computational medium can contribute
toward establishing real examples of our ideal scenario of learning with tools. A collection of
tools in computational media can be easier to learn and more flexible at the same time since they
are all similar, using the basic capabilities of the system to define how one interacts with and
modifies them. A menu is just a list of commands waiting to be executed. Similarly, basic
capabilities of the system such as text editing (e.g., typing directly into the history box, editing

the menu) can serve instead of idiosyncratic special-purpose facilities.

Note as well that this tool is so simple as to be entirely under the control of the student. One is in
very little danger of mistaking the tool for the task itself. Indeed, if the student does not build the
tool herself, she can certainly inspect it and modify it if necessary (say, to adapt to the needs of
the four turtles problem). Tools do not need to be complex to be useful and productive in a
learning context, and we hope many small tools may contribute as much as a few complex ones

to the tool-rich culture we envision.

More centrally a computational medium allows us incredible flexibility in crafting the context for
learning tools and for leamning with them. It is easy to generate and modify microworlds, like the

turtle in this case. And these contexts can all be interfaced trivially to tools, as everything lives

4. It turns out the curved path of each turtle until it meets its neighbor is the same length as the
sides of the original square, illustrating that the motion of the chased turtles, orthogonal as it is
to the motion of the chasing turtle, does not affect the chase at all.

- 14 -

(A) - i
, ANGHER]"13¢ | [OPERATION | +] [ENTRY] 122 |
i
[TIISTORY | .
3X65-4=11

rEe s THAT X 2_= 22

456 XCH THRT + 122 = 144

123 -FLIP

g . + =
(B) (oA T

SPRITE
KEYBOHRD

: 2 Fel i
[[=cLlick]| 1ELL CPU ADD |

[cru |

Figure 4. a. A Boxer screen calculator that works by clicking the
mouse on the "keyboard.” b. The calculator mechanism has many pieces,
but each is very simple.
in the same environment. Indeed, a tool built for use with one microworld can easily be moved
to another, in contrast to the extremely problematic interfacing of different applications (editor,
database, spreadsheet, statistical package, programming language, ...) in the present state of

computer use. Tools can even extend the microworld itslf, by being programmed to act back on

the microworld, say some features of turtle control can be added to the turtle odometer menu.
Figure 4 shows a screen calculator built in Boxer. This slightly more complex example

emphasizes how Boxer’s hierarchical inspectability can provide students with models of how the

tool works by simply allowing its inspection through expanding and shrinking. Figure 4b shows

-15-

the insides of the calculator. We see boxes that define the individual keys of the calculator, their
graphical appearance (SHAPE), and their responses to mouse clicks (L-CLICK). We also see
the central processing unit (CPU). Inside the CPU are the various commands that manipulate the
"registers” on the surface of the calculator, ANSWER, ENTRY, OPERATION and HISTORY.
Any piece of the calculator can be executed with a point and click to see how it works in

isolation.

Like the calculator, any Boxer tool provides a model of itself, and if we take some care, these
models can be nearly as informative as we wish. Again, modifications and extensions can be
added by students and teachers to extend the usefulness of the tool beyond the range for which it

was originally intended.

In our examples, we have slighted the importance of tool-use for teachers. However, at this stage
it should be easy to imagine how Boxer can be used for teachers. In the first instance, learning
tools are quite relevant for teacher training, prior to and during service. But I also think more
mundane tools will be perceived as important by teachers, and will provide important learnability
through incremental usefulness. Simply to keep track of and organize notes, plans and grades in
a convenient hierarchically organized "book" is substantial help. One can add simple tools to,
say, warn the teacher of students doing poorly (at least those getting poor grades), or
automatically to grade and store results from quizzes. Indeed, it is relatively easy to make
programs to generate simple quizzes, perhaps tuned to students’ levels of achievement. Making
or modifying pre-made "interactive work sheets" for students would also be, we project, common
activities for teachers. We have produced examples of all of these genres, though classroom use

by teacher is yet to come.

The Boxer group has some preliminary empirical results with students learning in this tool-
oriented manner. Ploger & diSessa [1987] show a 12 year old student in his first hour and a half
contact with Boxer learning some central ideas having to do with probability and statistics by

using and building simple Boxer tools. We were extraordinarily pleased to see how well this

= 16~

scenario matched our "ideal scenario" of learning tools in context, from the bottom up (through

design) and from the top down through inspecting and modifying supplied "transparent tools.”

Knowledge Spaces

Boxer’s hypertext capabilities augmented by programming provide an opportunity to represent
knowledge externally in ways that until now have been inaccessible to most humans. The point
is simply that with a much more expressive medium, extended beyond the linear and static
representational capabilities of text, we may be able to present, so as to be effectively and
reflectively accessible, much more of the complex weavings of relations and possibilities
inherent in the knowledge of some domain. I call such presentations knowledge spaces. So, for
example, biology might to some seem to be simply a swarm of facts and definitions. Yet with an
appropriate presentation, we could highlight relations more than isolated facts, or highlight large-
scale organizational principles. In another model, we might aim to take the burden of fact recall
at least partially away from students, so as to support focus on the use of that knowledge in
problem solving, and on problem solving strategies themselves. Again, it is facile to pretend one
can simply lay out the knowledge of some domain for inspection and appropriation, but if we pay
attention to the structure of activities built onto such displays, new learning patterns may be

created.

An early model in my own thinking about knowledge spaces occurred several years ago when
my then 9 year old son demanded that I teach him about algebra. Without having time to think
out a curriculum, the two of us sat on the couch with a pad and pencil, and I started asking him
about how much he already knew. It turned out that the idea of attaching a "variable" number to
a symbol was in his repertoire. Sol began trying to see if the axioms of algebra made any sense
to him. Did he know, for example, that A x B = B x A. Yes, indeed, that seemed right to him.
When I asked how he knew, he announced that A x B was the area of a rectangle, and if you

turned in on end, that would not change the area of the rectangle, but you would write it B x A.

-17 -

AT =
[RERSONS | 775 0BVI0US! | i ire T e 1
| :

2

MERNINGS| FHGLTIPLICATION] 1% 75 finding
the area.

EQUALS

. The meaning of multiplication:
X

It is finding
the area.

277

T

FACT: R(B + C) = AB + AC
CRTEGORY: 7?7

EVIDENCE: PRTE < B) = A x 28 =
EXAMPLES: 2(3 +) = 2 x 7 = 6

NTERESTINHGL HALSE !

Figure 5. A hypothetical knowledge space on algebra constructed
(mostly) by children trying to understand the domain.

The distributive law, A x (B + C) = A x B + A x C, was more problematic. At first he had no
idea if it was right or not. But we tried a few examples, and it seemed to work. Although he
considered this clear evidence, he did not consider it definitive proof. After a bit more work, he
announced spontaneously that if B and C were the same, then he could see how it worked. A x
(B+B)=Ax2B=2xAB=AxB+ A xB. Apparently having collapsed B + C into one term,

2B, and thus eliminating the "distribution,” he could see reason behind the law.

[won’t continue the recounting, but would like to build this small episode into a plausibility case
for the following activity. Imagine a group of children at a relatively early stage in trying to
understand some domain like algebra. Let us put to them the task of organizing all they know
and their reasons for believing those things into a knowledge space. We should, of course,

provide some examples and some schematic structure on which to hang their developing ideas.

_18 -

Figure 5 incorporates slightly idealized bits from the above scenario into a partially built
knowledge space. Note that we have made room for developing knowledge and even the history
of idea development in categories like TRUE, 7?7, and INTERESTINGLY FALSE!, say,
1/(a+b)=1/a+ 1/b. Each true item needs evidence or reasons, possibly from examples, or
possibly from categories of reliable knowledge, like geometry facts such as A x B is the area of a
rectangle. In the figure we have connected pools of reliable knowledge to the items they support
using ports. The boxes containing those pools reify important epistemological categories, while
ports permit reasons also to be distributed where they are needed in the logic of the subject. The
evolution of reliable pools, possibly seeded concretely but subtly by teacher insertions in the
knowledge space, could play an important role in the evolution of the presentation. Could some
problematic "fact" be understood in the same way some previous fact was understood -- say, is

there a geometric presentation of the distributive law? Try it!

Perhaps it is entirely fanciful to imagine that students would build something like an axiomatic
deployment of some domain in this way. But I don’t think it is fanciful that they would learn a
lot about the domain, what is true and false, why and how one can organize and think about the
whole system. I have no doubt such work could at least contribute to the appreciation of the
difficulty of achieving such a compact representation of a field as an axiomatic deployment, or
the possibility of multiple such organizations as opposed to the presumption built into most
mathematical presentations that there is only one way of thinking of a domain (a presumption,

incidentally, that students seem to learn all too well).

There are several reasons why I imagine this as an activity of a group of students over an
extended period of time. First, it is a difficult task, and can well absorb the insights of a group of
children. I am quite certain an individual child would soon stall for lack of ideas. In addition, I
imagine that the community effort involved in arguing about and negotiating organization for the
community knowledge space would prompt a lot of reflection and learning that an individual

child would not meet even if he were capable of completing the task.

- 19 -

There is much to learn before implementing a knowledge space "curriculum” (sequence of
activities). How much teacher intervention and seeding of the knowledge space should be done?
Which seeds in various domains will actually flower in children’s hands? What is the
appropriate relative emphasis on constructing, reorganizing and reflecting? We intend to explore

these issues as part of a project to teach elementary school children about the topic of motion.

Another model for knowledge spaces is the work of a graduate student, Steve Adams. He is
studying the knowledge and capability of child dinosaur experts (between ages 9 and 12) for the
purpose of enhancing the learning of even these children, and figuring out how to engage
children who would not ordinarily come to such expertise. It turns out such child experts have a
surprisingly large range to their expertise and interest, certainly including an extraordinary range
of facts, but driven by interest and competence at multiple levels of knowledge, from "empirical
generalizations" ("It seems to me most two-legged dinosaurs are meat eaters.") to sophistication
and interest in the progress of science ("I wouldn’t buy a book with a copyright before 1986;
things are changing too fast." "What’s really interesting is when scientists get things wrong, like

the apatosaurus ...").

At the core of the microworld Adams is building in Boxer is a more or less conventional
database (Figure 6). This, of course, allows some usual database activities like querying to find
or verify correlations such as the two-legs/meat-eating one mentioned above. But since it is in
the midst of a computational medium, all sorts of other activities can be envisioned. Indeed it is
the design and support of these activities that makes the database really interesting. The
transition from database to knowledge space rests on the medium providing support for specific

activities in which children will learn.

Perhaps the simplest activity is to peruse and add to the database. This may be done, of course,
using only basic Boxer editing capabilities. Provision has been made to encourage introducing
items of special interest, for example, in a STORIES field in the entry template. Another

activity, which was used as a knowledge assessment instrument, proved surprisingly engaging

« 20 =

DAT

[Gpatosaurus

[Hame]apatasaurus] [Pronounciat iunJa.?;—PﬂT—uh-saur—usJ
[Meaning | deceptive lizard"]
[Picture
Ahpatosaurus
[Humber—of—less [¢ i [[Length [F'.:': feet| [Heiant |35 tons]

T - - AL
[Food |plant-eater| [Fossil-Locations Iﬁéstern Nor th Americal Eurooel
I!

= rs oAaT i .
[Classification |sauropoda sauropodomorpha saurischi 3

T

o

Ty
[Stories lieTrnes “Apatosaurus” and "Brontosaurus’ refer to the I
-=me animal. Fossil bones discovered in 1877 were given
the name "Apatosaurus.” They are the same as bones
\discovered in 1899 and named "Brontosaurus.”

[compsagnathus

o
Eeratosaurus[g

[tyrannosaurus

[ar‘chaenptersz]?igﬂ

Figure 6. A piece of a dinosaur database, the activity center of a dinosaur microworld.

and productive. That is to take the entries of the database and re-organize them according to any
principle the child wishes. One conld sort according to appearance, according to geological
period, according to how fast they could run (a suggestion of one of the child experts, who then
proceeded to invent a theory of how to tell how fast a dinosaur could run). Adams has seeded
other activities with simple programs, suggesting ways to go. One is a quiz program that is
easily extended to different classes of questions. Students can invent a class of questions and
then build a question and answer key. The key itself may be literally the result of a simple query
to the database. (The query provides the answer to the question for each dinosaur.) Students
should learn in inventing their own classes of questions, and in taking their own and other
students’ quizzes. We know that this is highly motivating for students from previous work with

Logo. Boxer’s inherent database capability makes such activities easier to begin (e.g., perusing

and directly modifying), more broadly engaging (e.g., including pictures) and more extensible

(through better inspectability of existing program and simpler programming more generally).

I will close this section with an example of children’s spontaneous activity that highlights one of
the special features of Adams’ designs, a feature that challenges most views of the instructional
designer’s task. It also challenges our scientific competence to understand activity structures,
and even our common instincts for the direction of scientific work in instruction and learning.
Two of Adams’ dinosaur experts took to drawing cartoons for each other based on corruptions of
real dinosaur names. So, for example, a dimetrodon became a dime-meter-odon (Figure 7), with

a dime slot for a mouth and a meter needle on its fin.

A frenzy of activity of this sort over a several hour period resulted in dozens of such cartoons. It
is difficult to say exactly what is learned in such an activity, though some after-the-fact
pronouncements might be made. Certainly this would be among the better ways to generate
mnemonics for dinosaur names, and to become acquainted with some species partners know but
you don’t. But the point is precisely that such narrow, cognitive views of judging the value of
activities may be beside the point. Instead, what seems more important is that the activity
provides an opportunity for enjoyment based directly on their expertise, and an opportunity to
share ideas, factual or whimsical. I believe such activities played a central role in what made
these children dinosaur experts in the first place, almost independent of particular knowledge

outcome.

I suggest our emphasis on activity structures should add a new direction to a constructivist view
of learning: Not only must we design for continuity of knowledge, but we must design for
continuity of goals as well. What we expect as personal goal-directed engagement should lead
only gradually from what leamners initially consider interesting and meaningful enterprises
toward what we set as educational targets, say, acting in the world as little scientists and

mathematicians. Designers should be chastened that without due consideration to activity

5+rai_ql1']"asaurus

ol

Dimemweterodon

APQddedSaurus

Brocco“a S VFUS

Tl’)’ TO bITe Procera‘foPS

Figure 7. A spontaneous social activity, trading dinosaur cartoons:
straight-osaurus (stegosaurus); dime-meter-odon (dimetrodon);
a-padded-saurus (apatosaurus); try-to-bite (trilobite); pro-ceratops
(protoceratops); broccoli-saurus (brachiosaurus).

structures and continuity of goals, they might never consider dinosaur cartoons a legitimate

activity, or that they might design such activity out of instruction by default.

Mind Toys

Children and adults engage in word and language play, from babbling to crossword puzzles, and
are almost always better off for having done so. Any respectable medium should have such

possibilities. In the case of computational media, such play can serve double duty in gaining

- P

Here is a discussion of self-reference,
a very interesting topic. See below:

REFERENCES: reer oo
Recursion is a form m‘
of self-reference. Zoom ==

to this place to examine
recursion.

Figure 8. An item on self-reference with port cross-reference to recursion.

familiarity with and power over the media, but also, since the medium itself has mathematical-

structural properties, it can be play with mathematical and scientific ideas at the same time.

The Logo community has witnessed an interesting social phenomenon. If one looks through
books and newsletters on Logo, and listens at conferences, one finds a tremendous fascination
with the topic of recursion (programs that use themselves as subprocedures). Recursive designs,
in fractal, space-filling and other forms, occupy an impressive amount of attention, as does the
topic of understanding the recursive programs that generate them. In the abstract, it is hard to
imagine that such an exotic and specialized mathematical topic should become a central concern
in any non-mathematically-sophisticated population, let alone among school teachers and
children. Yet this is the case. The intrinsic interest in this structure, which creates elaborate
patterns seemingly out of thin air, coupled with the fact that simple programming puts one in the

position of experimenting with it, has nearly made a popular craze out of it.

There are even simpler structures in Boxer that may play the role of toys for the mind for future
generations of computationally literate people. As mentioned earlier, ports make excellent cross-
references to related material in a Boxer world. But what happens in the case of self-reference?
What happens when a reference in a chunk of Boxer references the chunk itself? Figure 8 shows
a box that contains two references to "further material." The first is an ordinary reference, but

the second is a reference to the object that is referring. That is, the second port is a port to the

B

box containing the port. Before looking at Figure 9 (at the end of the paper), try to imagine what

will happen if one merely shrinks the first port and expands the second.

Behind this almost familiar effect (which one sees on the evening news when the monitor behind
the anchor contains the feed from the camera, hence an image of the monitor, which contains ...)
is a deep mathematical idea: Any structure that contains itself (say, in a port), plus some other
stuff, must be infinite.’ Infinity is an always intriguing phenomenon, especially when it seems so
near to us, having been created simply with "everyday" objects and operations -- a bit of mystery
and simplicity in an elusive but nearly-graspable package. Part of the root attraction of this
phenomenon is that our common sense says it cannot happen. It is the same common sense that
led Kant to claim that the whole must be bigger than the part. Yet, here it is, a part that is the

whole, and vice versa -- made with a few keystrokes.
Designing for rare events

I do not claim that toying with such a phenomenon, by itself, leads to deep mathematical
understanding. Though I believe there are many such experiences, (perhaps not so spectacular as
this, but which may be just as personally meaningful) lying in wait in a computational medium, I
think the importance of such experiences goes beyond their cumulative direct effect in
developing mathematical sophistication. I am looking to rare but profound experiences that
children may have with something that they can see as mathematical (or merely intellectual), that
can change their minds about what is interesting and exciting to do. I recall, myself, a handful of
such experiences in my childhood that, in retrospect, I believe were important to my entering a
scientific career. I would conjecture that 7 plus or minus 2 profound experiences of this sort
might entrely turn around a student’s perceptions of what she wants to spend time on. Of
course, such a conjecture is far beyond our capability to prove or even genuinely to understand at

this stage of the scientific understanding of learning. But, again, I wish to point to patterns of

5. This corresponds to the standard Dedekind definition for infinity, a set that contains itself as a
proper subset.

225-

activity, this time the relation between possibly rare but important events and life long learning
patterns, as deserving more attention than we give them. Designing learning environments for
profound but rare events may be more than we can imagine carrying out competently at this
stage. But designing so as to exclude them by default may be more dangerous than we should

bear.

Summary

The central objects of our concemn in the design of educational artifacts ought not to be the
technology itself, but instead, the specific activities of students and teachers using the
technology, and the social niches into which these activities fall. If we do not realize this, we are
in danger of perpetuating old and ineffective patterns or worse, at the same time that we
introduce dazzling new machines. In this context, I have examined ways we can most profitably

use coming powerful extensions of written text, computational media.

I have argued that tools can be sterile objects unless we provide for appropriate activities with
them, including designing them and using them in contexts that exercise and measure the tool’s
power. On the other hand, new computational media can support such activities in ways that to
now have been inaccessible, providing better learnability, flexibility and extendibility. There is
hope schools may be substantially changed into tool-rich cultures that simultaneously empower
and enlighten. I have argued that the extended representational capabilities of computational
media provide important new opportunities, such as knowledge spaces, in which to present and
reflect on the nature of a field and on one’s own development of knowledge. Again, this can
only happen if we investigate and design appropriate activity structures to properly connect the
student’s mental life to what appears on the computer screen. Finally, I have argued for both the
importance of rare events that may play a substantial role in intellectual development, but also
for the importance of concern for the continuity of goals and activity structures in their own

terms.

Here is_a discussion of self-reference,
a very interesting topic. See below:

REFERENCES: ml car

Here is a discussion of self-reference,
a very interesting topic. See below:

REFERENCES: poax ‘
== || Here is a discussion of self-reference,
a very interesting topic. See below:

REFERENCES: == b—

ol
=4l
=

Figure 9. The item references itself, leading to an infinite structure.

Acknowledgements

I wish to thank the following for helpful comments on drafts of this paper: Steve Adams,

Melinda diSessa, Don Ploger and Alan Schoenfeld.

-27 -

References

diSessa, A. (1985). Learning about knowing. In E. Klein (Ed.), Children and computers, San
Francisco: Jossey-Bass Inc.

diSessa, A., Gardner, M., Greeno, J., Schoenfeld, A. & Stage, E. (to appear). Towards a
scientific practice of science education. Hillsdale, NJ: Lawrence Erlbaum.

Halasz, F. G. & Moran, T. P. (1983). Mental models and problem solving in using a calculator.
Proceedings of CHI ’83, Boston.

Larkin, J. McDermott, J., Simon, P. & Simon, H. (1980). Expert and novice performance in
solving physics problems. Science, 208(20), 1335-1342.

Leinhardt, G. (in press). The development of an expert explanation: An analysis of a sequence of
subtraction lessons. Cognition and Instruction.

Papert, S., Watt, D., diSessa, A. & Weir, S. (1979). Final report of the Brookline Logo Project.
Memo 545, Cambridge, MA: ML.L.T. A.L. Laboratory.

Ploger, D. & diSessa, A. A. (1987). Rolling dice: Exploring probability in the Boxer computer
environment. Boxer Technical Report E1, Berkeley, CA: School of Education, University of
California.

