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Abstract

Boxer is a reconstructable computational medium which builds on and extends the
accomplishments of Logo. Boxer’s design principles of spatial metaphor and naive
realism enable computational ideas to be implemented compactly, simply, and
clearly. This article shows how these design principles enable fundamental
computer science issues to be addressed in a real-world context. Controlling
complexity and supporting generalization are two of the most powerful and central
ideas in computer science. The article shows how building a spreadsheet, a complex,
real-world application, becomes a manageable programming task in Boxer and how
the resulting Boxer spreadsheet can be extended to other educationally relevant
domains such as vectors, graphs and music. The discussion focusses attention on
how Boxer’s design principles provide educational advantages relative to Logo,
Hypercard, and C and Pascal. Specifically, it is suggested that Boxer (1) supports a
close connection between a conceptual model of a spreadsheet and a working
implementation, (2) provides a concrete, visible, working model that can be
inspected, explored, and medified and (3) eliminates distracting display and editting
issues and concentrates cognitive load on the fundamental computer science issues.
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Boxer is a computer language and system designed for educational use, especially in
mathematics, science and technology studies. Boxer has been driven from the onset
by a vision and set of principles based on educational research and educational goals
(diSessa and Abelson, 1986). This article provides a compelling example of how
Boxer’s design principles — naive realism and spatial metaphor — make complexity
manageable and generalization achievable.

Managing complexity and generalization are two of the most powerful and central
ideas in computer science (Abelson & Sussman, 1985). The former refers to the
mechanism by which computational processes and states can be described and
specified. A medium should allow complicated behaviors to be composed from a
basic set of processes and structures compactly, simply, and naturally. Generalization
refers to the process of extending existing applications to a wide set of specific
demands and custom uses. A well-designed language should make control of
complexity and generalization easy.

This article shows how Boxer’s design provides strong capabilities for control of
complexity and generalization, and consequently it shows that Boxer can be valuable
for teaching students about these important computer science ideas. The approach
taken is to examine how Boxer enables a complex application, a spreadsheet, to be
implemented elegantly and simply. In addition, three examples illustrate how the
design principles employed in Boxer allow a spreadsheet to be generalized to an
uncommon extent.

Most examples available for students to explore fundamental computer science
concepts are toy problems. Writing a spreadsheet is not a toy problem, and yet in
Boxer, it becomes a reasonable exercise. In Boxer, in contrast to other available tools
and languages, implementing a spreadsheet is a real world challenge that can
introduce students to fundamental principles of computer science.
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Goals and Principles of Boxer

Although closely related to Logo, the goal of Boxer is more ambitious in scope. Logo
(Papert, 1980), one of the most popular educational programming languages, is
closely associated with teaching mathematics and computer science; in particular,
Logo is associated with teaching geometry and recursion. Boxer retains these goals,
but also seeks to provide general purpose text processing, calculation, graphics,
database, and programming capabilities in a easy-to-learn framework (diSessa &
Abelson, 1986). Since Boxer completely subsumes Logo capabilities, the main
advances for a Logo user are in understandability and ease-of-use. These are
described elsewhere (e.g., diSessa, Abelson, & Ploger, 1991; diSessa, 1986; diSessa &
Abelson, 1986).

The more general goal of the Boxer design is best summarized by the concept of a
“reconstructable computational medium” (diSessa & Abelson, 1986). The term
“medium” indicates that Boxer is intended to support activities of constructing,
expressing and communicating.

One reading of the term “computational medium” is a medium that exists on a
computer. However, Boxer aims for a reading in which computation plays a more
pervasive role (Abelson & diSessa, 1986); a computational medium is a material for
constructing, expressing, and communicating through the metaphor and actual
processes of computation. The contrast of a word processor and a spreadsheet may
clarify the distinction. A word processor is a medium for writing on a computer, but
computation on a word processor is largely hidden from view, and in most cases,
completely inaccessible. In contrast, a spreadsheet is a medium in which
computational ideas — active mathematical relationships — can be expressed and
used to communicate and calculate. Boxer seeks be a computational medium in the
spreadsheet sense; it is a system in which computational operations are central to
the constructive activity.

The additional term “reconstructable” indicates that Boxer provides a
computational medium that is susceptible to modification and re-use of ideas. Many
programming environments make a strong distinction between the programmer
and the user. The programmer may modify and re-use computational expressions,
but the user may only do what the programmer allows. Boxer seeks to blur this
distinction, making programming, and re-use of program ideas a central activity
among Boxer users (Picciotto & Ploger, 1991). Reconstructability is demonstrated in
this article in the ease of modifying and extending the basic spreadsheet.
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The spreadsheet examples that follow will highlight Boxer’s capabilities as a
reconstructable computational medium. They will show, first, how Boxer provides
an exceptional medium for constructing expressing ideas about the computation of
mathematical relationships by building computational structures and processes in
accordance with fundamental computer science principles. Furthermore, the
examples will show how reconstructing a simple Boxer spreadsheet can generate a
wide variety of useful tools.

Boxer derives these capabilities from a well-articulated and studied set of design
principles. Among the most important principles in the design of Boxer are spatial
metaphor and naive realism (diSessa & Abelson, 1986; diSessa, et al., 1991). Boxer
uses the principle of spatial metaphor to tap the powerful intuitive understanding
that people have of space. By tapping spatial intuitions, Boxer aims to make
computational ideas like recursion and hierarchy more accessible. Boxer uses the
principle of naive realism to enable the user to treat the visible screen as a concrete
model of computation, obviating the need to imagine structures and processes that
operate “behind the scenes.” Thus Boxer’s aim is to reduce cognitive load by directly
supporting a user’s mental model of computational data and process.

Through the examples, this article will demonstrate how the principles of spatial
metaphor and naive realism provide leverage. In particular, it will be argued that
the principle of spatial metaphor gives an unusually elegant expression of the
computational structure of a spreadsheet. The principle of naive realism
significantly reduces the gap between conceptual understanding and working
implementation. In addition, it will be argued that the use of “boxes” as a basic
building block provides powerful opportunities for supporting generalization.

Specification of a Spreadsheet

Spreadsheets can be a very powerful educational tools. Spreadsheets are finding
application beyond business — in teaching mathematics (e.g. Arganbright, 1984;
Healy & Sutherland, 1990; Visch, 1990), science (e.g. Goodfellow, 1990; Graham, 1987)

and other topics at the primary level (e.g. Quinn, 1986) through the university level
(e.g. Turner, 1988).

For the purposes of this article, a spreadsheet is taken to have these properties:
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*  a matrix of cells, each containing a value and a formula.
* references to other values in the matrix by relative reference.
* recalculation of each cell’s value according to its formula.

Commercial spreadsheets (e.g. Microsoft Excel, Lotus 1-2-3) also have charting
capabilities. Charting is a relatively independent module from the cell-based
calculation facilities listed above, and thus, for the purposes of this article, is not
considered part of the basic specification of a spreadsheet. It is nonetheless
straightforward to produce most common chart types from spreadsheet values in
Boxer, as will be described later.

Spreadsheets usually contain “scripting” or procedural programming capabilities as
well. These are inherited directly from Boxer, and thus no specific scripting
capability need be developed. Commercial spreadsheets further incorporate a large
set of user-interface niceties, such as the ability to generate scripts by example,
annotate cells, format results, copy and paste with a mouse, etc. Consideration of
these ancillary features is also postponed until the discussion.

Major obstacles face a programmer who writes a spreadsheet in Logo, C, Pascal, or
Hypercard, as will be discussed later. Similar obstacles face educators who try to
explain how a spreadsheet works with only these conventional languages at their
disposal. But in Boxer, both these consiraints can be dissolved. A basic spreadsheet
can be implemented in a matter of hours. Moreover, Boxer can express how a
spreadsheet works, in terms of data structure and flow of control, in an unusually
clear manner. Thus, with Boxer, teachers and their students can explore
fundamental ideas in computer science — control of complexity and support for
generalization -— in the context of a familiar, real world application, a spreadsheet.

A Basic Boxer Spreadsheet
This section demonstrates how a spreadsheet can be written in Boxer in a relatively
short time (from half a day for an expert, to perhaps a week for a student). In so

doing, it illustrates how the data and procedural primitives provided by Boxer allow
control of computational complexity.
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The basic structure provided by Boxer for making things is the box.! Boxes are of
two basic types, data and doit (pronounced “do it”). A data box contains data; doit
boxes contain procedures. The boxes are distinguished by labels and the corners of
their borders (data boxes have rounded corners). Both kinds of boxes can contain text
and other boxes. Spreadsheets can be built in Boxer using these two box types.

Data structure

Conceptually a spreadsheet is a two dimensional matrix of cells. A spreadsheet in
Boxer can be constructed from a data box containing other boxes, in row and column
positions. Each of these inner boxes represents a cell.

it it e Pig
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Figure 1: A Boxer Spreadsheet comprising a box of boxes, each containing a vatue and formula box

Cells have 2 properties, a value and a formula. Again this substructure is
represented using boxes. A value is a data box and a formula (because it contains a
procedure) is a doit box. Figure 1 depicts a Boxer spreadsheet.

1 This article does not purport to offer a comprehensive introduction fo Boxer. diSessa, et. al (1991) is
a good reference for that purpose.
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Name tags are attached to these boxes, allowing reference by name to each cell’s
“value” and “formula.” Note that every box in Boxer contains a naming
environment; therefore, multiple boxes can have the name “value” as long as each
is within a different box. Thus each cell can have named value and formula boxes.
This data structure, which supports a running spreadsheet, can be created in Boxer
by direct manipulation WYSIWYG operations in a few minutes.

Note also that cells are unnamed. Boxes do not need to have names. The cell boxes
in the spreadsheet will instead be referenced by Boxer’s generic row and column
accessing operations, and by the relative referencing operator “rel.”

Program structure

The one major procedure necessary to make a Boxer spreadsheet is the recalculation

procedure, herein called “Calc.” Calc is written using programming language

primitives provided by Boxer (Figure 2). Boxer is a procedural, interpreted, textual

language.
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Figure 2: Calc Procedure, as it appears in Boxer
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for—each-row

Figure 3: Calc Procedure, highlighted for readability

The heart of the calc procedure (Figure 3) is an embedded set of iterative loops. The
outer loop, “for-each-row,” iterates through the rows of the spreadsheet. The inner
loop “for-each-item,” iterates through the cells in the row. As each cell is accessed,
the cell’s value is changed to be the result of executing the cell’s formula.

Two local variables are necessary. The variable “r” holds the contents of each
successive row. The variable “itm” holds each successive cell in the row. Note that
local variables in Boxer simply appear as named data boxes within the doit box. Also
note how Boxer uses boxes to show the nesting of the loops. These are both
examples of powerful use of a spatial metaphor to depict more abstract kinds of
containment -— containment of variable within a local environment and
containment of a sub-process within a process.

A third local variable is introduced for convenience. The “cell” variable is a special
kind of data box, called a port. A port is a pointer to a non-local data box; it is a “port-
hole” or window looking onto another location. This is useful here because, in
conjunction with the iteration commands, it allows Boxer to refer directly to
successive cells in the spreadsheet. Each time through the loop, “cell” is a port to a
different cell in the spreadsheet.

Within this iteration, recalculation is a one-line affair: “change cell.value tell cell
formula.” This changes the value of the cell to be the result of executing (hence the
“doit” box) the formula procedure within the cell. The “tell” command tells Boxer
to execute this cell’s definition of “formula”, and not one in another box.

Boxer Spreadsheets 7 Roschelle



The ancillary code in the calc doit box maintains two global variables, “this-row”
and “this-column.” These variables store the row and column number of the cell
being calculated. This information is necessary for relative referencing. Note that a
global variable in Boxer is just a named data box outside the boundaries of a doit
box, such that it can be seen by other doit boxes. This is an example of the use of a
spatial metaphor; containment in boxes is used to specify scope of variables.

Using the Boxer Spreadsheet

The spreadsheet is used by specifying values and formulas in cells. The user can
create any number of cells (up to available memory) and fill them by using standard
Boxer WYSIWYG operations. Formulas can use all Boxer primitives; Boxer includes
all the standard functions of arithmetic, trigonometry, etc. Absolute references can
be made either by naming a cell (attaching a name tag with WYSIWYG operations)
or using the standard row and column accessing commands.

In addition, there is one new procedure added to enable relative referencing. This is
the “rel” doit box. This three line procedure computes an absolute reference using
the input values and the global state variables “this row” and “this column.” Then
the primitive “RC” is used to access a cell by row and column, and the “value” data
box of that cell is returned.

Summary — Controlling Complexity

As this example demonstrates, the computational abstractions provided by Boxer are
sufficient for building a spreadsheet. Indeed, the task can be accomplished readily
and elegantly. Data and Doit boxes provide the necessary data structures for
representing a spreadsheet, with cells containing values and formulas. The principle
of spatial metaphor allows the conceptual containment of values and formulas
within boxes to have a direct graphical representation — containment of data and
procedures boxes within cells. Furthermore, spatial metaphor gives elegant
expression to abstract senses of containment that are fundamental in computer
science, subprocesses and local variables.

The iteration primitives provide a sufficient mechanism for controlling
recalculation, and with the addition of the “rel” procedure (written in Boxer), Boxer
provides mathematical primitives for specifying relationships among cells.

Displaying and editing of the spreadsheet structure is supported by Boxer without

any additional code, an example of naive realism (concreteness). An addition aspect
of naive realism is worth subtle, but noting. The encapsulation of two named boxes
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for value and formula in a box for the cell is an intuitive way of depicting a
conceptual model of a spreadsheet. Similar drawings could be produced in any
number of applications. In Boxer, this drawing is also a full computational

instance of a data structure; there is no need for declarations of the record structure,
allocating memory, filling the record contents, etc. Thus, through the principle of
naive realism a graphical depiction of a conceptual model and program code that
implements that model are one and the same. Put simply, in Boxer, a picture of a
spreadsheet’s structure is the actual data structure and the user interface for the
data structure.

Generality of the Boxer Spreadsheet

This section illustrates the generality of Boxer by presenting a number of extensions
to the basic spreadsheet. The first example, a spreadsheet of vectors, illustrates the
power of using boxes as a general building block for data structure. The second
example, a spreadsheet of graphs linked by functional transformations, presents a
pedagogically useful generalization of a spreadsheet that would be hard to replicate
using commercially available technology. The third example, a spreadsheet of
musical phrases shows that rather extreme (and useful) generalizations of the
spreadsheet idea are made possible by Boxer’s design.

Vector Sheets

Data boxes are not limited to containing single values. Therefore, unlike a
traditional spreadsheet, the value of a cell can be a series of values. This can be used
to create a spreadsheet that computes over vectors.

This extension is nearly trivial. The main addition is a set of “doit” boxes that
provide operations on vectors. For the purposes of illustration, two such procedures
are presented, “scale” and “dot-product” which carry out scalar and dot-product
multiplication respectively. Other vector operation could be provided similarly.
Figure 4 presents a vector spreadsheet that computes using scale and dot-product.
(By extension, cells could easily contain matrices).

Figure 5 shows the dot-product doit box (“scale” is similar). Dot-product inputs two
vectors, v1 and v2. It computes the dot-product recursively by a divide and conquer
method: one pair of elements at a time is multiplied, leaving the rest of the pairs to
the next call of the procedure. If v1 is empty, then the computation terminates and
the empty box is returned. Otherwise, a new box is constructed using Boxer’s “Build”
primitive. Build constructs a new box from a template. In this case the template
contains two parts, represented by the two boxes within the template. Figure 6 shows
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the specification of the parts of the template (a Boxer user would see the parts by
opening the boxes with the mouse). The first part of the constructed box is the result
of multiplying the first element in each vector. The second part of the constructed
box is the result of computing the dot-product of the rest (“butfirst”) of the vector.

‘\
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scale 3 dot-product
l_rel 10 Lrel 0 l_rel 10
Neit Firit et
it Py +
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Figure 4: A spreadsheet of celis containing vectors.
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Figure 5: A procedure for computing the dot-product of two vectors
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Figure &: Detail of the dot-product procedure showing the Build template.

Graph Sheets

Commercial spreadsheets offer charting capabilities. Boxer, likewise, can produce
bar, line, area, and pie charts. These capabilities are provided in Boxer by way of doit
box procedures that move a “sprite” or pen on a drawing surface. Rather than show
basic charting capabilities equivalent to those offered on commercial spreadsheets,
this section presents a useful generalization: a spreadsheet in which each cell is a
graph, and formulas express functional relationships between graphs.

This generalization could be useful because students often have great difficulties
understanding the relationships between graphs. For example, in physics, students
have great difficulty relating graphs of position, velocity and acceleration (Haertel,
19xx; van Zee & McDermott, 1987; McDermott, Rosenquist, & van Zee, 1987).
Similarly in mathematics, students have difficulty relating symbolic, numerical, and
graphical representations of a function (Kaput, 1992; Leinhardt, Zaslavsky, & Stein,
1990). A graph sheet enables students to provide different starting graphs (in the top
left corner) and then to observe transformations that result from applying various
functions to the starting graph. It also lets students play with the relationship
between symbolic, numerical, and graphical depiction of a function. Figure 7 shows
a graph sheet.
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Figure 8 shows the implementation of the graph sheet. Data boxes in Boxer can have
2 “sides” — data structure and a drawing surface. To make a graph sheet, graph-data
boxes are used for each cell. The data structure, as in previous spreadsheets, contains
a formula doit box and a value data box in each cell. For the graph sheet, a “pencil”
is added to each box. The boxed named pencil is a sprite box. Sprite boxes can draw
on the drawing surface of the graph-data box in which they reside. Drawing is
accomplished by moving the pen to successive x and y positions using the “setxy”
primitive.

The value and formula boxes for the graph sheet are similar to the value and
formula boxes for the vector sheet. Each value is the vector of y-values of the graph.
Each formula is an operation on a vector. Three new vector functions are
illustrated, integration, vector addition, and a generic mapping function. In this
case, the generic mapping function is used to apply the square function (“sqr”) to the
graph in the adjacent cell. Each of these new functions (integrate, add-vectors, and
map) are implemented as recursive doit boxes similar to the “dot-product” box.

Drawing the graphs is accomplished by adding a single line to the calc procedure.
Immediately after calculating the value for a cell, the pencil in the cell is told to plot
the value of the cell (Figure 9). Plot is a doit box written in Boxer that moves the
pendil to successive x and y locations (Figure 10).

retarget-port cell unbox itm
change this-column this-column + 1

tell cell
{fhange value formula

tell pencil plot value
Pieit

‘s i 4

Figure 8: *Tell Pencil Plot Value™ added to calc doit box to draw the graph
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Figure 10: The procedure for plotting a graph.

To use the graph sheet, a student or teacher can make any number of graph-data
cells. After formulas are typed into the “formula” doit box of each cell, the calc
procedure is run, and the graphs are updated. Changes to the value of the initial
graph will cause corresponding changes to all successive graphs. Thus the graph
sheet maintains the graphical relationships specified by the mathematical function
in the formula box of each cell.

Sheet Music

Sheet music is presented here as an example of a more extreme generalization of a
spreadsheet. Sheet music is a spreadsheet in which each cell contains a musical
phrase. Successive cells can generate additional musical phrases by transforming
preceding musical phrases. Thus a large musical composition can be specified an
additional motif, and a list of transformations.

The opening movement of Beethoven’s Fifth Symphony is a well-known work
susceptible to this sort of specification — Beethoven builds the movement from
transformations of the initial 4-note motif (“da, da, da, dum”). Using Sheet music, a
student could explore production of melodies modelled on Beethoven’s Fifth, or
could try their hand at modifying or extending Beethoven’s work.

Sheet music is inspired by the work of Jeanne Bamberger (Bamberger, 1992).
Professor Bamberger has drawn attention to the fact that we psychologically
experience music in phrases, not individual notes. Moreover, melodies are heard in
terms of relationships between successive phrases. Ordinary musical notation,
which is based on notes in a rigid metric grid, does not highlight the psychology of
music hearing, and can distract and alienate students from their own musical sense.
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The purpose of sheet music is to allow students to focus on music in terms of
phrases and relations between phrases.
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Figure 11; Sheet Music

Sheet music, like other spreadsheets, is constructed of cells, each with a value data
box and a formula doit box. The value data boxes, in this case, illustrate a further
generalization: instead of being single values or vectors, the value is a data structure
constructed from data boxes. In particular, a melody is represented in Boxer as a box
of notes. Each note is a box containing a pitch and a duration. Whole numbers
specify pitches on a major scale, and also a length of time.

The initial phrase in the top-left cell of Figure 11 contains the musical notes “C-G-
F,” each played for a quarter note duration. The next phrase to the right, moves
these pitches up 1 note to “D-A-G.” This movement is specified by the formula of
the cell, which applies the operation “pitch + 1 to each pitch of the adjacent cell’s
melody, via the mapping operation “map-p.” Map-p is a simple Boxer doit box that
applies a doit box to each each pitch of a melody, returning the transformed melody.

Boxer Spreadsheets
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A similar doit box called “map-d” can be used to transform durations.

As in the graph sheet, the music sheet adds a line to the calc procedure. The added
line in this case, “play cell.value” causes each cell’s melody to be played as it is
recalculated.

Additional Features

Several other features of Boxer are directly useful in spreadsheets. First, Boxer offers
control of the display by means of shrinking and expanding boxes, or making them
temporarily invisible. In all the examples presented herein, the value and formula
boxes have been shown in their expanded state. With simple mouse clicks, a user
can shrink and hide all the formulas (Figure 12). In addition, every box has a
“closet” which can be used to hide sub-boxes from the user. The closet is opened and
closed with a key or menu selection. Using this facility, the formula of each cell can
be placed into the closet, thus hiding it from view. Although these mechanisms do
not exactly parallel those of a comnmercial spreadsheet, they offer the same
functionality — hiding of information and conservation of screen space.
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Figure 12: Shrinking Boxes and Adding Notes to a Boxer Spreadsheet
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Commonly spreadsheets allow cells to be annotated with comments about their
purpose or history. These notes are typically provided through additional user
interface commands. In Boxer, no additional commands are necessary. To add a
note, the user creates a data box named “note” (by WYSIWYG actions) and types a
comment as appropriate. In Figure 12, two cells have notes added.

Another feature of commercial spreadsheets is the ability to write scripts. Typically
two kinds of scripts are supported. A function script specifies a new mathematical
function by composing other available functions. A command script automates a
series of modifications to the spreadsheet, e.g. adding cells. In Boxer, an ordinary
doit box is sufficient for writing new functions (as in the dot-product example). If the
doit box is placed outside the spreadsheet, the new function will be globally
available. Moreover, command scripts can be easily written using standard Boxer
primitives. Figure 13 illustrates a “Fill Right” script, which copies the last cell of a
specified row a given number of times. The doit box works by repeating the
operation of appending a copy of the last cell in the row the given number of times.

l 1il7- rigda

input row-nvmber count
copied-cel,
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e
change copied-cell |
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L?ow row—nuwnber sheet
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i #

append-to-row row-number sheet copied-cell

repeat count L
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Figure 13: Fill-right script or command macro

Summary — Generality
The presented examples demonstrate that Boxer readily supports generalization of
the spreadsheet concept.? The examples of vector, graph, and music cells would be

2 Additional generalizations could take advantage of Boxer’s hierarchical nature. For example, joy
Nunn of Ballarat Unjversity College, Australia, is working on an ecological spreadsheet in which
different hierarchical levels of the food chain are representing by a hierarchically-structured
spreadsheet.
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hard to implement in any commercially available spreadsheet, as the value of cells
are usually limited to single numeric values or text sirings. Moreover, each of these
generalizations has apparent pedagogic utility. For example, the production of
linked representations among symbolic, numerical, and graphical representations is
a important topic in mathematics education (Kaput, 1992). By allowing students to
focus on relationships between adjacent cells, rather than calculation, generalized
spreadsheets may help students build conceptual understanding of relationships. As
the graph sheet shows, Boxer reduces the implementation time for linked
representation software to an easy day’s work.

The ease of constructing these examples in Boxer is directly due to the generality of
basic Boxer structures. Every data box can contain a complex data structure
consisting of text and boxes. Thus the “value” data box can readily be generalized
from simple numeric values to extended data structures. Similarly, all data boxes
can have a graphics drawing surface. Controlling the display, scripting commands
and functions, and adding notes are all features that are supported by general-
purpose Boxer data structures.

Limitations of the Boxer Spreadsheet

Some limitations of Boxer Spreadsheets, however, are not easily overcome.
Principally, these limitations are in the area of user interface. Commercial
spreadsheets have highly-tuned, special purpose user interface that are not easily
replicated in Boxer. For example, one can usually specify a reference to an adjacent
cell, or group of cells, by a click and drag operation. These is not easily duplicated in
Boxer. Moreover, one can “freeze” a set of cells in place, while scrolling the others.
This behavior would be almost impossible to implement directly in Boxer. In
addition, commercial spreadsheets have a wide range of options for formatting the
values of cells, including left, center, or right alignment, bold or italic typefaces,
various monetary formats, etc. Boxer currently does not support these options.

One further feature of commercial spreadsheets is the ability to recalculate based on
dependencies among cells, rather than in strict row and column order. The Boxer
spreadsheets presented so far do not have this feature. However, it could be readily
added to Boxer spreadsheets by writing a 2-pass recalculation procedure. In the first
pass, the recalculation procedure could record the dependencies among the cells in a
data box. These could then be sorted. In the second pass, iteration could proceed in
the order listed in the sorted data box. Boxer can also attach a “modified-trigger” doit
box to any data box. This could be used to record which cells have been modified,
and thereby avoid total recalculation of the spreadsheet.
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Discussion

The purpose of this article is to highlight the gains made possible by developing and
using reconstructable computational media. Boxer offers control of complexity and
enables generalization through principles of naive realism and spatial metaphor,
The spreadsheet examples showed the Boxer’s computational abstractions allow
spreadsheets to be implemented elegantly and simply. The generality of Boxer's
computational structures allow ready extension of the spreadsheet concept of
additional kinds of quantities and presentations.

The uniqueness of Boxer in this regard can be highlighted by considering, briefly, the
difficulty of writing a spreadsheet in other conventional computer languages. Four
classes of competitors will be considered: Logo, C and Pascal, Hypercard, and “Object
Oriented” programming.

Logo

Logo offers strong capabilities for educating students about computational concepts.
Compared to Basic (the other educational language of its era), Logo offers two key
features, recursion and list processing. Recursion is a powerful strategy for specifying
complicated computations, and list processing is a very general data representation
strategy. Boxer’s copy and execute model makes recursion easier to understand
(Leonard, 1991) and boxes are a convenient and powerful generalization of lists.

Although Boxer’s language is modelled on Logo and subsumes its features, several
capabilities unique to Boxer are essential for developing spreadsheets. The most
obvious is Boxer’s capability to display and edit boxes on the screen. Logo
conventionally offers two display capabilities: turtle graphics or textual output.
Writing code to edit spreadsheets using Logo would be quite difficult.

Several deeper issues also arise. First, Logo has a single, flat naming environment.
Thus one cannot have a “value” and “formula” defined in multiple cells. Second,
traditional implementations of Logo do not allow modification of the substructure
of variables; all modification must be carried out by setting a global variable. This
makes recalculation of a spreadsheet unnecessarily complex. Third, procedures
cannot easily be manipulated in Logo — there is no system representation like a doit
box that can be manipulated as part of a data structure.
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Hypercard

Hypercard is often viewed as a competitor to Boxer, as both are object-based
computational media. Hypertalk (along with spreadsheet scripting languages) has
perhaps been the most significant commercial advance in making programming a
common activity for computer users. However, Hypertalk is a scripting language,
designed to automate tasks, whereas Boxer has been designed to make computation
understandable. Thus Hypercard is more tuned towards rapid programming of
simple processing tasks, whereas Boxer is more tuned towards conceptualizing,
expressing and communicating computational ideas.

One could begin to implement a spreadsheet in Hypertalk using fields as cells.

Like boxes in Boxer, fields are self-displaying and allow user interaction. The value

of a cell could be contained in a field’s text, and the formula in a “script” attached to
the field. Using iteration and send commands, a Hypertalk script could be written to
recalculate each cell by sending a message to each field to run the formula script.

Beyond this, however, several difficulties become apparent, directly traceable to a
less powerful use of spatial metaphors. First, Hypercard allows access to fields by
numbering them in a list, in their order of creation. Thus there is no easy way to
refer to fields by row and column indices. The only possibility to refer to the pixel
position of each field’s top-left corner, a cumbersome method for referring to
spreadsheet cells. This is a fairly severe limit in computational expressiveness.
Second, Hypercard fields can only contain text, and thus offer no substructure as
boxes do. Indeed, not that the basic computational structure of a “card” is not helpful
in building a spreadsheet, while a “box” is. This makes graph sheets and music
sheets more cumbersome to implement, and is a restraint on generality. Third,
Hypercard’s display features are somewhat less suited to spreadsheets than Boxer is.
It is difficult to see a set of formula scripts side by side, as scripts, by default, are very
large windows occupying most of the screen. The fixed size of a card limits the
number of fields that can appear on a card. This limits how well Hypercard
communicates computational ideas. In general, Hypercard is more limited than
Boxer in expressing hierarchy and structure, as well as in the display metaphor.

C and Pascal

Most commercial spreadsheets are written in either C or Pascal. Nonetheless, doing
so is a daunting task best suited for a professional programmer over the course of a
year or more. It is useful to ask “how does Boxer reduces this task to a matter of days
or hours?” -

% The alternative, using cards as cells, is unappealing because one can only see one card at a time.
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Although C or Pascal provide very general capabilities, the abstractions provided
tend to be at a very low level, and thus there are several gaps between the
abstractions available and the desired functionality. First, whereas Boxer provides
high-level display and editing capabilities in terms of boxes, C or Pascal provides
neither. Display is in terms of characters and pixels, and editing in terms of
keystrokes. Hence writing the interface portion of a spreadsheet is a major task in
itself, finessed in Boxer by general interface principle of naive realism. Second,
Boxer is an interpreted language, and thus inherently can evaluate text written by
the user as mathematical functions. C or Pascal are compiled, and thus the
programmer must write a language interpreter to translate user expression of
mathematical functions into executable code. Third, the basic data structures of C or
Pascal force early commitment to the contents of variables, which thwarts attempts
to generalize the values of spreadsheets to be graphs, vectors, or musical data
structures. Boxer instead provides a single, more general data type. Thus Boxer
accomplishes a remarkable reduction in the programming task by providing suitable
computational abstractions of a general nature.

It is worth briefly mentioning the emerging category of object-oriented languages,
such as C++ and Object Pascal. Object-orientation is sometimes misleadingly used as
a litmus test for accepting a new language. Although Boxer (like Hypercard) has
some object-based features, it is not an object-oriented language. In particular, it does
have classes or inheritance. Object-orientation, however, does not automatically
lead to elegant or general programs. It is not much easier to write a spreadsheet in
off-the-shelf C++ than it is in straight C. The reason is that object-orientation does
not inherently overcome the low-level graphics and lack of a language interpreter
in C or Pascal. For educational computing users, an object-based system like Boxer,
which has appropriate computational abstractions like data and doit boxes, can be
more powerful than a completely object-oriented system like C++, which is more
general but offers computational abstraction at too low a level.

Conclusions

This article has illustrated how a reconstructable computational medium comprised
of a general “box” data structure and a Logo-like language can offer means for
controlling complexity and enabling generality. Boxer is not designed for
spreadsheets — its target domains are primarily science and mathematics
simulations, as well as introductory programming. Yet the primitives provided by
Boxer allowed general and elegant implementation of spreadsheets. In conclusion, I
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consider some reasons why Boxer is important and useful innovation.

First, Boxer is of interest in computer science instruction. The focus in computer
science instruction, especially in the beginning, should be on general computational
concepts like data structures and controlling computational processes. A spreadsheet
offers an excellent opportunity o explore these issues in a context with obvious
real-world applications. However, using a spreadsheet as an example with a
conventional language would be impractical, as the details of providing a user
interface and an interpreter would dominate. The Boxer spreadsheets show that
Boxer eliminate these distracting issues, and allow students to focus on the heart of
the computer science problem that spreadsheets present —how to control
complexity and support generalization.

Second, a recurring theme of debate in educational computing is whether students
should learn programming or not (Kaput, 1992; Kurland, Pea, Clement & Mawby,
1986). As the examples illustrate, Boxer can dissolve this debate because it blurs the
boundary. At the onset, a Boxer spreadsheet, like other Boxer programs and
microworlds, can just be used. However, for the inquisitive student or teacher, the
workings of the spreadsheet are available to inspect and modify. Students can open
up the structure of the tool, and explore how it works. Thus Boxer is an example of a
glass box tool (Wenger, 1987): it is an object that allows learning about internal
computational means while accomplishing useful computational ends. Glass box
tools are important in education because they allow students to ask “how” and
“why” questions in addition to asking , “what?”

In addition, as noted above, many problems which are conceptually amenable to
spreadsheet analysis can not be implemented within commercial spreadsheets. For
example, a science or mathematics teacher interested in focussing students attention
on relationships among graphs can use a Boxer graph sheet in a way that
commercial spreadsheets do not support. Similarly, Boxer makes spreadsheet
concepts useful for domains such as music and ecology. Thus by reconstructing the
boxes provided in Boxer, a teacher can make a spreadsheet to meet his or her own
needs. Boxer's reconstructability should support the growth of a community in
which computational ideas are readily expressed, explained, and extended.

Third, Boxer is a valuable example of the payoffs that can result from articulating
principles for educational computing, such as spatial metaphor and naive realism.
Boxer, unlike low-level languages such as C or Pascal, and unlike special purpose
languages, such as those provided with databases and spreadsheets, offers an
understandable, powerful metaphor — the box — which can be used to build an
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astonishing variety of innovative tools, microworlds, and applications. Through the
principles of spatial metaphor and naive realism realized in Boxer's structure, a
complex application like a spreadsheet can be reduced to a compact, understandable,
general description. This is not a result that can easily be replicated in available
commercial products, and that is to be expected. Commercial products are driven by
the goal of productivity, and atiributes such as speed and infallibility are of the
essence. However, for educational purposes, productivity is not enough. We want
students to understand, communicate, and learn, not just use tools effectively. With
respect to these ends, Boxer is an outstanding positive exemplar of the results of a
sustained effort at the principled design of educational computing software.
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