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What Students Should Know About Technology: The Case
of Scientific Visualization1

Jeffrey S. Friedman2 and Andrea A. diSessa3

Starting with the focal question, ‘‘what should students know about technology?’’ we describe
and illustrate a way of designing educational technology that is strongly informed by empirical
studies of how students actually understand and use a technology. We also have theoretical
aspirations in developing what we hope to be general principles that can, along with empirical
data, orient design.

The type of technology used to illustrate this design methodology is scientific visualization
software, in which spatially distributed data is given form as adjustable and often highly
suggestive visual displays. Our primary contention is that what students need to know about
this software is precisely those aspects of it that define it as a system of representations.
More generally, we advocate representation as an important instructional target, and we
examine what students know that can be enhanced by appropriate technology and learn-
ing activities.
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INTRODUCTION

What should students know about the complex
technologies that they use as tools for learning? A
common stance is that the technology should be
transparent and effortless to use. Students should
‘‘see through it’’ directly to the world or to the con-
cepts of the domain (Hancock, 1995). For instance,
calculators free students from thinking about algo-
rithms so that they can focus on developing problem
solving skills. Understanding how a calculator calcu-
lates is not evidently relevant for learning these skills.
Light probes attached to graphing computers save
students from the tedium of manually reading a light
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meter, recording these values, and then plotting them
on a graph so that they can spend more time dis-
covering a quantitative relationship between light in-
tensity and distance. Why should students need to
know anything about how the light probe works, or
how the computer treats the data to turn it into a
graph? At best, it seems, students only need to know
how to use these technologies.

We take an opposing stance. Technology, in
some cases, should not be transparent. We will be
considering a case where there is theoretical and em-
pirical support for the proposition that understanding
a particular part of the workings of the technology
is critical to learning with it. Furthermore, what stu-
dents should know about the technology and what
the technology itself should show or hide is not, in
general, an a priori matter. It must be informed by
consideration of what students actually do with it and
what they learn. During design phases, we must do
the best we can at envisioning future use and learning.
And after design, or in formative stages, empirical
work is almost always critical in revising guesses for
what should be shown and explained. In this work,
we feel we learned what students needed to know
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about the technology only by careful attention to
their accomplishing—or failing to accomplish—the
embedding educational tasks.

In approaching the problem of what students
should know about technology, we want to illustrate a
general orientation towards the design of educational
technology. We feel much technology design is ad
hoc. In addition to a stronger empirical component,
introduced above, we emphasize principles and activ-
ities. Principles represent theoretical commitments
in design. Our orientation towards activity stems
from the belief that technology can only be evaluated
together with, and in the context of, the educational
activities in which students are intended to learn.

We begin with three heuristic principles that de-
fine, in part, a philosophy of technology design, in-
cluding the design of (a) artifacts, (b) student activi-
ties using those artifacts, and (c) instruction about the
artifact. These principles may not seem controversial,
but later refinements and the priority we give these
principles over alternatives are more distinctive.

1. Design for the best contact with the most
important scientific ideas. As science educa-
tors, we hope that students will use the tech-
nology for learning something of enduring
value about science.

2. Build on students’ strengths: Foster uses that
involve productive engagement of rich stu-
dent knowledge and creativity. This is a famil-
iar constructivist orientation. However, iden-
tifying particular prior student knowledge
and how to build from it is a contribution.

3. Students should find learning activities per-
sonally engaging. Several ingredients may
contribute to a sense of personal engagement,
including opportunities to use prior knowl-
edge, the satisfaction resulting from accom-
plishment, and a feeling one is learning some-
thing of importance. In our work, we have put
a strong premium on design that can engage
student interest in extended, personalized
projects.

We are interested in applying these principles
to a particular kind of technology, namely computer
programs that create visual displays of spatially dis-
tributed data. Such software includes many ‘‘scientific
visualization’’ tools to view, for example, color-coded
images of the earth taken from satellites, or, what is
most relevant here, electronically transformed im-
ages of astronomical objects. Visualization software
is being used more and more in efforts to improve

science education, typically at the high school level
(Greenberg et al., 1993; Barstow and Barenfeld, 1996;
Asbell-Clarke and Barclay, 1996, Gordin and Pea,
1995).

Most scientific visualization software can be clas-
sified as representational. That is, its purpose is to
present a visual form as a surrogate for data. The
visual representation is intended to facilitate infer-
ences about the data or phenomenon that is repre-
sented. Noting that scientific visualization software
is representational is critical, and our central claims
all revolve around it. In particular, we will try to
show that representational software, and scientific
visualization tools in particular, should not be trans-
parent. Instead, they should show users relevant as-
pects of their representational structure: In order to
use this software effectively, students need to under-
stand how it works as a representational device—that
is, as a mechanism designed to produce adjustable
representations. Although there are other things that
students may need to know about this kind of soft-
ware, we will show that its nature as a representa-
tional device is not optional.

Anticipating later parts of this paper, we special-
ize our beginning principles to the present context
and to address the issue of what students should know
about scientific visualization technology:

1. Design to support understandings of repre-
sentational aspects of scientific visualization
technology. As we will illustrate, to use this
software effectively students need to consider
representational aspects of the technology. In
particular, we will try to show that representa-
tional software, and scientific visualization
tools in particular, should not be transparent.
Instead, they should show users relevant as-
pects of their representational structure. Pro-
posing that students think about the represen-
tational aspects of scientific visualizations
goes beyond the practical importance of using
the technology effectively. We claim that rep-
resentation, itself, is an important scientific
idea. In the next section, we elaborate this
claim.

2. Design to take advantage of students’ re-
sources for creating and interpreting repre-
sentational displays (i.e., the scientific visual-
izations). As we will illustrate, intuitive
perceptual interpretive capabilities are the
central prior resources on which we seek to
build. Technology design must be sensitive to
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these resources, and activities should specifi-
cally address their development.

3. Design for personal engagement and success.
As we will show, our students generated an
impressive variety of interpretive methods.
We will identify aspects of the design of tech-
nological resources and learning activities
that can help students build on their capabili-
ties for interpreting. This may lead to person-
alization and investment. Although we will
not emphasize it here, allowing students to
design new representations is an additional
avenue of creative engagement.

We view design as an iterative process in which
these principles will be further specified. Based upon
empirical findings, we anticipate elaborating upon
particular ways that technology and activities may
support thinking about representational aspects of
scientific visualization tools, ways that students use
their own constructive resources, and ways that tech-
nology and activities may support engagement.

Long-Range Learning Objective:
Meta-Representational Competence

In this paper, we propose students should under-
stand the representational aspects of a particular
technology. Over the long term, we also hope stu-
dents will learn something more generally about how
representations work. Although learning generally
about representations is not emphasized in this paper,
it is an important part of our long-term agenda, which
we explain in this section.

Knowing about how representations work, in
general, is what we call meta-representational com-
petence (MRC). MRC comprises, for example, abili-
ties to design and critique representations, to under-
stand how they work, and to learn to operate new
representations quickly and effectively. MRC is not
traditionally very visible among the repertoire of sci-
entific skills slated for students to learn in school.
Neither is representation prominent in canonical lists
of important scientific ideas. However, we believe
this relative invisibility is unwarranted and should be
corrected. This is no small issue, and we cannot argue
it extensively here. But, consider the following:

● Scientists have always and still continue to de-
velop representations in order to do their
work. Graphing, tables, and so on, have be-
come so standard and commonplace that we

forget there was a time when these forms did
not exist.

● In addition to substantial classes of representa-
tions, scientists are always inventing simple or
more extensive modifications of existing repre-
sentational forms. Even graphs appear in
many variations that are tuned and judged to
be adapted to particular circumstances. A pe-
rusal of research journals, or even of text-
books, shows a wide range of variation and
also significant invention.

● Computers have introduced a huge, new pre-
mium on MRC. Not only are new forms of
representation made possible, but also individ-
ual representational forms are much more
complex and adjustable. Scientific visualiza-
tion tools, themselves, are a perfect example.
If students want to get in on the modern game
of doing science, they will need to become
accomplished with selecting and using a
broader range of more complex representa-
tional devices.

Considering MRC to be an instructional goal
immediately raises the issue of what prior knowledge
students might have about representations, as in prin-
ciple 2, above. While it is easy to imagine the answer
to this question is ‘‘not much,’’ especially in view of
lack of attention in current instruction and even well-
documented incompetencies and misconceptions
concerning standard representations (Leinhardt,
Zaslavsky and Stein, 1990), prior work of our project
suggests the opposite. Students at least as young as
sixth grade show, in some contexts, remarkably rich
and effective MRC. We provide a very brief re-
view here.

In a sixth grade classroom we discovered that
students had a wide range of excellent resource that
aided them in the design and critique of scientific
representational forms (diSessa, et al., 1991). Stu-
dents were asked to design paper and pencil repre-
sentations that were effective in conveying informa-
tion about motion. Over a sequence of four days,
students produced a remarkable set of representa-
tions. They produced well-founded criticisms, and
extended their line of invention into standard repre-
sentational forms, such as graphs. This activity has
been replicated at several educational levels, includ-
ing high school, and we have continued to find rich
prior resources that are spontaneously engaged by
the task (Sherin, 1997).

More recently, we have discovered other ways
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in which students seem to exhibit substantial MRC.
In this case, high school students were using computer
image processing to create and interpret representa-
tional displays of data (Friedman, 1996). The students
generated a wide range of innovative interpretive
methods to glean information from image displays.
Interpretive methods are the means by which repre-
sentational forms are used in particular contexts to
infer information about the target of the representa-
tion. Interpreting representations falls mainly under
the ‘‘learning to operate new representations quickly
and effectively’’ portion of our definition of MRC.
We argued in Friedman (1996) that students’ abilities
to invent methods arose out of their substantial intu-
itive perceptual capabilities.

A particular subcomponent of MRC, which will
emerge here as important, is students’ inclination
towards and capabilities for critically evaluating intu-
itive or commonsense interpretations. Skillful visual
data analyses require sensitivity to the fact that looks
may be deceiving. Thus, commonsense interpreta-
tions should be neither uncritically accepted nor re-
jected, but they should be evaluated for their use-
fulness.

We have identified MRC here as, potentially, a
valuable and achievable goal of instruction in and of
itself. We have cited earlier work to suggest that there
may be significant prior resources on which to build
MRC. Later stages of this paper will elaborate on
particular prior resources that students have with re-
spect to developing more and better MRC. It also
turns out that critical evaluation is an important part
of what students need to do to complete typical tasks
involving scientific visualization software effectively,
so this will constitute a special component of MRC
that is essential to develop.

Summary and Organization of Paper

The heart of this paper is the intent to illustrate
a more accountable process of technology design.
We are advocating an iterative process that involves
empirical work at each stage. Also, we are attempting
to illustrate a deeper theoretical accountability by
proposing and illustrating a set of principles that
guide our design. Finally, we claim that technology
design should be guided and accompanied by activity
design. Technology does not stand alone.

In the next sections, we describe some prelimi-
nary empirical work that motivated attention to rep-
resentational aspects of image processing, which is an

important kind of scientific visualization tool. After a
short section describing how this kind of technology
works, we look at some preliminary studies of stu-
dents using a computer image processing tool for
creating and analyzing displays of digitized astronom-
ical data. These studies will illustrate categories of
understandings of the technology and their conse-
quences for effectively using the technology. The last
part of the paper describes a second iteration of de-
sign, a new visualization software system and activi-
ties designed to better support thinking about repre-
sentational aspects of the technology.

IMAGE PROCESSING AS A
REPRESENTATIONAL DEVICE

This section does double duty. First, we explain
general features of the software that students used
in empirical work so that it is easier for readers to
understand what students were doing and why. But,
in addition, we will be describing this software so
as to make its features as a representational device
evident. This is important in making our suggestions
about what students need to understand about the
technology generalizable.

Image processing software is a particular kind
of scientific visualization tool. The term ‘‘scientific
visualization tool’’ does not have a precise definition,
but it is helpful to distinguish two categories: aids
for developing understanding and tools for analyzing
data. Simulations, such as interactive microworlds
and 3-d simulations of molecular structures, are often
intended as a direct aid to conceptual development.

Falling in the second category, image-processing
tools are commonly used by scientists in the process
of visual data analysis (Lillesand and Kiefer, 1994).
Their distinctive usefulness derives from the fact that
these tools can create visually suggestive displays of
data. Skillfully adjusting the image processing set-
tings, which control the way the data is displayed,
can help the scientist see patterns and relationships
in the data. In similar ways, the students discussed
here use image processing as a tool for data analysis.
Image processing tools are clearly representational
in the sense relevant to this paper.

More specifically, image processing can be con-
sidered to be a representational device in the follow-
ing manner. A common model of representation is
that it involves three components (Palmer, 1977). The
represented world, or referent, consists of whatever
the representation is about, what is being repre-
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sented. The representing world is configured into par-
ticular representations to convey information about
the represented world. Finally, there is some mapping
or set of rules that determines which attributes of
the referent are depicted and how they are depicted
in the representing world.

Referring to Fig. 1, image processing consists of
two representations: the data file represents the night
sky and the display represents the data file. For our
purposes the link between the display and data file
is, by far, the more important. In the case of astro-
nomical data, the data files are often referred to as
image data files and the displays are often referred
to as image displays. Although some of the technical
details and terminology is specialized for astronomy,
the fundamental representational features discussed
here are common to most image-processing technol-
ogies.

The image data file represents the area of sky
in the telescope’s field of view. An image data file
simply consists of an array of numbers (Lillesand and
Kiefer, 1994, p. 26). These data files are sometimes
referred to as spatially organized data or ‘‘raster’’
data. The mapping is given by the deceptively ‘‘sim-
ple’’ fact that data values are proportional to bright-
ness in the corresponding patch of sky. The telescope,
CCD camera and supporting hardware and software
provide this mapping. The CCD is comprised of an
array of linearly sensitive light detectors, so if two
numbers in a data file differ by a factor of 3, then
the amount of light detected by the corresponding
CCD cells differed by a factor of 3. The absolute

Fig. 1. Image processing technology is a representational device.

numbers depend on several factors, and are not usu-
ally meaningful. This part of the representational
chain from object to image has proven, in general,
less problematic for the students in our studies com-
pared to the mapping from data file to image.

The image display represents the image data file.
The image processing software provides the mapping
from the data file to the display on the computer
screen. Image displays are comprised of an array of
picture elements, pixels, where each pixel represents
the value of the corresponding array element stored
in an image data file. For instance, the pixel at loca-
tion row 2, column 3 in the image display represents
the value of the array at location row 2, column 3 in
the image data file.

The software creates the image display by map-
ping the data file (the referent) to the image display
(the representation), which is controlled by user-ac-
cessible settings. For example, a user can select a
color palette, which is simply an ordered list of colors
or shades of gray that will appear in the image. Ex-
actly which colors in the palette correspond to which
data numbers is determined by the MIN (Minimum)
and MAX (Maximum) numerical settings. A datum
with value MIN will appear as the first color in the
palette, and one with value MAX will appear as the
last color. Intermediate colors will be uniformly dis-
tributed over the intermediate data values. (Values
less than MIN will appear as the first color in the
palette, and values greater than MAX will take on
the last color.) With a color palette that consists of
shades of gray and appropriate MIN and MAX set-
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ting, the display will look like an ordinary black and
white picture of the night sky. A smaller gap between
MIN and MAX will generally enhance contrast, as
smaller differences in data values will correspond to
a given change in color in the color palette. See Fig. 2
for several displays of an image data file of the moon.

To summarize, the image display is a representa-
tion of the data file, where the image processing soft-
ware creates the mapping between the data file and
the display. The user may modify the mapping in
various ways. The point of the software is to allow
users to inspect the image and draw inferences about
the data, and hence also about the objects repre-
sented.

In addition to image displays, image-processing

Fig. 2. Image displays and slice graph of the moon. Arrows point to possibly useful visual attributes for locating the edge
of the shadow. *See Color Plate.

software can be used for creating ancillary represen-
tations of data files. A particularly useful tool plots
a graph of brightness counts along a slice through
the image, as in Fig. 2.5. The user specifies a slice by
pressing and dragging the mouse.

It is probably evident already that interpreting
an image involves reasoning across the representa-
tional map. Thus, understanding precisely this aspect
of the technology is critical to effective interpretation.
Our empirical work, below, bears this out. In particu-
lar, students frequently believe they can directly see
attributes of objects in the images, without reasoning
via the map. This is an entirely comprehensible gener-
alization from everyday life, where our normal inter-
pretive strategies transparently (without explicit rea-
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soning) give us access to knowledge about the world.
But, in the case of representational artifacts, such
apparent transparency is misleading. In order to eval-
uate suggestive interpretations critically, students
must explicitly consider the relevant representational
features of the software.

IMAGE PROCESSING ACTIVITIES IN A
SCIENCE CLASSROOM

We intend to illustrate that understanding repre-
sentational aspects of technology can play a critical
role in students’ building on and extending their na-
tive capabilities for interpreting visual representa-
tions. These results will illustrate how empirical find-
ings have helped us to specialize our initial principles,
particularly 2 and 3.

In the following examples, students analyze im-
age displays of a region of the moon, such as those
in Fig. 2. As described below, the students had just
used the image-processing tool pictured in Fig. 3 (see
Fig. 4, color plate, for color version) to create similar
displays. Since we will be presenting examples where
students experience difficulties when interpreting dis-
plays as representations, we encourage the reader to
reflect on how well the display in Fig. 3 supports
thinking about the representational aspects of the
technology: the representation, referent, and map-
ping. For instance, note that values in the data file
can only be viewed one at a time. Fig. 3 shows an
array value count 5 2293, at row x 5 2 and column
y 5 5.

Our analysis of the students’ thinking uses a sim-
ple model of the process of visual data analysis. As
shown in Fig. 5, the student begins with a task, such
as finding the edge of a shadow on the moon. Then
the student focuses attention on a visual attribute,
such as noticing where the blackness ends, as indi-
cated in Fig. 2.1. Next, the student interprets the
visual attribute. (The term visual attribute is really a
stand-in for the more general term ‘‘description.’’
People make descriptions of an image and infer de-
scriptions of the data or referent. Attributes are sim-
ply a special type of description, a simple predicate.)
For example, ‘‘That (where the blackness ends) is
the edge of the shadow.’’

The student may end here, or may continue,
reinterpreting the visual attribute. For instance, the
student might critically evaluate the interpretation,
‘‘This may not be exactly the edge because the display
depends upon the image processing settings.’’ Or the

student may choose to create another display or at-
tend to another visual attribute that might be more
useful for locating the edge.

The model allows us to localize students’ intu-
itive perceptual capabilities (e.g., what they know
about interpreting particular visual attributes) and
when students might apply knowledge of the technol-
ogy (e.g., for critically evaluating a suggestive inter-
pretation, or for selecting new displays with more
useful visual attributes). The textual annotations in
Fig. 2 show some of the visual attributes identified
by students when trying to locate the edge of the
shadow. Below, we will illustrate how selecting the
most useful visual attributes and interpreting them
correctly require thinking about the representational
aspects of the displays.

We begin the empirical study proper by describ-
ing the data sources for our analyses. Next, we pro-
vide a more detailed description of the data and task
and illustrate how an expert student might proceed.
In particular, we describe how an expert student
might use knowledge of representational aspects of
the technology for interpreting visual attributes.
Then we present several examples of students’ analy-
ses. These examples illustrate a range of expertise,
as measured against the proposed expert.

Data Source: Students, Classroom, and Activities

The examples presented below were extracted
from transcripts of hour-long, videotaped discussions
in which pairs of students analyzed digital images of
the moon. The students were enrolled in a high school
physics and astronomy class, which was participating
in the Hands-On Universe Project (Asbell-Clarke
and Barclay, 1996). This outreach program provided
the image processing tool and data. Approximately
six weeks of a two-semester class were devoted to
activities in which students use image processing to
analyze digital images of astronomical objects (Fried-
man, 1996).

These data-analytic activities entail making cal-
culations and inferences from digital images of astro-
nomical objects. As elaborated below, the students
use the image-processing tool to create and modify
displays of the digital images. The activities include
calculating sizes (of craters on the moon, solar flares,
a fireball on Jupiter created by the impact of a frag-
ment of the Shoemaker-Levy comet, etc.), calculating
brightness of stars, distinguishing stars from galaxies,
and identifying asteroids. Many of these activities
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Fig. 3. Image processing tool used in preliminary study. See Color Plate. Reprinted with permission by
Hands-On Universe Project.

have common subtasks, namely locating edges (of
moon shadows, planets, stars, and galaxies) and iden-
tifying changes (in the brightness of an exploding star
or the location of an asteroid).

The following examples are extracted from dis-
cussions that take place following a lab activity where
students used the image processing tools to analyze
digital images of moon. In these discussions, students
work in pairs and are given a set of pictures and data
analytic tasks. They also had access to a computer.
The pictures are familiar to the students because they
had just created similar looking pictures using the
image processing tools. A researcher (I) presents the
task, and acts mainly as an observer, occasionally
prompting verbalization or focusing attention on is-
sues that had arisen. At times, the researcher prompts
students to think about using the computer, answers
procedural questions about the task, and occasionally

provides information about the objects depicted in
the tasks.

The Tasks and Expert Student

This section introduces the tasks and illustrates
ways an expert student might use knowlege of repre-
sentational aspects of the technology. In particular,
the expert might use mapping knowledge and slice
graphs for interpreting visual attributes of image dis-
plays (the representation) in terms of the data (refer-
ent). Table I summarizes the expert interpretations
of visual attributes described in this section. The next
section compares the students’ interpretations to the
expert’s. As we will illustrate, students attend to most
of the proposed visual attributes and consider most
of the proposed representational aspects of the tech-
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Fig. 5. Model for visual data analysis.

Table I. Expert’s Interpretations of Visual Attributes

Visual Attribute Expert Interpretation

Black region Region where counts , MIN
Where black ends Black where counts , MIN,

Grey where counts . MIN
Width of color bands Data values increases more

rapidly where width of
color bands is narrower

Sudden increase in MIN setting is a little
area of blackness greater than values of

counts in the unshadowed
region

nology. In other words, collectively, students have
most of the resources needed by the proposed expert.
We will also illustrate how the expert/student com-
parison has helped us identify students’ difficulties.
Anticipating the final sections of this report, the iden-
tified difficulties informed the design of our new sci-
entific visualization tool and embedding activities.

The task entails analyzing image displays of the
moon similar to those in Fig. 2. Students were to
identify the edge of the large shadow cast by the
crater wall and then to compare the height of the
crater wall to a mountain in the middle of the crater
(the ‘‘central peak’’).

Better edge detection methods systematically
apply some criterion for edge detection based upon
the distribution of light near the edge. Why? As with
other edge or boundary detection tasks, it is usually
not possible to locate an exact edge. Light detected
at the edges of shadows tends to change gradually.
This can be seen in the slice graph of Fig. 2.5. Thus,
the best displays for edge detection tasks most clearly
show the distribution of light near the edge. Some
reasonable alternative criteria for locating the edge
are (consult the figure) where:

a. Brightness begins to increase
b. Brightness stops increasing

c. In the range between beginning of increase
and where the increase stops

d. At point where brightness is increasing
most rapidly.

Using any of the grayscale displays in Fig. 2, it
is tempting to interpret the black region literally as
the shadow and to locate the edge at the location
where the black ends and the shades of gray begin.
(For emphasis, we put visual attributes in bold). The
proposed expert student would realize that although
this may be a good first approximation, the extent of
blackness depends upon the MIN setting. The region
of blackness represents values less than the MIN.
Thus, if the MIN were set to a higher value, a larger
region would be displayed as black and the apparent
edge would move.

It is much less tempting to interpret a colorized
display literally, since it does not look realistic. Still,
we find that some students are tempted to interpret
the ‘‘darker’’ color bands as representing the shadow.
But the expert would realize that the different color
bands have an arbitrary relation to brightness, de-
pending on the settings of the MIN and MAX and
the sequence of colors in the color palette. The color
bands do show the distribution of light at the shad-
ow’s edge better than the grayscale display since the
color hues are more perceptually distinct than the
shades of gray. In particular, the narrow band of blue
in Fig. 2.2 (see also color plate) indicates a rapid
rate of change of values. The proposed expert would
reason that since the (MIN, MAX) interval is divided
into equal subintervals, the narrower bands of color
represent more rapid change of values. An even bet-
ter colorized display for showing light distribution
would show more color bands near the edge, as in
Fig. 2.6 (see also color plate). This effect can be
achieved by setting the MIN and MAX values to
more tightly bracket the range of values near the
edge. We note that this elaborate reasoning is not
easy. We believe this represents an ambitious but
achievable level of expertise.

Another method for displaying the rate of
change is based upon the observation that raising
the MIN increases the area of blackness. Since the
brightness counts do not vary much in the illuminated
region of the crater floor (see slice graph in Fig. 2.5
from distance approximately 5 30 to 50), when the
MIN is raised to a certain threshold value, the region
of blackness will suddenly become much greater, and
the display will appear as if the entire floor of the
crater were in shadow. If the MIN is set to the greatest
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value before this sudden increase in blackness, then
the area of blackness corresponds closely to the edge.

The expert student might use the slice graphs to
help interpret image displays in terms of the data.
Slice graphs clearly show the distribution of light, but
only for the selected portion of the data file. For
instance, the slice graph in Fig. 2.5 represents the
data values along the slice, from top to bottom, on
the image display in Fig. 2.1. An expert might use
the slice graph for determining MIN and MAX values
that would bracket values near the edge. For exam-
ple, using the slice graph of Fig. 2.5, the brightness
counts near the edge (from distance approximately 5
25 to 30) increase within the interval (MIN to MAX)
approximately 0 to 7500. With the proper settings,
the colorized display can show as much detail in fluc-
tuations of light values as the slice graph. For example
the region of narrow color bands on the image display
in Fig. 2.6 (see also color plate) corresponds to the
upward sloping part of the slice graph indicated in
Fig. 2.5.

Student Work

The following analysis compares students’ inter-
pretations of visual attributes and applications of
their understandings of the technology to the ex-
pert’s. First, we present examples where students ap-
proach expertise in the ways they consider represen-
tational aspects of the technology when interpreting a
display’s visual attributes and designing new displays.
These examples illustrate the first two specialized
principles: focusing on representational aspects of the
technology and capitalizing on student competence.
Next, we present examples where students did not
consider representational aspects of the technology
and consequentially misinterpreted visual attributes.
Understanding why students have difficulties is a crit-
ical step in the argument. We want to show that
learning about representations—and, more particu-
larly, learning about representational aspects of the
technology—plays a critical role in students’ building
on their native interpretive capabilities.

Anticipating the final section of this paper, we
are interested in designing the new technology and
instructional activities in ways that will prompt stu-
dents to use their knowledge of representational as-
pects of the technology. We also seek to identify
factors that may hinder students from effectively
applying their representational knowledge. Empiri-

cally determined factors that hinder and prompts that
can help inform our new design.

Chris and Arthur: Applying Knowledge of Repre-
sentational Aspects of the Technology. Chris and Ar-
thur approach the proposed expertise. They consis-
tently interpret visual attributes of display in terms
of the data. They use mapping knowledge and even-
tually slice graphs to help critically evaluate their
interpretations and to help design displays that would
be more useful for the edge-detection task. They also
touch upon a fundamental characteristic of all repre-
sentations: resolution.

We now turn to the transcript. Referring to the
grayscale display in Fig. 2.1, Chris initially interprets
the display as if it were just a picture. At this point,
we don’t believe he has any representational intent,
but only means to describe the display. The students
are attending to the contrast in brightness and the
transition from black to gray.

C: so, where does the shadow end? It ends right
there (pointing to where black ends)

A: Yea. That’s where I say it ends.

C: I think it ends right there, too.

Responding to Arthur’s request for an explana-
tion, below, Chris applies mapping knowledge, values
below the MIN are displayed as black, to interpret
a visual attribute, a black region, in terms of the
numerical data. We categorize such informed expla-
nations as a kind of critical evaluation.

A: How do you know it?

C: Well, you would figure that looking at it . . . this
is where you see the darkness starts ending. . . .
These points right over here are obviously below
the MIN. So they show up as black and when there
starts being pigmentation (gray shades), then that’s
where the shadow ends.

In the next segment, the students consider a way
to create a more useful display for edge detection.
They are still attending to the region of blackness
and using their mapping knowledge. The interviewer
(I) gives the students two more image displays of the
same moon data, similar to Figs. 2.3 and 2.4. The
apparent length of the shadow varied because the
MIN and MAX settings differed. This prompted the
students to consider a way to change the display,
based upon their knowledge of the mapping. But
they are misled by a mistaken assumption that the
brightness counts of the shadow were exactly zero.

Chris’s first statement, below, makes it clear that
‘‘shadow,’’ to this point, has meant ‘‘dark region on
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the display.’’ (The problem in communication is un-
derstandable since the interviewer speaks as if there
is one place the shadow ends, but Chris knows the
edge of darkness depends on the MIN and MAX.)

A: Is this the same picture?

I: It’s the same image file.

C: Well, are you asking . . . if we decreased the
MIN, if the shadow would be different? Or are you
just asking with this setting as it is, where does it end?

I: I’m asking where the shadow really ends on the
moon.

C: Really ends on the moon? Well, if it really ends
on the moon, you’d have to decrease the MIN to
zero to pick up all possible

A: (interrupting) pixel settings

C: . . . but with this, all counts below 610 (the current
setting of the MIN) will not register

A: It’s like all points above 26249 (the current setting
of the MAX) will

C: (interrupting) appear white.

I: So, how would setting the MIN to zero . . . help?

C: Well, that would give you (the) actual image of
the moon, I think.

Chris seems uncertain. When prompted, he
elaborates:

C: I think so. [I think that would give you the actual
image.] But I don’t think we could actually prove
that’s the way it is on the moon. Even if we did it
on the computer.

I: And why is that?

C: Because we don’t have an actual reflecting image
of the moon. We just have what the camera picked
up for us.

Chris correctly notes that he and Arthur have
no way to determine the CCD’s sensitivity, ‘‘what
the camera picked up.’’ In other words, the students
have no way of exploring the CCD’s mapping of the
reflected light striking the CCD and the data values
stored in the data file. However, the students could
inspect the data values to test their assumption that
the shadow corresponds to zero values. So far, they
have not done so.

So far the students have attended to the black
region and applied their knowledge that counts less
than MIN are displayed as black. In the next seg-
ments, prompted to think about other methods, the
students use more knowledge to interpret other vi-
sual attributes: color hues and different shades of
gray. They correctly interpret color hues as represent-

ing a range of values that depends upon the settings
of the MIN and MAX. But they do not figure out
how this might be helpful for finding the edge, partly
because they still think there is an exact edge at the
border between zero and nonzero data values. In this
next segment, the students use the grayscale and color
displays in Figs. 2.1 and 2.2 (see color plate for color
version of Fig. 2.2):

I: Can you think of anything else (other methods for
finding the edge)?

C: Well, you could change the colors on it (referring
to color display).

I: how would that help?

C: Well, that might—it wouldn’t actually help. But
with gray, it’s a little harder to distinguish differ-
ences. And if you made the MIN and MAX smaller
so that you could make a better distinction between
the two different places. Because right now, the col-
ors are spread out over such a large number of counts
that it’s hard to tell.

Note that the students are touching upon the
idea of resolution by thinking about how a display
can distinguish differences in brightness. But unlike
the expert, they do not consider how increasing the
resolution can be used for creating color bands that
show rate of change. Most likely, they are still mistak-
enly assuming that there is an exact edge defined by
where the brightness counts of zero end:

I: Which of those methods seems to be the best?

C: What do you think (asks A)?

A: I think setting it to zero.

C: I would have to agree.

As the students continue to think of new meth-
ods, they eventually think of using the slice tool and
discover their mistaken assumption:

I: Can you think of any other methods you might use?

C: Well, we’ve got the MIN/MAX. We’ve got the
color.

A: Setting it to zero.

C: . . . We’ve got putting the MIN and MAX closer
together. . .

A: or we could use the slice.

C: . . . The slice tool, yes! . . . The slice will actually
tell where the zero (i.e. the shadow) ends.

I: Maybe this will help you. (Hands slice graph to stu-
dents.)

C: Right. The slice will cut across it (motioning along
the slice from top to bottom). And when it reaches—
Well. See, there’s no absolute shadow.
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Chris had discovered that the brightness values
in the shadow are not zero, ‘‘there’s no absolute
shadow.’’ Thus he has skillfully used the slice graph
to help critically evaluate his interpretation of the
image display.

Summarizing, although Chris and Arthur never
considered an ‘‘expert’’ rate-of-change interpreta-
tion, they consistently considered representational
aspects of the technology as they designed and inter-
preted displays. Initially, their interpretations were
flawed because of a mistaken assumption that bright-
ness counts corresponding to the shadow were zero.
But they discovered their mistake with the help of a
slice graph.

These excerpts illustrated several factors that
prompt students to apply understanding of represen-
tational aspects of the technology. First, Arthur’s
request for an explanation of an interpretation
prompted Chris to apply mapping knowledge. On
several occasions, asking the students to compare
displays or methods prompted them to step back
from interpreting a display and think about repre-
sentational characteristics of displays. For example,
when comparing two grayscale displays, Chris con-
sidered the mapping from data values to display,
‘‘if it really ends on the moon, you’d have to
decrease the MIN. . . .’’ When comparing grayscale
and color display, Chris considered the resolution of
the representations, ‘‘it’s a little harder to distinguish
differences, and if you made the MIN and MAX
smaller so that you could make a better distinction.
. . .’’

It seems to us that these students have ample
knowledge of representational aspects of the technol-
ogy and would continue designing displays, inventing
methods for interpreting them, and critically evaluat-
ing their interpretations if they had more time. So it
seems the best way to help these students is to design
engaging visualization tools and activities that will
sustain their interest. In fact, comments such as
Chris’s, ‘‘we don’t have an actual reflecting image of
the moon,’’ have encouraged us to design activities
where students analyze digital images of models that
they build themselves. We think this might be an
engaging way for students to learn about the ‘‘repre-
sented world’’ and explore the relationships between
image displays, the data file and the represented
world.

Diane and Sam: Not Applying Knowledge of the
Technology. Compared to Chris and Arthur’s nearly
expert knowledge of the technology, Diane and
Sam’s knowledge is correct, but limited. This limita-

tion at least partly explains why these students aban-
don a potentially useful visual attribute in favor of a
less useful and incorrectly interpreted visual at-
tribute.

Initially, referring to the colorized display in Fig.
2.2 (see also color plate) Diane locates the edge of
the shadow at the transition from the purple hue to
the brighter color hues. (Purple appears as blue in
Fig. 2.2.) Sometimes, prompting the students to be
precise initiates a critical evaluation, but not here:

D: Yeah, the peak. But this purple (blue in Fig 2.2)
part’s like, it’s part of the shadow, but it’s like the
lighter part. . .

I: Uh huh. How precisely do you think you can locate
it? The end of it. Do you think you’re. . .

S: Um.

When prompted directly to think about the tech-
nology, the students demonstrate that they do have
relevant knowledge, but they do not apply it to the
edge-detection task:

I: Think it’s exactly there? And do you think if you
got on the c(omputer)

D: (interrupting) Maybe not.

I: Maybe not?

D: No, because it depends on how many, how do
you like, counts; how many. . . It depends on how
many counts the computer counts for that color.

Diane seems to understand that colors corre-
spond to data values or ‘‘counts,’’ although she has
expressed it backwards, ‘‘counts . . . for that color.’’
In fact, the computer assigns colors for a range of
counts. But then, without any consideration of the
technology, Sam insists upon interpreting the dark
region as the ‘‘whole shadow.’’ Referring to Fig. 2.2,
he locates the shadow’s edges at the transition be-
tween dark and bright color hues:

S: I still think that’s the whole shadow right there.

D: Yeah. Yeah.

S: And it just starts there, and ends there. And this
might be a little bit lighter (pointing to purple region),
but it’s still part (of the shadow).

Analysis of the transcript does not reveal exactly
why Sam did not apply relevant knowledge of the
technology. One possible explanation is that his un-
derstanding of the mapping was too limited to be
effectively applied. This suggests ways that the soft-
ware could be redesigned to support Sam’s process
of interpretation. For instance, a color key that
showed the range of data values corresponding to
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each color might have helped. (The software design
described later in the paper has exactly this function:
clicking on a color in a palette can show the range
of values it encodes.)

Ben and Alice: Applying a Misunderstanding of
the Technology. The final example illustrates how
mistaken understanding of the technology may inter-
fere with appropriate representational interpreta-
tions. Comparing the grayscale displays4 (Figs. 2.3
and 2.4), Ben judged the display with the sharper
edge, the sudden transition in brightness, would be
better for locating the edge than the less ‘‘defined’’
edge, the gradual transition in brightness. Appar-
ently, Ben thought the image-processing tool can
‘‘define’’ an image as a camera can focus. Ironically,
searching for a sharp edge loses all the referent infor-
mation that is helpful in finding a good approximation
of the edge.

B: I think that this is the clearest picture of it (Fig.
2.3), because this one (Fig. 2.4), it kind of goes on,
but it’s hard to tell where a definite edge is. But this
one (Fig. 2.3) it’s really clear. . .

A: Because there is more of a contrast (Fig. 2.3) for
this one in that area (pointing to edge of shadow)

B. Right.

I: So, before you go on, can you think of any way
the image processing tool on the computer can help
you answer this question?

B: We could do something like what was done here,
where you really define the edge of the shadow.

The idea of ‘‘focusing’’ (to show a sharp edge)
is one of several mistaken understandings that some
students developed as they used the image-pro-
cessing tools. These mistaken understandings indi-
cate that students are not thinking of the display as
a representation of data. This is understandable, since
the data file is almost invisible in the software. As
shown in Fig. 3, the image-processing interface only
shows one data value: (count 5 2293) at location
(x 5 2, y 5 5). This suggests one way to limit such
mistaken understandings: make the data file more sa-
lient.

Summary Remarks

To summarize, the above examples are illustra-
tive of our principles and suggest that the proposed

4The actual displays used by students more clearly showed a sharp,
discontinuous edge for Figure 2.3 and a more gradually bright-
ening edge for Figure 2.4.

expertise is a challenging yet achievable goal for stu-
dents. Altogether, the examples illustrate students’
rich intuitive perceptual resources, where students
attend to a variety of visual attributes. Table II lists
the students’ interpretations of visual attributes. This
is typical of the larger data corpus from which the
examples of this section were drawn. Compared to
the expert student, these include both correct and
flawed interpretations. But taken as a whole, stu-
dents’ many and varied interpretations of visual attri-
butes are evidence of substantial interpretive capabil-
ities.

The examples illustrate the making good use of
interpretive capabilities depends upon considering
representational aspects of the technology. Conse-
quences for not considering representational aspects
of the technology include:

● Students may reject or not identify potentially
useful visual attributes

● Students may misinterpret visual attributes

The analysis also identifies some factors that
prompt students to apply their knowledge of the tech-
nology:

● Explaining an interpretation
● Comparing representations
● Considering precision

Finally, the analysis identifies factors that may
limit effective applications of knowledge of the tech-
nology:

Table II. Student’s Interpretation of Visual Attributes

Brightness contrast: So, where does the shadow
Transition from black end? It ends right there.
to gray (Fig. 2.1)

Black region (Fig. 2.1) Points over here are obvi-
ously below the MIN.

Color hue, shade of Colors spread out over a
gray (Fig. 2.2) large number of counts. If

you made the MIN and
MAX (interval) smaller,
you could make a better
distinction.

Comparative contrast: I think that this is the clearest
Gradual transition in picture, because there is
brightness (Fig. 2.4) more of a contrast.
Sudden transition in
brightness (Fig. 2.3)

Brightness contrast: that’s the whole shadow.
Transition from dark
hues (black and purple)
to bright hues
(Fig. 2.2)
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● Limited knowledge of the technology itself
● Mistaken understandings of the technology
● Limited or mistaken understandings of the ref-

erent (e.g., that shadows are not uniform
zero data)

These findings have informed our design of the
new visualization tool and activities. The final sec-
tions of this paper will describe activities where stu-
dents use the new technology.

DESIGN OF TECHNOLOGY AND
ACTIVITIES FOR LEARNING
ABOUT REPRESENTATIONS

In the previous sections, we presented empirical
work that motivated attention to representational as-
pects of the technology. The students were using an
already existing image-processing tool. This section
turns to the design phase, illustrating how we took
those ideas (and our principles) into account in the
design of some new technology and activities. As a
reminder, our principles are:

1. Design for the best contact with the most
important scientific ideas. In our case, this
includes learning specifically about represen-
tation.

2. Build on students’ strengths. In our case, this
means building on their creative abilities at
interpreting and (below) designing visual dis-
plays.

3. Design for activities that students find person-
ally engaging.

Technology design is an extremely complex pro-
cess, so we can only show illustrative aspects of what
we did.

Consonant with principle 1, we describe our new
software as a metarepresentational tool. While we
will illustrate with astronomical images, the tool is
meant to provide resources for building many kinds
of representations of spatially distributed data. The
tool is constructed as an extension to the Boxer com-
puter environment (diSessa, Abelson, and Ploger,
1992). Boxer is a system with a broad range of facili-
ties, including programming, in which developers,
teachers and students can use, modify and extend
provided resources. Because of Boxer’s properties,
what we produced should more properly be described
as a tool kit (diSessa, 1997) than as a tool since it is
easily modifiable and extendible. This is important

in providing technological support for student initia-
tive, as in principle 3.

Basic Architecture

Consonant with a focus on activities, we began
our design by creating not only a specification for
the technical properties of the system, but also a
database of activity types that we felt were represen-
tative of the range of things students and teachers
should be able to do with our software. For these
purposes, activities don’t need to be spelled out in
detail for we only need to make sure the software is
technically capable of supporting such activities. Our
list included standard image processing functions, as
illustrated in the work above, but also much more
general capabilities, such as dynamic processing of
the data, creation of adjunct tools for directly manip-
ulating and displaying data, and the ability to overlay
graphical objects that interact with the data. (Such
objects might be, for example, creatures walking on
terrain represented by altitudes, or they might be
annotations that help make the display comprehensi-
ble in representational terms). We alternated speci-
fying technical components of the system and then
checking their sufficiency to deal with our list of activ-
ities. Our final design database included full technical
specification, the list of activities, and sketches of how
each activity could be carried out with the software.

The basic element in our design is called a land-
scape box. The metaphor ‘‘landscape’’ arises from
the fact that a canonical task for which one would use
a landscape box is to show values of some attribute
(temperature, altitude) over some terrain. In order
to make representational features of the software
highly salient, we took care to do justice to each
of the three basic components of representation in
landscapes. First, we have a computational layer of
‘‘information to represent.’’ This layer is a two-di-
mensional array of elements, called patches, which
correspond, generally, to places in space at which
measurements (e.g., of light intensity) may be made.
Figure 6 shows a simple numerical array of patches
such as might be used for image processing. Figure
7 shows a single patch containing more complex data,
in this case, a slot for altitude and slots for compo-
nents of gradient (representing direction and magni-
tude of ‘‘uphill’’). (In the future, we intend that slots
may contain non-numerical data, for example, a ‘‘cat-
egory’’ slot might indicate whether that portion of
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Fig. 6. The landscape representation of data (referent) is shown
in a two-dimensional array. Each patch (small boxes) contains
exactly one datum.

the landscape corresponds to land or water, city or
countryside.)

The second aspect of our landscape system is
the graphical representation of this data layer. In
Boxer, all graphics boxes (of which landscapes are
an example) have two ‘‘sides.’’ On one side, one sees
a picture. By ‘‘flipping’’ the box, one sees the data
that defines the picture. In the case of landscapes, the
flip side of the graphical presentation is an adjustable
display of the matrix of patch data. (In the current
implementation, the display of data must be explicitly
built. This compromise was accepted in order to re-
duce effort in programming before we felt empirically
satisfied with the rest of the design.)

The third essential component of a representa-
tion is the mapping between the data and the graphi-
cal representation. In our preliminary design, we
wanted students to write (or inspect and modify)
simple programs that convert the data in a patch into
a color. For reasons of efficiency, our first implemen-
tation does not allow that generality, but, instead,
colors are selected automatically from a palette by
linear interpolation between Minimum and Maxi-
mum data settings, similar to what we explained for
image processing, above. In practice, we found this
an excellent compromise. Landscapes worked fast

Fig. 7. A more complex patch of data, including multiple slots.

enough to be practical, yet students had plenty of
freedom for their own creativity. Since the mapping
part of the representation is somewhat more distrib-
uted (among the palette, MIN and MAX settings),
and since the algorithm of color selection is invisible,
we felt we had to augment activity focus on the map-
ping to compensate, which we describe below.

MIN and MAX are boxes with those names
(Boxer variables) that also appear on the flip side of
a landscape. Palettes, once again, appear on the flip
side of a landscape, and have their own ‘‘elegant’’
(see below) representation. On the graphics side of
a palette, one sees the sequence of colors in the pal-
ette. On the data side, one sees concretely the se-
quence of colors as they are represented as basic
data objects in Boxer. Boxer color data objects are
themselves graphics boxes that show a swatch of
color, and their data flip sides contain three numbers,
which represent the percentage of red, green and
blue (RGB) in the color. Figure 8 (see color plate
for color version) shows the graphics side of a palette,
then the flip (data) side, and finally, the first two
colors are flipped to show RGB percentages.

The reason we describe the palette design as
elegant is that it uses very simple, standard Boxer
features (e.g., the flip side of graphics boxes) to allow
students and teachers complete access to the struc-
ture. Students can flip the palette, re-arrange, delete
or add colors, or edit individual colors using only
basic Boxer ‘‘cut and paste,’’ ‘‘flipping,’’ and similar
ideas that were likely learned in early experience
with Boxer. One can even write a simple program to
generate palettes. Even though we wrote tools to
make generating and modifying palettes easy, stu-
dents still often worked directly and concretely on
the palettes, themselves.

Compared to the image processing tool we used
in formative work, this one gives much higher promi-
nence to the data and the mapping, more comparable

Fig. 8. A palette; the flipped (data side of the) palette; and showing
the data from the first two colors. See Color Plate.
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Fig. 9. A palette making tool. See Color Plate.

to the graphical representation. Students also have
much more direct access to data and map and much
more flexibility in changing them (e.g., palettes in the
other software were simply one of many things one
selects from global menus). The connection between
a landscape and its data and mapping are a little
more direct in our design in that one can see relevant
parts of these inside (on the flip side of) the landscape
itself, rather than in some not-obviously-connected
part of the interface. We expected these properties
to enhance both understanding of all three compo-
nents of representation and also to provide more
flexible and personal use. Flexibility means that
teachers and materials developers, as well as students,
can adapt the software more easily to particular
things they want to do.5

More Tools

In designing the course in which we first intended
to use landscapes, we decided to add some further
tools to facilitate student activities that we hoped
would be engaging and helpful. Figure 9 (color plate,
color version) shows a palette-making tool. A forma-
tive study other than described above convinced us
that designing and working with color palettes would

5For example, since landscapes are both general and programma-
ble, one could use them to represent compound data (such as
selectively showing barometric pressure, temperature and wind
over some terrain); dynamic changes in data (such as computing
wind from some model of its relation to barometric pressure);
alternate ‘‘overlay’’ representations (such as showing wind as
vectors); and showing ‘‘object/environment’’ interactions (such
as the effects of wind on a graphical airplane flying through a land-
scape).

be a rich task for students (Azevedo, 1998). In order
to facilitate working with palettes, the palette tool
simplifies frequent tasks. The top row of buttons pro-
duces standard palettes, either ‘‘rainbow’’ (red, or-
ange, yellow, green, . . .), gray-scale, or blended be-
tween two polar colors (from and to). Steps
determines the number of colors that appear in the
standard palettes. You can concatenate one palette
onto the end of the existing one by dragging and
dropping the palette-to-add into the drop palette to
join here box. The Oops button undoes previous op-
erations, and there is a scratch pad to save temporary
palettes. Once you have a palette you like, you can
press a button to save it in a global warehouse, which
is available at any time for use with any landscape.
Drag and drop is used to facilitate many operations.
One can drag a palette onto a landscape to change
the landscape’s palette. One can drag a color within
a palette into a different position, or delete it by
dragging it off the palette. Individual colors can also
be dragged from a palette to any color box, or in-
serted into a palette with the reverse operation.

A second tool facilitated comparison of graphi-
cal presentation with underlying data. The ‘‘data
peeker’’ shows a small portion of the underlying data
while the landscape is still showing its graphical side.

Figure 10 shows a typical setup of tools to investi-
gate astronomical images. The bracketed square in
the middle of the landscape image shows the region
selected for the data peeker; it can be dragged around
in the image, and data is constantly updated. MIN
and MAX are easily adjusted with slider controls, and
a slice graph is shown. The ‘‘ball and stick’’ icon on
the left of the graph can be dragged across the graph,
showing the value of the graph at each abscissa while
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Fig. 10. Typical setup to investigate astronomical images.

crosshairs shows the location in the landscape from
which the value is drawn.

Activities

Guided by our principles and previous empirical
work, we designed the following sequence of assign-
ments for students before they begin engaging astro-
nomical tasks such as those we reported on above.
Partly, these activities were designed to teach about
representational aspects of the landscape tool. Partly,
they were designed to engage students’ creative abili-
ties for interpreting and designing visual displays.

1. We started by asking students to design paper
and pencil representations of a model physi-
cal landscape. Our experience has been that
students invent a significant range of repre-
sentational forms, and good discussions of the
properties of these may be engaged. In addi-
tion, we have discovered that the idea of
color-coding height almost always spontane-
ously emerges from this activity (Azevedo,
1998).

2. We capitalize on students’ suggestion of color
coding by asking them to select colors that
do a good job showing altitude data in a given
array of altitude numbers. We limit them to
fewer colors than numbers to force the issue
of grouping of data under a single color (reso-
lution).

3. Following these paper and pencil activities,
we introduce a simplified setup of a Boxer
landscape, which had only a few patches and
in which the map to color is explicitly repre-
sented as a program.

4. The first full-fledged use of the landscape sys-
tem is an exercise in which students are given
data in the form of a landscape representing
altitudes of a fictitious archeological site in
Egypt. The site contains two pyramids and
an obelisk. The students must locate and mea-
sure height of the features of the site using
only the graphical landscape representation.
The task is especially difficult because only a
small palette is allowed. Later in the activity,
students are introduced to the data peeker in
order to check their graphical work. Resolu-
tion is an important issue since, for example,
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the smaller pyramid is not even visible with
the first settings of MIN and MAX (the pyra-
mid all fits within the range of values associ-
ated with one color). Skillful use of MIN and
MAX settings is required.

5. Students take pictures of themselves with a
simple digital camera. The data is imported
into a landscape, and students are asked to
do such things as bring out maximal details
in their eyes and to color their hair green.
In this case, they should be very familiar (in
principle) with the data, and the task is some-
what reversed in that visual effect, rather than
determining the data, is at issue.

6. In preparation for tasks such as examining
images of the moon to determine relative
heights of craters and mountains, students are
given physical materials to form into ‘‘experi-
mental landscapes.’’ The landscapes are then
photographed and imported into Boxer land-
scapes, where students test their hypotheses
about how to examine the data to determine
relative height.

AN EXAMPLE

How well did our technology and activity design
(and, implicity, our principles) work? We cannot pro-
vide a scientifically sound evaluation in a small space.
However, we want to illustrate the sorts of things we
found in our first course using the above-described
software and activities. The course was run during
the summer of 1997 in the Berkeley Graduate School
of Education Academic Talent Development Pro-
gram. It involved 10 students, ranging from seventh
to 11th grade, over six weeks, two sessions of three
hours each week. The activities and software de-
scribed above were used for a bit less than half the
time of the course. We do not claim the students
or time involved were ‘‘typical,’’ and hence we aim
mainly to show what is possible.

Overall, we felt our students acquired an excel-
lent sense of representational aspects of the computer
tools, how they work and how to use them. Errors
and difficulties of the sort we illustrated in transcripts
above were rare and were not, as far as we could see,
the result of any limitation or misunderstanding of
the computer tools. On the other hand, we observed
that some students continued to make errors typical
of those documented in the literature concerning

standard representations, so we have no convincing
evidence of MRC transfer, yet.

Concerning principle three, engagement, stu-
dents made many creative uses of the tools beyond
what we scripted into exercises. This often entailed
substantial thinking about representational ideas, as
illustrated by one student’s final project, described
below. Amy’s use of the technology supported sub-
stantial thinking about resolution and about contours
of constant value, a useful representational conven-
tion. We use this project also to indicate the general
level of representational sophistication of students
in the course. Amy showed many, if not all, of the
attributes of our proposed expert student during
her project.

Amy’s project entailed creating displays that
would clearly show the difference between two im-
ages of the same patch of sky. The images were made
three weeks apart. In the latter image, a supernova,
an extremely bright exploding star, appears as a ‘‘new
star’’ in one of the galaxies. Amy used the palette
maker to mimic contour-lined representations she
had seen in a scientific report. Figure 11 (color plate,
color version) displays a research astronomer’s and
one of Amy’s final representations, side by side. In
Amy’s display, the yellow region in the galaxy dis-
tinctly represents the supernova on the right side of
the galaxy. As she explained in her written report:

The advantages of . . . contours are that they show
the change . . . in their context. . . They are easy
to use and they show detail.

Amy’s report chronicles her thought process
leading to her final representation. In particular, she
was not satisfied with the first palette she made:

This palette didn’t go over too well. It lacked the
details that I wanted to be shown, but did give me
an idea of where I should go from here.

Fig. 11. Scientist’s and Amy’s Representations of Supernova 970.
See Color Plate.
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Using the data-peeker tool, Amy established the
range of light intensity in the galaxy:

Using the data-peeker tool, we are able to find the
ranges of light intensity in the supernova and pre-
supernova images. (In these images, we are focusing
on the oval shape on the left side of the image . . .
SN-970 is a real supernova. Wow!) Knowing the light
intensity range makes using the MIN and MAX for
contrast much easier.

Then, using the palette-maker tool over several
hours, she designed many palettes and evaluated the
displays she made with them. She was satisfied only
when she created a display with as much detail as
the data and technology would permit:

After playing around with the palettes some more,
adding in new colors where they are needed, adding
more steps. . . I developed a SNboxer-Contour that
was tight down to the pixel. . .

Note that Amy was not provided any specific
criteria for evaluating her displays. She developed
her resolution criterion, ‘‘tight down to the pixel’’—
meaning showing the relevant information in every
pixel–while designing and evaluating palettes. By
varying the MIN and MAX settings, changing the
sequence of colors in a palette, varying the number
of colors in a palette, and even creating new color
hues, she explored a wide range of ways to vary the
mapping. Although, of course, we have not proven
it here, we believe such sustained thinking will fre-
quently result in deepening understandings of repre-
sentations.

Amy was obviously enthusiastic about her proj-
ect throughout. She explained that she was attracted
to the project because she wanted to ‘‘work with
something real.’’ However, it seemed evident to us
that her interest was also substantially sustained by
using the technology for designing palettes and evalu-
ating displays.

SUMMARY

In this paper, we have tried to describe and illus-
trate a more than usually accountable practice of
technology design for educational purposes. The pro-
cess is iterative and is both empirically and theoreti-
cally grounded at each stage. Empirical grounding in
cognitive studies of the use of technology establishes
plausible learning goals, difficulties experienced by
students, and clearer criteria for evaluating the tech-
nology. Theoretical grounding, in our case, amounts
to establishing, refining, and testing (as much as possi-

ble) principles that articulate general commitments
of designers. In addition, we have emphasized the
importance of activities at all phases of design and
evaluation. Activity design is part of technology de-
sign, and evaluating technology, we claim, should
be in the context of relevant educational activities.
Although this paper is about one type of software,
we believe this kind of design can be valuable
more broadly.

The particular design described here concerns
the first generation of a new, meta-representational
software tool. The design was based upon a general
set of constructivist principles. The fundamental idea
is that a learning technology and embedding activities
should be designed to help students build on what
they already know, including native capabilities and
common sense knowledge. These principles were
specialized, based upon empirical studies of students
who used image-processing software for visual analy-
sis of spatially distributed data. These studies re-
vealed that student understandings and misunder-
standings of the technology itself played a substantial
role in their thinking.

Returning to our original question, what should
students know about the technology? Our answer is
that students should know about the representational
aspects of the technology. This is embedded in our
specialized design principles: design technology and
activities to support thinking about the representa-
tional aspects of the technology. The specialized de-
sign principles and data from our study guided the
design of new representational software. We provide
evidence that such representational thinking will help
students better utilize their intuitive perceptual capa-
bilities for purposes of visual data analysis. More
speculatively, we hope students will learn something
about representations generally. We refer to this idea
as meta-representational competence.

The main empirical part of this paper aimed at
showing students’ strengths and weaknesses at inter-
preting visual displays. Students specifically attend
to many important and informative visual attributes.
And the study showed that at least some students
can integrate these with understanding of the repre-
sentational aspects of the technology so as to produce
cogent interpretations of visually presented data. On
the other hand, the students in our first study also
showed limitations that we believed were due to
weaknesses in the technology design—specifically in
limited access to representational properties of it—
and in learning activities that could highlight repre-
sentational aspects of the software. Student weak-
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nesses included attending only to the attributes of
the display, rather than their representational import,
inability to critically evaluate ‘‘evident’’ interpreta-
tions (e.g., the edge must be ‘‘right there,’’ at a discon-
tinuity), inability to use knowledge of the technology
for representational ends, and direct misunder-
standings of how the technology worked and what it
was capable of (e.g., sharp edges mean ‘‘focused’’
and provide the best evidence on where an edge is).

The second part of the paper illustrated how
we used this data and our specialized principles in
designing software that would, most particularly,
make its own structure as a representational device
salient. We also designed a series of activities that
supplemented software design in:

● capitalizing on student strengths and interests
● opening up important (representational) un-

derstandings of the technology
● focusing, more generally, on important repre-

sentational ideas, like resolution and arbitrari-
ness (of color meaning and of boundaries be-
tween colors).

● highlighting empirically determined-to-be-
difficult ideas

● facilitating student progress into extended,
personally meaningful projects

These activities and software were incorporated
into a summer course. Overall, we felt students in
the course acquired an excellent sense of representa-
tional aspects of the computer tool. A description of
one student’s final project illustrated how designing
activities and software according to our principles
can support sustained thinking about representa-
tions, productively using perceptual capabilities, and
can engender a high level of engagement.

REFERENCES

Asbell-Clarke, J. and Barclay, T. (1996). Discovering the scientist
within. Hands-On! (TERC) 19(2): 4,5,17.

Azavedo, F. S. (1998). Inventing mapping: Meta-representational
competence for spatially distributed data. Paper presented at
annual meeting of the American Education Research Associa-
tion, San Diego, Calfornia.

Barstow, D. and Berenfeld, B. (1996). Data Visualization as an
Essential Component of Telecollaborative, Inquiry-based Sci-
ence Learning. Paper presented at annual meeting of the
American Education Research, New York.

diSessa, A. A. (1987). Artificial worlds and real experience. In
Lawler, R., and Yazdani, M., (Eds.), Artificial Intelligence and
Education, Ablex, Norwood, New Jersey, pp. 55–77.

diSessa, A. A., Hammer, D., Sherin, B., and Kolpakowski, T.
(1991). Inventing graphing. Journal of Mathematical Behavior
10: 117–160.

diSessa, A. A. (1992). Images of learning. In De Corte, E., Linn,
M. C., Mandl, H., and Verschaffel, L. (Eds.), Computer-Based
Learning Environments and Problem Solving, Springer-
Verlag, Berlin, pp. 19–40.

diSessa, A. A. (1995). The many faces of a computational medium.
In diSessa, A., Hoyles, C., Noss, R., and Edwards, L., (Eds.),
Computers and Exploratory Learning, Springer-Verlag, Ber-
lin, pp. 337–359.

diSessa, A. A. (1997). Open toolsets: New ends and new means
in learning mathematics and science with computers. In E.
Pehkonen (Ed.). Proceedings of the 21st Conference of the
International Group for the Psychology of Mathematics Edu-
cation, Vol. 1. Lahti, Finland, pp. 47–62.

Friedman, J. S. (1996). Image Processing in a Science Classroom:
A Constructivist Perspective on the Role of Prior Knowledge.
Paper presented at annual meeting of the American Educa-
tion Research, New York.

Gordin, D. N., and Pea, R. D. (1995). Prospects for scientific
visualization as an educational technology. Journal of the
Learning Sciences 4(3): 249–279.

Greenberg, R., Kolvoord, R. A., Magisos, M., Strom, R. G., and
Croft, S. (1993). Image processing for teaching. Journal of the
Learning Sciences 2: 469–480.

Hancock, C. (1995). The medium and the curriculum: Reflections
on transparent tools and tacit mathematics. In diSessa, A.,
Hoyles, C., Noss, R., and Edwards, L. (Eds.), Computers and
Exploratory Learning, Springer-Verlag, Berlin, pp. 221–240.

Leinhardt, G., Zaslavksy, O., and Stein, M. K. Functions, graphs,
and graphing: Tasks, learning, and teaching. Review of Educa-
tional Research 60(1): 1–64.

Lillesand, T. M. and Kiefer, R. W. (1994). Remote Sensing and
Image Interpretation, Chapter 1. John Wiley and Sons, New
York.

Palmer, S. (1977). Fundamental aspects of cognitive representa-
tion. In Rosch, E., and Lloyd, B. B. (Eds.), Cognition and
Categorization, Erlbaum, Hillsdale, New Jersey, pp. 259–303.

Sherin, B. L. (1998). The elements of representational design.
Paper presented at the annual meeting of the American Edu-
cation Research Association, Chicago.


	zengine-7.pdf
	8635951 p.183 .pdf



