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Abstract

BOCHSER is a new programming system for the Scheme dialect of LISP which incorporates many of
the editor features used by the Boxer language in development in the Educational Computing
Laboratory at M.I.T. BOCHSER exploits the expressiveness of a high-resolution bitmapped video
display to provide a Scheme interface that is at once comprehensible for students and useful for
experienced programmers. The B3OCHSER system is motivated by several principles: that a language
interface should support, as much as possible, an appropriate abstract model for the language; that it
should exhibit integration of normally distinct interface modes; and that it should provide an
expressive and powerful programming medium. This report argues that BOCHSER does, in fact,
adhere to these principles. By way of illustration, a sample session with BOCHSER is outlined, as
well as several representative programming projects.
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Chapter One

Introduction

This report is a description of a new programming system for the Scheme dialect of I ISP. The

system -- called BOCHSER -- incorporates many of the editor features used by the Boxer language

which is presently in development in the Educational Computing Laboratory at M.I.T. BOCHSER

exploits the expressiveness of a high-resolution bitmapped video display to provide a Scheme

interface that is at once comprehensible for students and useful for experienced programmers.

Although the present implementation of BOCHSER is still slow in operation, and not without its

flaws, it should represent a valuable prototype for future Scheme systems. The current system has

been implemented by the author (using the already-existing Boxer editor) on a Symbolics 3600 Lisp

Machine with one megaword of primary memory.

Why develop a system like BOCHSER? The most straightforward answer is that present

Scheme systems are too difficult to work with, and fail to suggest the richness of the programming

language that they represent. BOCHSER is an attempt to incorporate worthwhile ideas of interface

design into the development of Scheme systems. More generally, experimentation with the interface

should ideally be an ongoing enterprise in the life history of every programming language; and it is in

this spirit that BOCHSER has been implemented.

It should also be stressed at the outset that the point of creating a system like BOCHSER is not

to invent a new programming language, but rather to design an informative and powerful interface

for an existing language -- namely, Scheme. Nevertheless, as this report will argue in its later

chapters, a new interface can suggest new paradigms of programming even within an established

language; and it can suggest extensions and future directions for that language as well. The

development of BOCHSER, then, may hopefully stimulate continued evolution of (and creativity

within) the Scheme language itself.
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1.1 The Rest of This Report: an Outline

The remainder of this report will be devoted to a thorough discussion of the BOCHSER

system, including the design principles that motivate it, its strengths and current weaknesses, and a

few of the programming projects which the system suggests. Since BOCHSER is after all a Scheme

programming system, this first chapter will conclude with a brief description of the Scheme language

and the current Scheme system at M.I.T. The following chapter, by way of an introductory overview,

focuses on the major tenets of interface design that underlie the BOCHSER system. In the third

chapter, a sample session with BOCHSER is presented both to introduce the system and to give the

reader an idea of how one actually works with it. The fourth chapter is an in-depth discussion of

BOCHSER, relating its features to some of the design principles discussed earlier. Here, the system is

also compared to the present Scheme interface. The next (fifth) chapter outlines three representative

programming projects in BOCHSER: the intent is to convey the power and utility of the new

interface. In the sixth chapter, the BOCHSER system is analyzed within the tradition of similarly

"model-explicit" interfaces, including the current Boxer language system. Finally, the current status

and potential future evolution of BOCHSER is discussed, and the report concludes with some

general observations about the construction of man-machine interfaces and its place in programming

language design.

1.2 The Scheme Programming Language

This section is intended to supply a few prefatory words about the Scheme programming

language. Scheme, invented by Guy Lewis Steele Jr. and Gerald Jay Sussman, is a lexically scoped

dialect of LISP. An early manifestation of the language is described in Steele and Sussman [Steele

78], and a more up-to-date description can be found in the report of a 1984 workshop meeting at

Brandeis University [Clinger 85]. By and large, the BOCHSER system follows the presentation of

Scheme used in Abelson and Sussman's textbook Structure and Interpretation of Computer

Programs, which is the standard text in the introductory programming course (6.001) at M.I.T.

1.2.1 Scheme's Major Features

Although it is well beyond the scope of this report to provide a complete introduction to

Scheme, some of the salient features of the language are worth mentioning here. Scheme is best

understood as a dialect of LISP; it shares many of its most visible features -- e.g., prefix notation for
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procedure calls, a heavy reliance on spaces and parentheses as syntactic markers, and the primacy of

lists as data structures -- with other LISP dialects. As a variant of LISP, Scheme is notable in several

respects:

1. Its simple syntax,

2. The minimal number of primitive procedures and special forms which it employs,

3. Its blending of the notions of block structure and lexical scoping with LISP's traditional
ideas of an interactive interpreter-based programming environment, and

4. Its notion of procedures and environments as first-class objects -- that is, objects that can
be named, used as arguments to procedures, returned as the results of procedure calls,
and stored within data structures such as lists and arrays. (The term environneni here
refers to a collection of name-value associations, or bindings, and the representation of
Scheme environments will be described later in this chapter.)

The first two of these points reflect Scheme's minimalist style; they are graphically illustrated by the

refreshingly small size of the language manual. Scheme's syntax is basically the same as LISP's, and

derives its simplicity from these origins; but even beyond this, Scheme employs very little in the way

of "syntactic sugar" -- special-purpose constructions that employ their own unique syntax. For

instance, Scheme does not contain the PROG and DO forms found in most LISP dialects; the only

common examples of such constructions in Scheme are the LET special form (analogous to LISP's)

and an alternative syntax of DEFINE used for defining procedures. Moreover, throughout the

language's history, the number of special forms in Scheme has traditionally been held to a very small

number of extremely useful examples. 1

The third point mentioned above relates to the fact that Scheme procedures may contain

internally defined subprocedures; this idea is illustrated in the procedure below, which computes the

exponent of a given base argument to some power n:

(define (expt base n)
(define (expt-iter count result)

(cond ((= count n) result)
(else (expt-iter (1+ count) (* base result)))))

(expt-iter 0 1))

As in the case of other block-structured languages, such as ALGOL 60 or PASCAL, the names of

1Briefly, a specialform in Scheme is a language operation which does not obey the rules of procedure evaluation -- that is, an
operation which does not necessarily evaluate all expressions in the "argument positions" which follow it. For instance, the IF
special form is followed by three expressions: the first is evaluated, and depending on whether or not the result of that
evaluation is the Scheme value FALSE, only one of the two remaining expressions will be evaluated. This distinction between
procedures and special forms will be elaborated upon in the following section.
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Scheme subprocedures are accessible only within the scope of the surrounding procedure; for

instance, the name EXII'-lIER can only be used within the body of EXPI' above. ''his use of block

structure in an interpreter-based programming system enables Scheme to accommodate both those

users who in classical LISP fashion like to create programs one procedure at a time, trying out new

ideas while at the terminal, and those who like to fashion programs in a "top-down", structured

manner. In fact, as with most apparent dichotomies in programming, the split between bottom-up

and top-down design strategies is hardly a pure either-or decision: most programmers employ at least

a little of both strategies in their work. Scheme programmers, then, have the best of both worlds --

they can add one or two new procedures directly, test them out, and then edit their code to impose a

block structure on the new procedures that they have created. '[his is no doubt one of the major

reasons that programmers familiar with Scheme often refer to it as their favorite language.

The final point above is the most interesting one from the standpoint of programming language

design. In Scheme, procedures and environments are objects with much the same status as other,

more conventional language objects -- like numbers. This is of course not to say that all these objects

are semantically equivalent: one cannot, for instance, add procedures together like numbers.

However, insofar as the language operations listed above -- naming, and so on -- are-concerned, these

objects are essentially interchangeable. In the 6.001 course, the inherent power of this idea is

demonstrated by the use of first-class procedures and environments to illustrate a variety of

important programming techniques, such as object-oriented programming, logic programming,

delayed evaluation, and the development of package systems. The BOCHSER examples to be shown

later will also emphasize the utility of this notion.

1.2.2 Scheme Procedure Objects and Environments

Since understanding the precise definitions of "procedures" and "environments" is an

important element of expertise in Scheme, and since this understanding will be helpful to the reader

in comprehending the description of BOCHSER to follow, this section will be devoted to elaborating

on these definitions. Readers familiar with Scheme may choose to skip the following paragraphs;

those interested in more detail are recommended to the Abelson and Sussman text.

In Scheme, an environment is a collection of name-value associations, or bindings.

Environments are represented as a linked chain of frames, each of which contains zero or more

bindings. Figure 1-1 shows an example; each box is a frame, and the arrows represent links between

11
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Figure 1-1:A Scheme environment diagram

frames. Within any frame, all of the bindings in that frame and those frames above it are accessible;

for example, in Figure 1-1, the names X, Y, Z, and + (among others) are accessible from the frame

labeled El. Another way of phrasing this is to say that those names are bound in the environment

represented by the frame labeled El: X is bound to the value 12, Y is bound to 20, and so on. Name

conflicts, when they exist, are resolved by taking the binding from the lowest frame possible in the

chain; for instance, the binding for X in El is derived from the frame labeled El, not that labeled E2.

Note that within any particular frame, only one binding for a given name is allowed; it would be

impossible to have a second binding for X in the frame labeled El.

All Scheme computations proceed by the evaluation of Scheme expressions within

environments of this kind. Evaluating the name X within environment El, for example, would result

in a value of 12. Evaluating the expression

(+ x y)

would result in a value of 32. Outside of some special rules relating to the application of Scheme

procedures, which will be discussed below, the rules for Scheme evaluation are entirely analogous to

those of LISP and will not be treated any further here.

There are still, however, two other points to note about Figure 1-1. First, the uppermost frame

12



is labeled "Global Environnent". This corresponds to the environment in which the names of

Scheme's primitive procedures and pre-defined variables (like NIL) are bound. 'Ihc global

environment is the uppermost frame in every Scheme environment; thus, the bindings of primitive

procedures are accessible in every environment. A second point is that each frame in Figure 1-1

represents one unique environment -- namely, that consisting of the frame itself and those frames in

the chain above it. There is thus a one-to-one correspondence between Scheme environments and

frames.

Scheme procedure objects are what other LISP dialects call closures -- that is, combinations of

the procedure code and the environment in which that procedure was created. For example, FOO in

Figure 1-1 is the name of a procedure associated with environment El. The code of FOO indicates

that when called with a numeric argument, the procedure binds this argument to the value N and

returns the result of adding this value to the value of X. The way in which Scheme procedure objects

are applied to arguments may be summarized as follows:

1. The argument expressions are evaluated.

2. A new frame is created in which the results of step 1) above -- that is, the values of the
arguments -- are bound to the formal parameters of the procedure being applied.

3. The newly-created frame is linked to the frame associated with the procedure object. This
linkage creates a new environment.

4. Within this newly-created environment, the body of the procedure is evaluated; the result
of the last expression to be evaluated is the result of the procedure application.

Note that there is a certain recursive quality to the summary above. For instance, step 1, the

evaluation of argument expressions, may itself require the application of a procedure to arguments, as

in the expression

(foo (foo 1))

Similarly, step 4 often involves the evaluation of sub-procedure calls within the body of the

procedure being applied.

A few additional details about this model of procedure application should also be mentioned.

First, primitive procedures (like Scheme's addition primitive) do not have bodies to be evaluated;

thus, the application of a primitive effectively proceeds invisibly after step 1 above. That is, the

arguments to the primitive are evaluated, and then the primitive is applied directly to those

13



arguments without the creation of any new frames. Another point is that Scheme contains a number

of special forms, like DEFIN E, lAMIBDA, LE'T, QUOTE, IF, CON D, and SET! -- all analogous to

their LISP counterparts (SET! corresponds to SFTQ) -- which obey their own rules of evaluation.

The rules for each special form must be learned on an ad hoc basis. For example, SF1'! is followed by

a symbol and an expression; the expression is evaluated, and the symbol (which should already be

bound) has its most local binding changed to the result of the expression evaluation. As noted earlier,

the number of Scheme special forms has been kept to a minimum. Finally, the third step listed above

is what in essence embodies the lexical scoping of Scheme procedures: the result of this step is that

free variables in the procedure body will obtain their values from the environment in which the

procedure was created, not from the environment in which the application was performed. -

If the reader new to Scheme finds this model of evaluation difficult to understand at first, he or

she is not alone: this model (commonly referred to as the "environment model" of Scheme)

comprises one of the most confusing and frustrating elements of the 6.001 course. It is in fact one of

the purposes of BOCHSER to make this model more understandable and exploitable for Scheme

novices. As we elaborate further upon the BOCHSER system, we will return to the environment

model of evaluation in Scheme, and its uses in programming; still, although this report will strive for

clarity in its examples even for those without Scheme programming experience, it would undeniably

be helpful to the reader to have at least a partial familiarity with some LISP dialect, such as Common

LISP, as background for the following chapters.2

1.2.3 The Current Scheme System at M.I.T.

At present, the Scheme system used in the intoductory course at M.I.T. has been implemented

on Hewlett-Packard 9836 machines, and requires approximately 1.5 megabytes of primary memory.

Past versions of the course have used a Scheme system implemented in MACLISP which runs under

the TOPS-20 operating system on DECSystem 10 and 20 computers. Both of these Schemes are

modeled on the MACLISP interface, in that both maintain a separate EMACS editor in which

programs are developed. The Scheme interpreter itself (again in both instances) also takes its basic

21t should also be pointed out that the preceding description of Scheme semantics is based on the version of the language
implemented at M.I.T. and described in the Abelson-Sussman text, since it is this version upon which BOCHSER is based.
Other implementations may differ in some respects. For instance, some Schemes do not include first-class environments;
others might include the DO special form mentioned earlier. The "Revised Revised Report" on Scheme [Clinger 85] provides
a more formal description of the language, intended to take varying implementations or "sub-dialects" of the language into
account.
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interface ideas from MACLISP: expressions are typed in and evaluated once complete. In the

TOPS-20 Scheme, evaluation takes place automatically upon completion of the expression; in 9836

Scheme, the user presses an EXECUTE key to evaluate a previously typed expression. In this report,

references to the "standard Scheme interface" are meant to indicate features common to both

systems, unless otherwise noted.
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Chapter Two

Motivation: An Integrated, Powerful, Model-Explicit
System for Scheme

There are several major motivating themes behind the implementation of BOCHSER as it has

evolved. These themes -- "model-explicitness", integration, and programming power -- form the basis

of the system's interface-design philosophy. Since these three notions will surface repeatedly in the

ensuing chapters, this chapter will be devoted to elaborating briefly upon each of them.

2.1 Support for a Programming Language Model

One of the primary purposes of the BOCHSER system is to supply its users with an interface

that provides explicit and useful information about the Scheme "language model". Among cognitive

scientists, there is a growing consensus that people who learn a programming language acquire in the

process a mental model of the computer -- that is to say, an internal semantic representation of the

primitive objects and operations of the computer as employed by the language. The model that

people acquire need not be (and typically isn't) at the level of actual hardware; often it is abstract,

incomplete, consciously metaphorical, or even inaccurate. For example, people might view storage

locations as "containers" with special shapes that accommodate different types of data; a computer's

primary memory might be viewed as an "erasable scoreboard"; procedure invocation might be

represented as the assignment of a certain task to a "little man" who may call other little men

(subprocedures) in the course of his work.3 Beyond this consensus -- i.e., that mental models of

computers as derived from programming languages do exist -- there are vast numbers of still-open

questions: How does one characterize mental models in general, and models of computers (and

computer languages) in particular? How do programmers' models change with age and experience?

How do they vary from one programming language to another? What kind of computer models do

people come up with spontaneously, in the absence of specific instruction? Are explicitly presented

models useful for people learning a programming language? If models are presented to a language

3Te first two examples are taken from [Findlay 81] and [Mayer 75]; the last is due to Seymour Papert for use in teaching
LOGO, and is described in [Weir 85].
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learner, what are the criteria for a "good" (pedagogically speaking) model?

As of now, all these questions are the subject of active research, and the state of knowledge

regarding these "language-appropriate" computer models can be fairly described as embryonic.

Young [83], for example, writes

"Although it is widely accepted that people's ability to use an interactive device
depends in part on their having access to some sort of a mental model... the notion of the
'user's conceptual model'... remains a hazy one, and there are probably as many different
ideas about what it might be as there are people writing about it."

Even so, there is broad agreement -- supported by some corroborative experimental work -- that 1)

explicit presentation of a concrete computer model is of benefit to someone learning a new computer

language, and 2) creative or expert use of a programming language (as opposed to stereotyped "rote

usage" of standard patterns) makes essential use of a powerful, language-appropriate computer

model. Du Boulay, O'Shea, and Monk [811 write, for example,

"Novices should be introduced to programming through languages that embody
simple notional machines with the facilities for making certain of the actions of the
notional machine open to view."

A "notional machine", in their description, is

"an idealized, conceptual computer whose properties are implied by the constructs in
the programming language employed. That is, the properties of the notional machine are
language, rather than hardware, dependent."

In a similar vein, Mayer [79] suggests that instruction in BASIC should make essential use of what he

calls "transactions":

"A transaction is a unit of programming knowledge in which a general operation is
applied to an object at a general location... Transactions provide a means, for the novice,
of 'explaining' what is going on inside the computer when a particular statement is
executed and of relating the new technical language that he or she must learn to the
general operations, locations, and objects that he or she is already familiar with."

He concludes,

"To enhance learning in novices, a concrete or familiar model of the computer should
be introduced early in learning and used throughout learning."

Similar ideas crop up consistently in studies of programmer behavior. Mawby et.al. [84], in a

series of interviews with children to determine their understanding of LOGO, attribute much of the

children's weakness in programming to an imperfect model of the language. Adelson and Soloway

[84] present a picture of expert programming that can be described as a sort of "stepwise refinement

of models" -- that is, that construction of a program proceeds from a top-level model of the working

program to successively less abstract models, culminating at the point where procedures may be
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written using the primitive elements of the language model itself. lalasz and Moran [83], in studying

people's use of a stack calculator, compared two groups of subjects: one trained solely via the

presentation of examples, and another given in addition to the examples an explicit model of the

calculator's operation. 'I'hey found "the model provides no advantage on problem solving

performance for the routine and combination problems... However, for the invention (i.e., novel)

problems, the model users performed considerably better than the no-model users." Finally, Mayer

[811 again reports on a series of experiments in which language-appropriate computer models were

tested for their value as "advance organizers" -- that is, frameworks into which later programming

instruction could be assimilated.4 He concludes,

"If your goal is to produce learners who will not need to use the language creatively,
then no model is needed. If your goal is to produce learners who will be able to come up
with creative solutions to novel (for them) problems, then a concrete model early in
learning is quite useful."

Despite this widespread acknowledgment of the importance of language models in creative

programming, however, most language interfaces are remarkably sparse in their support of these

models. Presumably, when a language is implemented, the language designer (or interface designer,

if the language is not a new one) has in mind some sort of ideal "designer's model" of the language

that ought to be conveyed to users. The implementation, one would hope, would be effective in

conveying this model; the interface would be designed with this communication as its primary aim.

This sort of view is espoused by Norman [83]:

"In the ideal world, when a system is constructed, the design will be based around a
conceptual model. This conceptual model should govern the entire human interface with
the system, so that the image of that system seen by the user is consistent, cohesive, and
intelligible. I call this image the system image to distinguish it from the conceptual model
upon which it is based, and the mental model one hopes the user will form of the
system.... the instructors of the system would teach the underlying conceptual model to
the user and, if the system image is consistent with that model, the user's mental model
will also be consistent."

All of this is very reasonable advice; the surprising fact is that it is so rarely adhered to. There is

nothing in most standard BASIC interfaces that represents a "location" -- that is, nothing on the

screen which changes when one performs a LET statement interactively. There is nothing in the

standard LOGO interface that reflects the "little man" model of control (short of, say, TRACE

facilities, which are rather cryptic in their own right); nor is the distinction between "editor world"

and "interpreter world" ever made clear in the LOGO model that one would want to convey.

4 Additional discussion about language models can be found in [Carroll 85], [di Sessa 85a], and [di Sessa 85b].
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Nothing in the standard ILISP interface represents a list -- there is no place on the screen to look for

the result of a RPLACA operation. In all of these cases, the style of the user's interaction with the

system is essentially one of "evaluation of expressions" -- one types in an expression, or series of

expressions, and watches the result -- but always the evaluating mechanism, and the world of abstract

objects in which this mechanism works, remain invisible.

There is little reason for this "expression-oriented" interface style to remain the norm; it is

essentially an artifact of the limited teletype-based programming environments of early computers.

Users of machines with high-resolution bitmapped screen displays quite simply can do better. Over

the years a number of (usually experimental) programming systems have attempted to provide more

"transparent" interfaces (in the sense that the "system image", in Norman's phrase, is more openly

representative of the designer's system model); and it's fair to say that this value of transparency

represents an increasingly important trend in computer interface design.

One purpose of the BOCHSER system, then, is to support a rich and appropriate model of the

Scheme language for the beginning Scheme programmer. That is, the designer's model, "system

image", and (eventual) user's model of the language are intended to be consistent: the interface

openly reflects the designer's model of Scheme and encourages the development and exploitation of

that model by the user.

2.2 Integration in Language Interfaces

A second major motivating idea behind BOCHSER is that of integration. Rather than have a

variety of subsystems -- editor, interpreter, debugger, and so on -- each with its own particular style of

interface, the BOCHSER system unifies these functionalities within one internally consistent, simple

programming environment. Much of BOCHSER's quality of integration, as this report will show, is a

result of its use of the Boxer editor -- indeed, BOCHSER derives from Boxer a principle design

concern that di Sessa [85b] refers to as detuning:

Detuning means having general structures underlying the computational environment
that are broadly applicable, less highly tuned to any specific function, and always
available for use.

A companion notion to detuning, as described by di Sessa, is that of diffusing functionality --

the idea that one construct may serve several functions -- and here too the BOCHSER system shares

in the advantages of Boxer. It is in large part through the Boxer editor's exemplification of
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"detuning" and "diffusing functionality" that BOCHSFR is able to achievc some measure of

integration. We will return to these design principles in greater detail in the fourth chapter of this

report, after presenting some necessary background about the 13OCH-SER system itself.

It should be noted, of course, that the concept of integration is hardly a new or unpopular one.

Within the realm of applications programming, "integration" has by now become something of a

buzzword; in this context, it usually implies that a number of separate applications programs (e.g.,

text editors, chart-creating programs, spreadsheets) will maintain consistent interface conventions and

will all be able to work with similarly-formatted data. As for programming languages, the

SMALLTALK system was founded in part on the idea of integration, and Tesler [81] has a spirited

defense of "modeless programming" in his description of SMALLTALK-80; the INTERLISP system

as well is often invoked as an example [Teitelman 81]. More recently, Heering and Klint [85] have

written a comprehensive argument on behalf of what they call "monolingual programming

environments". Their introduction represents a good case study in current support for integration:

"This hodgepodge of languages [within a typical computer system] makes fast and
efficient interaction with the system difficult. There are several reasons for this. The first
and most obvious one is that the user has to remember so many different details. This
would be acceptable if the domains of discourse corresponding to the various interactive
modes were sufficiently distinct. But, at least for some modes, the opposite is true. There
are profound analogies between command mode, programming mode, and symbolic
debugging mode, but in most existing systems a substantial intellectual effort is required
to see them, because they tend to be obscured by the differences between the various
languages."

Despite the acknowledged trends in commercial applications software, and despite the long-standing

atmosphere of (at least academic) support implied by the examples of Smalltalk, Interlisp, and Boxer,

truly integrated programming environments still remain few and far between. BOCHSER is an

attempt to provide such an environment for Scheme programmers.

2.3 Expressive Power in a Programming Environment

Historically, many of the systems that could be described as "model-explicit" have been

designed primarily as pedagogical devices -- that is to say, they were seen as useful for students

learning the language but not for advanced programmers, for whom the model was well-understood

and efficiency was of greater concern. This report will argue that the BOCHSER system, by virtue of

its close adherence to the Scheme model, is of interest to experienced Scheme programmers as well as

novices. The reason for this is that the BOCHSER interface suggests programming strategies that are
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compatible with the Scheme model, but which the standard Scheme interface fails to highlight (or

actively discourages). In this context, the reader may recall the final quote from Mayer above: he

indicates that creative programming -- not merely the assimilation of a language -- depends on the

mastery of a language-appropriate model. It should hardly be surprising, then, that an interface

which encourages the use of hitherto unexploited elements of a language model can spark

inventiveness among its users.

As was noted earlier, these three notions -- model-explicitness, integration, and expressive

power -- form the major design principles behind the BOCHSER system. The next step is to examine

the system itself; and the following two chapters are devoted to that purpose.
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Chapter Three

BOCHSER: An Overview and Sample Session

This chapter will provide a general introduction to the BOCHSFR system; our strategy will be

to proceed through a sample session with BOCHSER, introducing salient features of the system as we

go. (Another "tour through BOCHSER", though with some differences in emphasis, may be found

in Jim Fulton's review of the system.[Fulton 85])

The text-editing commands of the BOCHSER editor are based on Emacs [Stallman 81], and are

largely derived from the existing command set of the Boxer system (cf. also [Boxer 84]). A list of

these editor commands is included as an appendix to this report; outside of those elements used to

deal with boxes and objects specific to BOCHSER -- which elements will be introduced in the

following discussion -- there is no need to expend any more time on the text-editing features of the

system here.
En
9indings-

PRREMT* -Q

00 - Proc-09p
00..F0

IRMT7
'R 5 (M)(UEMC (BKPT) (1+ M)),

DEFIrE IFOO

(foo 4) 1 fp

foonI

Figure 3-1:A BOCHSER screen
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3.1 Boxes

The most striking and pervasive feature of the BOCHSFR (and Boxer) editor is its use of the

box as an editor object. Boxes come in a variety of types in BOCI ISR: Figure 3-1 shows a screen

configuration in which we can see boxes of type environment (the box that surrounds all the others),

bindings, procedure-object, code, breakpoint, and syntax (this is the box with the label DEFINE in

its Lipper left-hand corner). All of these types will be fully explained shortly, but a few words about

box-editor commands in general arc in order here. Boxes may be shown on the screen in three sizes:

shrunken, normal, and full-screen. A shrnken box (like the one at the bottom of Figure 3-1) appears

as a little gray rectangle on the screen; shrunken boxes may be expanded to normal size (like the

DEFINE syntax box), in which state the box is made large enough so that all of the text inside it may

be shown. Normal-sized boxes may be further expanded to full-screen size. The user can change the

sizes of boxes on the screen -- shrinking and expanding them as desired -- either by using mouse

commands (employing the 3600's mouse) or via keyboard commands. For example, to expand the

DEFINE box to full-screen size, one might use the cursor associated with the mouse ("mouse arrow")

to point to that box and expand it. Alternatively, one might use keyboard commands to move the

cursor inside the DEFINE box (there are editor commands which move the editor cursor in and out

of boxes) and then expand the box. (See Figure 3-2.)

DEFINE
(foo n)
(bkpt)
(1+ n)

Figure 3-2:The DEFINE box expanded to full-screen size

In general, a box is treated like a screen character. If the editor cursor has been placed on a line

which contains a box as a subsequent character, and one now inserts text at this point, then the box

on the line moves to the right exactly like all the other subsequent characters on the line. Similarly, if

one uses editor commands to advance the cursor one character at a time, then boxes will be
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"advanced over" just as other characters are.

Most box types in BOCUSER arc "read-only" -- that is to say, one cannot insert text into the

interior of most boxes. The only species of boxes that allow the user to type input inside them are

environment and syntax boxes. This point will be elaborated upon later; the reason it is mentioned

now is simply to note that when one inserts text into (or deletes text from) a normal-sized box, the

box borders adjust to accommodate the new text. With the exception of the restriction on "input-

accepting box types", and the box types themselves, virtually all of these features are derived from

the original Boxer system; further description of general box-editing commands may be found in [di

Sessa 85b], [Boxer 84], and in documentary videos prepared by the Educational Computing Group at

M.I.T. [Boxer 83, 85]

in-

Figure 3-3:A user's first view of the BOCHSER screen

3.2 Sample Session, part 1: Environment and Bindings boxes

We can begin our sample session with the first view of BOCHSER that the user encounters

(Figure 3-3). We are now inside a full-screen box with an "Env" header -- an environment box.

Every environment box, including this one, contains a bindings box on its first row; when

environment boxes are first seen, their bindings boxes are shown in "shrunken" size, by default.

To examine the contents of the bindings box of this environment, we can expand it to normal

size. The definition of "normal size" for bindings boxes is actually a little different than that for all

others; a "normal-sized" bindings box is kept at one fixed size. Thus, if the box contains a large
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.nv

irading -

*- (PRIMITIVE *)
+ * (PRIMITIVE +)
- 0 (PRIMITIVE -)
-1+ ' (PRIMITIVE 1-)
1+- (PRIMITIVE 1+)
< - (PRIMITIVE SCHEME-<)
= (PRIMITIVE NUMBER-=)
> - (PRIMITIVE SCHEME->)
PPPLY - (PRIMITIVE SCHEME-APPLY)

Figure 3-4:The bindings box expanded to "normal" size

number of rows, not all of them may be visible on the screen. In Figure 3-4, we see that the bindings

box has been expanded to its fixed "normal" size; not all its contents are yet visible.

An examination of the bindings box in Figure 3-4 shows that we are in BOCHSER's global

environment. Each row in the bindings box represents one binding in this environment. The

bindings are arranged in alphabetical order (by variable name); and we can look at more bindings by

scrolling the view in the bindings box (as in Figure 3-5). Examining the bindings box at this stage

tells us, for example, that ATOM? and APPLY are already-defined symbols, bound to primitive

Scheme procedures.

En
iradzngs

qPPLY - (PRIMITIVE SCHEME-APPLY)
ATOM? - (PRIMITIVE SCHEME-ATOM?)
CAR - (PRIMITIVE SCHEME-CAR)
CDR o (PRIMITIVE SCHEME-CDR)
ONS - (PRIMITIVE SCHEME-CONS)
IV - (PRIMITIVE /)
Q? - (PRIMITIVE SCHEME-ED)
QUAL? - (PRIMITIVE SCHEME-EQUAL)
VAL . (PRIMITIVE SCHEME-EVAL-EXP)
ALSE FALSE

Figure 3-5:The bindings box after scrolling
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'Tlie reader may recall from the discussion in the First chapter that in Scheme, an environment is

represented as a succession, or chain, of linked frames. Consequently, there is a one-to-one

correspondence between environments and frames; each environment may be uniquely associated

with the lowest frame in its representative succession-of-frames. In the BOCHSER interface, the

bindings box of each environment box shows the bindings present in the frame which corresponds to

the represented environment. (lhe reader might thus be equally comfortable thinking of

environment boxes as "frame boxes".) In our present example in Figure 3-5, we are in an

environment box corresponding to IIOCISER's global environment; the bindings shown in the

bindings box, then, are the "global bindings".

indings-

*# (PRIMITIVE w)
+ o (PRIMITV +)
-0 (PRIMITIVE -)

-1+ * (PRIMITIVE 1-)
1+ (PRIMITIVE S+)
< - (PRIMITIVE SCHEME-<)
= o* (PRIMITIVE MUMBER-s)
>* (PRIMITIVE SCHEME->)

PPPLY * (PRIMITIVE SCHEME-APPLY)

(+ 4 12)

Figure 3-6:Typing an expression to evaluate

inding-

- (PRIMITIVE *)
+ - (PRIMITIVE +)

(PRIMITIVE -)
-1+ * (PRIMITIVE 1-)-
1+ (PRIMITIVE 1+)
< - (PRIMITIVE SCHEME-<)
= - (PRIMITIVE NUMBER-=)
> - (PRIMITIVE SCHEME->)
APPLY - (PRIMITIVE SCHEME-APPLY)

(+ f 12) 116

Figure 3-7:Evaluating an expression
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The arca underneath the bindings box -- that is, the rest of the environment box's interior -- is a

"Scheme interpreter area". In this area, the user may type Scheme expressions and have them

evaluated. For example, Figure 3-6 shows a Scheme expression typed into the global environment

box; Figure 3-7 shows the configuration of the screen after evaluating this expression. Expressions are

evaluated by placing the cursor at the closing parenthesis of the expression and pressing an "execute"

key (on the 3600, the LINE key serves this function); atomic expressions may be evaluated by

pressing the execute key on a row containing only the atom.

It is worth summarizing the aspects of the BOCHSER interface that we have seen so far.

Environment boxes represent environments; each environment box contains a bindings box; the

rows of the bindings box represent the bindings in the frame corresponding to the relevant

environment. Bindings, as the preceding figures have shown, are siniply name-value pairs. Finally,

each environment box contains its own local Scheme interpreter area.

3.3 Sample Session, part 2: Defining Variables

To continue our session with BOCHSER, we can observe what happens when we execute a

DEFINE expression. In Figure 3-8, the user types in the expression

(define foo 6)

and executes it. The returned value of this expression is the symbol FOO; this is in keeping with the

standard Scheme interface. More interestingly, however, a look at the bindings box shows that a

binding for the symbol FOO has now been added to the global environment. The row

FOO <--> 5

in the bindings box indicates that FOO is now bound to the value 5. In Figure 3-9, the user types in

the name FOO and evaluates it; as expected, the returned result is 5.

The bindings box, then, tells us the present state of the BOCHSER world at any particular time.

This information is updated after every BOCHSER evaluation. For instance, in Figure 3-10, the user

types in the expression

(set! foo 6)

Evaluating this expression causes BOCHSER to return the old value of FOO, namely 5, and to

update the bindings box in accordance with the new binding for FOO.
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Bi ndi ngs
QUAL? + (PRIMITIVE SCHEME-EQUAL)
VAL " (PRIMITIVE SCHEME-EVAL-EXP)
RLSE FALSE
ALSE? (PRIMITIVE SCHEME-FALSE?)
00 4* 5
ORCE . (PRIMITIVE SCHEME-FORCE)
IST (PRIMITIVE SCHEME-LIST)
IL 4 FALSE

PRINT " (PRIMITIVE SCHEME-ROW-PRINT)
PROCEDURE-ENVo,(PRIMITIVE SCHEME-PROC-ENV)

(define foo 5) I FOG

Figure 3-8:Dcfining FOO

QUAL? (PRIMITIVE SCHEME-EQUAL)
VAL o (PRIMITIVE SCHEME-EVAL-EXP)
FALSE 4* FALSE
FALSE? " (PRIMITIVE SCHEME-FALSE?)
00 ** S
ORCE * (PRIMITIVE SCHEME-FORCE)
IST " (PRIMITIVE SCHEME-LIST)

NIL * FALSE
PRINT o (PRIMITIVE SCHEME-ROW-PRINT)
PROCEDURE-ENV " (PRIMITIVESCHEE;-PO;-ENV

(define foo 5)

Foo IS

I FOG

Figure 3-9:Evaluating FOO
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zndings
QUAL? o (PRIMITIVE SCHEME-EQUAL)
VAL - (PRIMITIVE SCHEME-EVAL-EXP)
RLSE FALSE
ALSE? * (PRIMITIVE SCHEME-FRLSE?)
00 *
ORCE * (PRIMITIVE SCHEME-FORCE)
IST (PRIMITIVE SCHEME-LIST)
IL FALSE
RINT " (PRIMITIVE SCHEME-ROW-PRINT)
ROCEDRE-ENV .(PRIMITIVE SCHEM:PROC-ENV

(set! foo 6) is

Figure 3- 10:Resetting FOO

To carry the example one step further, in Figure 3-11, the user creates a new environment by

typing the expression:

(define el (make-environment ())

We can see a new binding created for the symbol El, and a returned value of El on the screen. Now,

by evaluating the name El on the next line of Figure 3-11, the user can access the newly created

environment.

In Figure 3-12, the environment box returned earlier is expanded and the user has opened up

its bindings box. Initially, the only binding present in the new environment is for the special symbol

*PARENT*. This symbol is bound to the parent environment; thus, by opening up the environment

box corresponding to *PARENT*, we can view the bindings of the parent frame -- here, the bindings

of the global environment. Notice that there is no binding for *PARENT* in the global

environment, since there is no "parent frame" for this environment.

Figure 3-13 depicts what happens when the user types in a definition for FOO in the newly

opened environment. Here, FOO is bound to 10 in the new environment; but it is still bound to 6 in

the global environment. As Figure 3-13 shows, if we evaluate the symbol FOO in the interpreter area

of the global environment, the returned result is 6, whereas in the new environment, the result is 10.

An interesting aspect of the BOCHSER system is illustrated in Figure 3-14. Here, we have

defined E2 to have the same value as the environment bound to El. Figure 3-14 shows the definition
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Binding-
IV (PRIMITIVE /)
E1

Q? . (PRIMITIVE SCHEME-EQ)
QUAL? 4+ (PRIMITIVE SCHEME-EQUAL)
VAL - (PRIMITIVE SCHEME-EVAL-EXP)
ALSE * FALSE
ALSE? - (PRIMITIVE SCHEME-FALSE?)
00 " 6
ORCE o (PRIMITIVE SCHEME-FORCE)

(define el (make-environment 0)) IE1

31

Figure 3-11:Making a new environment

Gindingi
IV (PRIMITIVE /)

Q? "4RIMITIVE SCHEME-EQ)
QUAL? - (PRIMITIVE SCHEME-EQUAL)
VRL . (PRIMITIVE SCHEME-EVAL-EXP)
FRLSE FALSE
RLSE? . (PRIMITIVE SCHEME-FRLSE?)
00 - 6
ORCE - (PRIMITIVE SCHEME-FORCE)

(define el (make-environment 0)) IEl

e1 I Env
indings,

*PRREMTM -4.E
Iindings-
I-. (PRIMITIVE-)
+ * (PRIMITIVE +)
- o (PRIMITIVE -)
-1+ - (PRIMITIVE 1-)

I 1l+ * (PRIMITIVE 1+)

Figure 3-12:Opening the new environment
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Figure 3-13:Rcdefining FOO in the new environment

of E2, and, on the subsequent line, the result of evaluating the name E2. We have expanded the

bindings box of the E2 environment box; as expected, it contains the same bindings as the El

environment box, since these symbols are bound to the same environment object. Another way of

phrasing this is to say that the values of the symbols El and E2 are EQ. In BOCHSER, two

environment boxes that correspond to the same object will always have identical bindings boxes;

however, their interpreter areas are independent. Thus, we can type into the "El environment box"

without seeing any change in the "E2 environment box". The equivalence of the represented

environments can be seen in Figure 3-15; here, the user types the expression

.(define bar 12)

into the "El box". When this expression is evaluated, a binding for BAR is added to both the "El

bindings box" and the "E2 bindings box". Similarly, if the user were now to perform a SET!

operation on FOO or BAR within either environment box, the bindings boxes of both would change.

3.4 Sample Session, part 3: Procedure Objects

In Figure 3-16, we have expanded one of the new environment boxes from the previous section

to full-screen size, so that we can work with a relatively "uncluttered" bindings box. The figure shows

that the user has typed in the expression
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el I

(defini

e2 I

ind

*PARENT.

~00 .

(define foo 10) IF0O
foo 110

e .2 el) IE2
-En

*zndingo-

*PRRENTw ,

00 - 10

Figure 3-14:Two environment boxes representing one environment object

el I

2 i

C.

MPRRENT* .
RR - 12
00 - 10

(define bar 12) IBSR

-E
9indings

*PARENT*

~00 - 19

Figure 3-15:Defining BAR in the upper box causes both to change
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BA2 0

FOO +, P

(define (baz x)(1+ x))

Figure 3-16:Dcfining a procedure

r'oc-co
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(RU4 (FxSEOUENCE Q1+ X))

indi-goj

MPARENTw
S 12

Co -,0

Figure 3-17:Four views of a procedure object

33

1BA2



(define (baz x)(1+ x))

and evaluated it. The symbol BAZ is now bound to what in Scheme is known as a procedure obict.

As noted earlier, procedure objects in Scheme (and in the BOCIHSFR system) are essentially closures

-- in the Abelson and Sussman text, they are represented as combinations of the procedure code and

the lexically enclosing environment of the procedure definition. The BOCHSFR system represents

procedure objects as a new type of box -- suitably enough, a "procedure-object" box. Thus, in Figure

3-16, we see that the value of the symbol BAZ is a procedure object, which is represented as a

shrunken (by default) box.

In Figure 3-17, we see a number of views of the procedure object to which BAZ is now bound.

Procedure-object boxes contain three sub-boxes: two of type cde (to be explained shortly), and one

of type environment. The first "code box" contains the top-level expression that was evaluated to

produce this procedure object. This box (which perhaps could be better labeled as a "history box")

has no analogue in the standard Scheme procedure object representation, but -- as we will see -- it

provides useful information. The second code box contains the actual procedure code which

13OCHSER uses in applying the procedure; this corresponds to the "code" portion of the standard

representation. In the case of our particular procedure, BAZ, the two code boxes contain very similar

information. We can see that the representation of BAZ's code in the second box is slightly different

than that in the first; this corresponds to the automatic syntaxing step which is performed when a

BOCHSER procedure is created. Future examples will show that the first two sub-boxes in a

procedure-object box need not always contain similar information.

The final sub-box in a procedure-object box is an environment box corresponding to the

lexically enclosing environment of this procedure's definition. Here, the environment associated with

BAZ is simply the same environment that we have been working in; expanding the bindings box of

BAZ's environment shows the same bindings as the bindings box at the top of our screen. Note that,

as with any other environment box, we can type expressions into the environment portion of a

procedure-object box. In Figure 3-18, we have entered the environment box of the BAZ procedure-

object box, and set the value of FOO to 40; the change is reflected in both the BAZ environment box

and the bindings box at the top of the screen. The reader may have noted by this time that the

BOCHSER screen allows for circularity in the representation of environments: for instance, in Figure

3-19, we have expanded the representation of BAZ inside the bindings box within the environment

portion of a BAZ procedure-object box; one could continue the process indefinitely to produce an
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Figure 3-18:The procedure object's environment is EQ to the "outer one"
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arbitrarily nested view of the BA. procedure-object box.

The BOCHSER representation of procedure objects really comes into its own when the

environment associated with a given procedure object is not EQ to an already-existing environment.

An example of this situation can be seen in Figure 3-20. Here, the procedure MAKE-CTR is created;

MAKE-CTR, when applied to a numeric argument, creates an "application environment" in which

the local variable N is bound to the argument value. The returned result will be a procedure object

whose associated environment is this newly-created "application environment". Thus, in Figure 3-21,

when we define CO to be the result of the expression

(make-ctr 0)

we find that CO is now bound to a procedure object. The environment associated with the CO

procedure object is one that we have not seen elsewhere -- in this frame, N is bound to 0. The

situation is represented graphically in Figure 3-22.

Now, in Figure 3-23, we can see the result of applying the CO procedure object to no

arguments. As we would expect from the code of CO, the value of N is set to 1; this new binding is

reflected in CO's bindings box. One of the advantages of the BOCHSER interface is the ability to

monitor bindings in this way -- in the standard Scheme interface, there would be no straightforward

way to examine the environments of procedure objects like CO. Moreover, the BOCHSER

representation suggests an even more powerful notion: evaluating arbitrary expressions within the

environments of procedure objects. In the case of CO, we can see (Figure 3-24) the effect of defining

a new procedure within CO's environment; a new procedure, named RESET, is created in that

environment. Now, if we apply the RESET procedure to no arguments within the CO environment,

the value of N is set back to 0. The MAKE-CTR procedure, in the terminology of the Abelson and

Sussman text, is a simple example of an "object-creating" procedure; CO itself can be viewed as a tiny

message-accepting object. The point, then, of defining RESET within CO is to demonstrate that in

BOCHSER it is a simple matter to "customize" objects like CO by adding new procedures to the

objects' local environments. Thus, we could have one counter object with its own private RESET

procedure, another with an INCREMENT-BY-TWO procedure, and so on. In the fifth chapter, we

will return to the subject of object-oriented programming in BOCHSER.
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IAKE-CTR *

(define (make-ctr n)
(lambda ()

(set! n (1+ n))

Figure 3-20:Dcfining MAKE-CTR

(define ce (make-ctr 0)) Ice

Figure 3-21:Creating a counter object

(ambda(t).)

I
a(->0

(IambdaO
(set n(1+ n))
a)

Figure 3-22:An environment diagram for MAKE-CfR and C0
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(CO) I I

Figure 3-23:Applying CO to zero arguments

cO I -roc-ob)
-En _ _ _ _ _ _

indings-

"PARENT -
MAKE-CTR "
I - 0
RESET *

(define (reset)

(set! n 0)) IRESET

(reset) I1

Figure 3-24:1Defining a "customized" procedure for CO

3.5 Sample Session, part 4: Shared Structures

As we have seen, the bindings boxes in BOCHSER environments are intended to reflect the

state of the programmer's "world" at any particular time. This can be particularly useful when two

BOCHSER variables exhibit sharing -- that is, when the two variables are bound to objects some of

whose structure is held in common. An example of this situation can be seen in Figure 3-25. Here,

the user has defined the symbol A to denote the list (1 2 3), and B to denote the CDR of that list, or (2

3). The situation is represented graphically in Figure 3-26; it is clear that the list object bound to A

shares some of its structure with that bound to B.
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.PRRENTo *

A (1 2 3)
B * (2 3)

(define a '(1 2 3))

(define b (cdr a))

1A

1B

Figure 3-25:Defining two lists that share cons cells

A B

1 2 3

Figure 3-26: Sharing between A and B

-Eno
-indings-

*PRRENT* *

1 (1 4 3)
p. (4 3)

(define a '(1 2 3))

(define b (cdr a))

(set-car! b 4) 1(4

IR

'B
3)

Figure 3-27:Changing B causes both to change
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In Figure 3-27, we can see the result of performing a SFT-CAR! operation on B; both the

bindings of A and 13 change on the screen. Thus, the BOCI-ISHR system is able to keep track of

sharing between list objects and reflects their commonality in its representation of bindings.

(define (factorial n)
(cond ((= n 0) 1)

(else (* n (fact (-1+ n))))))

-DEFINE
(factorial n)
(cond ((= n 0) 1)

(else (* n (fact (-1+ n)))))
DEFINE
(factorial n)

'-(tDEFN n))))1

(als( n (fact (-1+ ))

-DEFI

r FCTORIAL.

((= n ) )
(ollse (*n (fact (-l+ n))))

-DE FIM-- --

andj(1)

Figure 3-28:A demonstration of syntax boxes

3.6 Sample Session, part 5: Syntax boxes

Thus far, all of the expressions that have been typed into the various interpreter areas during

our sample session have been standard Scheme expressions -- they could equally well have been

typed into the usual Scheme interface. BOCHSER allows for more interesting and elaborate

formatting of expressions on the screen, however, via the construction of syntax boxes. A syntax box

is simply an alternative representation of a list whose CAR is an atom; any such list may be

represented as a box with the starting atom as the box-header in the left-hand corner. Figure 3-28

shows a variety of ways of representing the same expression by the use of syntax boxes. The user may

transform any appropriate list into a syntax box by moving the cursor to the closing parenthesis of the

list and pressing a special key (META-LINE on the 3600).

The advantages of this flexible formatting technique will become more apparent in later

chapters. For now, suffice it to say that the user can gain a great deal of power by employing the

existing box-editing facilities -- shrinking, expanding, and labeling (to be introduced shortly) on
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arbitrary list expressions.
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Figure 3-29:Saving and reading a BOCHSER world

3.7 Sample Session, part 6: Saving and Reading the BOCHSER World

As of now, the file-management capabilities of BOCHSER are fairly skeletal. However, the user

can save and load the BOCHSER global environment via the SAVE-WORLD and READ-WORLD

primitive procedures. SAVE-WORLD takes a file-name argument and saves all the bindings of the

BOCHSER global environment into a file with that name; READ-WORLD takes a file-name

argument corresponding to a saved BOCHSER world and returns an environment identical to the

one saved. Note that READ-WORLD does not change any bindings in the environment in which it is

applied; it simply returns a new environment as its result.

An example of these procedures in action can be seen in Figure 3-29. Here, the present

BOCHSER world is saved via the expression

(save-world 'example-world.bch)

After this expression has been evaluated, the user defines a new variable A. Now, the old version of

the world is read back in via the expression

(read-world 'example-world.bch)
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Uxpanding the environment returned, we see a copy of the old global environment, before the

binding of A was created.

A "destructive read-in" procedure named RPI'LACE-WOR)ID is also present in BOCHSER.

When invoked from the global environment with a file-name as argument, this procedure replaces
the current BOCHSER world with the one saved in the given file. Since this procedure effectively
cancels any work done in the original BOCHSER environment, it is rather risky to use
indiscriminately.
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Chapter Four

BOCHSER in Depth

The previous chapter introduced most of the important features of the BOCIISER system. In

this chapter several aspects of IIOCHSER are explored in a little greater depth; the system is

compared to the existing Scheme interface, and we begin to relate its features to the design principles

discussed in the second chapter. The overall intent of this chapter is to give the the reader a better feel

for the power and utility of the BOCHSER interface; the chapter following this one will address the

topic of creating actual programs in the BOCHSER system.

Our discussion of BOCHSER in this chapter will focus on three areas: the BOCHSER editor

and its utility in creating and working with Scheme programs; the advantages of BOCHSER's

maintenance of a visible Scheme namespace; and the power of interacting with arbitrary Scheme

environments.

4.1 Using the BOCHSER Editor to Create and Work with Scheme Programs

4.1.1 Integration of Editor and Intepreter

Our discussion of the BOCHSER editor may as well begin by noting its integration with the

BOCHSER interpreter, since the most immediately apparent difference between BOCHSER and the

standard Scheme interface is that in the former there is no separate editor buffer in which programs

are created. BOCHSER programs are developed using exactly the same interface in which they will

be run. This integration of editor and interpreter exemplifies di Sessa's concept of "detuning",

mentioned earlier; the editor functions that one learns in order to manipulate program text in the

"creation stage" of work may be used to examine the state of the system in the "running stage" of

work.

Although the Boxer system takes this detuning notion a little farther than does BOCHSER at

present (for instance, in Boxer, the user can redefine the action of a keystroke), the absence of a

separate "editor mode" is a considerable step toward simplifying a programming environment. One
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of the more confusing features of the present 9836 Scheme system is that some editor features make

sense in the interpreter -- for example, one can use the control-A keystroke to go to the beginning of

a line -- while others do not. For instance, one cannot, in the standard Scheme interface, use control-

P (which in EMACS moves the cursor to the previous line on the screen) to go to a previously

typed-in expression in the interpreter. Even more irritating, the control-B key, which in FMACS

moves the cursor back one character position, when used in the interpreter invokes a breakpoint!

BOCHSER also presents some good examples of the "diffusing functionality" notion -- that of

one construct serving multiple functions. For example, syntax boxes may be used to collect well-

understood groups of procedures into shrunken "black boxes" on the screen (this functionality will

be elaborated upon later), or they may be used to store a group of related procedures within one

screen region, as in Figure 4-1. Soon, we will see how syntax boxes can be used to effectively create

menus of expressions as well. The integration of the editor and interpreter modes thus allows syntax

boxes to be used as formatting devices both in the representation of code (an "editor-type" usage)

and in the arrangement and grouping of expressions to be invoked from the interpreter.

It should also be mentioned that the BOCHSER interface can accommodate those users who

actively prefer to maintain a separate "editor buffer". In the book Interactive Programming

Environments, Richard Stallman and Erik Sandewall engage in a small debate on this subject, with

the former supporting the notion of a powerful separate text-based (as opposed to list-structure-

based) editor [Sandewall 78]. Many of Stallman's arguments -- indeed, many of the points on both

sides -- are now approaching obsolescence. For example, Stallman argues that an advantage of text

editing is that the user can edit expressions with unbalanced parentheses; yet even the limited editing

facilities in the present Scheme interpreter allow editing to take place on unbalanced expressions of

this kind. Certainly in BOCHSER there is no language-based restriction on the text being edited,

unless and until one tries to evaluate that text as a Scheme expression. Nevertheless, one might still

argue that the additional functionality that comes with a separate editor is worth the difficulties of

"programming with modes"; an editor might include a variety of souped-up special purpose

commands or separate language-specific packages of'macros that would be at odds with the needs of

an interpreter.

Anyone sympathetic to these arguments could in fact work with BOCHSER in such a way as to

effectively maintain a separate "editor buffer" by creating two environment boxes corresponding to

the same environment object; in one box, the user would write procedures, and in the other evaluate
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Figure 4-1:Grouping related procedures together within an interpreter area

Figure 4-2: Using "EQ environment boxes" as editor and interpreter
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(mapcar f lis)
(cond ((false? lis) nil)

(else (cons (f (car lis))(mapcar f (cdr lis)))))

[DEFINE
(length lis)
(cond ((false? lis) 0)

(else (1+ (length (cdr lis)))))

[DEFINE-
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(else (nth (-1+ n) (cdr lis))))
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expressions (see Figure 4-2). To make this strategy truly workable, it would be desirable to augment

the BOCHSER editor with more powerful user-defined parameters; for instance, in the "interpreter

box" on the right of Figure 4-2, one might set the default indentation parameters to be consistent

with Scheme expressions, whereas in the "editor box" one might use text-oriented indentation.

Additions of this kind, which will be discussed later on in the context of future directions for

BOCHSER, are basically a matter of fine-tuning the system in accordance with observations of a

community of programmers.

4.1.2 H iding Subprocedures

Perhaps the most telling complaint about Scheme's syntax in comparison to that of most earlier

LISP dialects is a corollary of the former's lexical scoping discipline. In particular, in Scheme, the

code of many procedures begins with a series of definitions of internal procedures. That is, the

pattern that a procedure definition follows often looks something like this:

(define (outer-procedure x y)
(define (inner-procedure-I a b c)

(define (inner-procedure-2 d e f)

<'body of outer-procedure after DE FINEs>)

The problem with this syntax is that in some sense the heart of OUTER-PROCEDURE -- what we

really think of as the procedure body -- is textually separated from the top of the definition. On an

editor screen, it may even be impossible to view this essential portion of the procedure body and the

definition line at the same time. We would like to think of the inner procedure definitions as

subsidiary, and yet they are taking up the bulk of our attention in reading the code for OUTER-

PROCEDURE.

This problem -- that Scheme syntax does not accurately reflect the programmer's perception of

his or her work -- is one reason that BOCHSER's syntax boxes are a desirable editor feature. Figure

4-3 shows a procedure with several subsidiary procedure definitions inside it; the subsidiary

procedure definitions have been placed inside their own local syntax boxes and the first two of these

syntax boxes have been shrunken. Thus, any sub-expression which the user wishes to conceive of as a
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(define (outer-procedure x y)
DEFINE'

F DEFINE-

i-DEFINE

(. (inner-procedure-1 x y (1+ x))
(inner-procedure-2 x y

(inner-procedure-3 x y))))

Figure 4-3: Using syntax boxes to format a Scheme procedure meaningfully

"black box" may be represented -- virtually literally! -- as a shrunken box on the screen.

Alternatively, the user can format procedures so that syntax boxes correspond to lexical scoping

boundaries, as in the contour model often used to explain Algol 60's block structure; thus, one might

elect to use syntax boxes exclusively on DEFINE, LAMBDA, -and LET expressions, each of which

essentially delimits a scoping boundary within a Scheme program. The point is not that syntax boxes

must be used in any particular way, but that they tremendously expand the programmer's ability to

format code meaningfully.

Figure 4-3 also illustrates another feature of BOCHSER (taken from an earlier version of the

Boxer editor) -- namely, the ability to label a box. The grey lines at the top of the syntax boxes in

Figure 4-3 represent labels for these boxes. Labels have no semantic content; they have the status of

one-line commefits. Their utility is shown by the fact that when a box is shrunken, the label remains

visible, so that the user can get a brief indication of the box's contents. Any BOCHSER box --

environment boxes, procedure-object boxes, and so on -- may be given a label; the label line is

created by pressing a special key while the cursor is inside the box, at which point the user can type in

the desired label contents.

4.1.3 Non-scrolling

One of the simplest properties of the standard Scheme interpreter -- the fact that it employs a

scrolling screen -- is also one of its most problematic. Often, the programmer wishes to examine the

result of an earlier evaluation step, but is unable to because the expression and its result have scrolled
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off the top of the screen. A similar problem can be seen when the programmer wishes to re-evaluate

an expression (or one of a few standard expressions); even though the Scheme system does retain the

last several expressions evaluated in memory and can recall them onto the screen via the use of a

RECALL key, this is a rather clumsy and in the final analysis insufficient technique for re-evaluating

expressions. It is after all not improbable that the user might wish to evaluate one of a set of many

"standard" expressions in some arbitrary order. This sort of situation arises often in the context of

object-oriented programming. For example, the programmer might have a "turtle" object that

accepts a number of messages: "forward", "right", "back", and "left". If the programmer wished to

have the turtle execute an arbitrary series of steps, a sequence of expressions of the following sort

would have to be typed:

((turtle 'forward) 100)
((turtle 'right) 90)
((turtle 'forward) 100)
((turtle 'left) 90)
((turtle 'back) 100)

The point of this scenario is that the programmer must repeatedly retype expressions which are better

thought of as part of a "menu" of standard expressions. What is desired is an easily accessible region

of the general appearance:

((turtle 'forward) 100)
((turtle 'back) 100)
((turtle 'left) 90)
((turtle 'right) 90)

which can be placed on the screen and whose expressions can be used arbitrarily many times and

whenever desired. An example of such a menu, created using a BOCHSER syntax box, is shown in

Figure 4-4 Note that the syntax box here was made from a list whose car is the symbol MENU; as

such, an attempt to evaluate the expression corresponding to the box itself (i.e., a list starting with the

atom MENU) would produce an error if there were no MENU procedure. However, any complete

expression in the interpreter area of a BOCHSER environment, whether or not it is a subexpression

of a larger list, may be evaluated. Here, the user could evaluate the expression

((turtle 'forward) 100)

simply by moving the cursor to the closing parenthesis (this can be achieved with the mouse pointer),

and evaluating the expression.
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Figure 4-4:A BOCHSER "turtle menu"

There is one major disadvantage to BOCHSER's non-scrolling screen; it is rather easy for the

interpreter area of an environment box to become cluttered with previously evaluated, and now

unimportant, expressions. In a way, this is the complementary problem to that of the standard

Scheme interface's scrolling screen. Possible solutions to this problem will be discussed later in this

report.

4.1.4 Working with the History of a BOCHSER Session

One of the strengths of the BOCHSER editor in working with Scheme programs is that it

allows the user to maintain and store some record of a BOCHSER session. Earlier, in the context of

discussing the non-scrolling screen, it was mentioned that often a programmer wishes to look back at

the results of an interaction done earlier in the work session. In BOCHSER, this kind of history-

maintenance is easy to do.

Figure 4-5 shows an illustration of this idea. Here, the programmer has put a TRACE on the

FACTORIAL procedure; the results of the call to FACTORIAL have then been printed out on the

screen. In the usual Scheme interface, these TRACE output lines would print out on the screen,

eventually scroll off, and subsequently be lost from the programmer's view. A common experience

for Scheme programmers is to apply TRACEd procedures many times in order to get an additional

look at the same TRACE output that they saw before. Figure 4-6 shows how this problem can be

handled in BOCHSER. The TRACE output has been placed inside a syntax box and labeled; in

Figure 4-7, the shrunken syntax box is placed at the top of the screen for later use. One could of

course save other useful portions of the session history: for example, evaluations that result in an

error message could be placed into a special box for later reference.
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(trace factorial)

(factorial 3) I6
Entering Procedure BU:FRCTORIRL with arguments:(N + 3)
Entering Procedure BU:FACTORIAL with arguments:(N + 2)
Entering Procedure BU:FACTORIAL with arguments:(N 4 1)
Entering Procedure BU:FRCTORIAL with arguments:(N + 0)

Figure 4-5:The result of a trace on the FACTORIAL procedure

TRACE-OUTPUT

nt r d ORIAL with arguments:(N + 3)Enering Procdur
Entering Procedure BU:FRCTORIRL with arguments:(N + 2)
Entering Procedure BU:FRCTORIAL with arguments:(N + 1)
Entering Procedure BU:FRCTORIRL with arguments:(N + 0)

Figure 4-6:Placing the result inside a syntax box
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-Env

Figure 4-7:Lcaving the trace result on the screen for future examination

(define fact-traceF TRACE-OUTPUT
(Entering Procedure FACTORIRL
(Entering Procedure FACTORIAL
(Entering Procedure FACTORIAL
(Enterinq Procedure FACTORIAL

with arguments (N = 3)
with arguments (N = 2)
with arguments (N = 1)
with arguments (N = 0)

)

)

)

)

)

Figure 4-8:Editing the trace result and saving it as the value of FACT-TRACE
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It is even the case that much of what the user sees on the screen can be used as the value of a

BOCHSER object. As of now, the BOCIISFR reader does not accept, among other things,

environment boxes and procedure object boxes as evaluable elements of Scheme expressions; that is,

one cannot evaluate, say, an environment box. However, much of the screen content is understood

by the BOCHSER reader, and at least this portion can be treated as a BOCHSER object. For

instance, in Figure 4-8, portions of the FACTORIAL trace output have been placed inside a list and

stored as the value of the variable FACT-TRACE; this value can now, of course, be saved on

secondary storage as part of a B3OCHSER world.5

4.2 Visible Namespace

The previous section dealt with the BOCHSER editor, and most of the scenarios demonstrated

the utility of BOCHSER's syntax boxes. In this and the following section, we turn our focus to

BOCHSER's environment and bindings boxes. One advantage of including these elements in the

BOCHSER interface is the usefulness of being able to evaluate expressions within any environment

box; this will be the topic of the next section. Here we explore another issue: the value to a

programmer of having a visible namespace.

A significant proportion of a Scheme programmer's time is spent examining the state of the

interpreter "world": evaluating variable names, pretty-printing procedures, going back to the editor

to look at program code, and so on. In the standard Scheme interpreter, the usual way to examine a

binding is to evaluate the variable name in question, or, in the case of a procedure, calling the

PRETTY-PRINT primitive on the procedure. Should the original code of the procedure be of

interest, the user must go back to the editor buffer to look for that code. If a number of separate

bindings are of interest, the user can invoke the WHERE primitive procedure, which places Scheme

in its "debugging" mode, from which state a special command will allow the user to view all the

bindings in a given environment.

In every one of these techniques, the standard Scheme interface unwittingly forces the user into

viewing "world-examination" as a sort of digression. For instance, suppose the user has created a

Scheme procedure that sets a global variable in the course of execution:

5A similar sort of functionality is seen in Semantic Microsystems' newly-released MacScheme version of Scheme for the
Apple Macintosh computer (cf. [MacScheme 85]).
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(define (proc x y)

(etl *global-variable* (+ x y))

In order to see whether the global variable is being set correctly, the user would have to type a series

of expressions more or less as follows (the arrow "--->" indicates the Scheme prompt):

--- > *global-variable*
0

--- > (proc 1 2)
<result>

--- > *global-variable*
3

Here, the user has to type in the expression *GLOBAL-VARIABLE* every time he or she

wishes to examine the state of that binding. If there are a number of mutable variables of this sort, the

amount of overhead spent examining their bindings becomes onerous. Even worse, if the variables of

interest are not global (for example, "state variables" like N in our earlier counter example), there is

no straightforward way -- short of invoking breakpoints -- to examine their bindings. Even assuming

that the variable is accessible, there are other problems: since the screen scrolls, the programmer

might examine the variable binding of interest and then perform several other unrelated evaluation

steps, at which point the variable value examined earlier is irretrievably lost from view and possibly

forgotten.

Similar comments can be made about the pretty-printing of procedures, and invoking the

DEBUG facility. In every case, there is a picture of the programmer's activity as linear -- first

examine bindings, then evaluate, then examine bindings again -- rather than as a combination of

several ongoing activities. The BOCHSER strategy of providing a consistent place on the screen

where the current namespace can always be examined supports the notion of "world examination" as

a constant, ongoing background activity. In the earlier example, the binding of *GLOBAL-

VARIABLE* could be under observation when the procedure PROC is applied; in fact, any binding

in any accessible environment (such as that for N in the counter example) is visible in exactly the

same way -- no special system facilities need to be invoked.
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Perhaps more importantly, BOCI ISIR's visible namespace is a major clement in its support of

the Scheme "language model" as described in the Abelson and Sussman text. 'his topic of

BOCHSER and its representation of the Scheme model will be discussed at the outset of the next

chapter; but it is worth noting here that the concept of the visible namespace has been an important

one in a number of "model-transparent" programming systems (cf. [Shapiro 74], [Leap 84]).

4.3 Interacting with BOCHSER Environments

In this section, we explore several ways in which a BOCHSER programmer can exploit the

ability to interact with arbitrary BOCHSER environments. First, we demonstrate how BOCHSER

environment boxes can be used to implement customizable package systems; then, the inclusion of

environment boxes within procedure-object boxes is shown to be useful for redefining buggy

procedures. The final example in this section introduces BOCHSER's breakpoint facility, and

demonstrates the advantages of including environment boxes within the system's representation of

breakpoints.

4.3.1 Environment Hierarchies

In Abelson and Sussman's text, the authors explain how the concept of a Scheme environment

can subsume that of "packages". A package, as defined in most LISP systems, is a group of (usually

functionally related) procedure and variable definitions; the point of grouping definitions in this way

is to segment and access the programming environment namespace in a natural way. Whenever a

procedure in one package wishes to access a name in another package, it can do so by prefixing the

name with that of the second package. For instance, one might create a MATH package in which all

procedures specifically geared toward mathematical programming are placed. A procedure in the

GRAPHICS package might access a matrix-inversion procedure by calling MATH:INVERT. One of

the advantages of this strategy is that names can be re-used in separate packages: there may be a new

INVERT procedure, for example, defined in the GRAPHICS package. Packages may also contain

sub-packages: the MATH package, say, might contain a sub-package named MATRIX for handling

matrix procedures.

Powerful as this package notion is, it is really just a special case of the broader environment

notion. An environment, after all, is -- like a package -- just a collection of bindings. Essentially, one

could access the MATH package in the example above by using Scheme's EVAL primitive as
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follows:

((oval 'invert math-environment) graphics-matrix)

This is a useful idea, but the BOCI ISER interface makes it even a little more powerful by virtue of its

representation of environments. In BOCHSIiR, as we have noted, a user can interact with any

environment in exactly the same way; thus, if one wishes to access the MATH environment

procedures by default, one need only go to an environment box which represents the MATH

environment object and expand that box to full-screen size. From that point on, the system interface

is virtually the same as the global environment interface; no calls to EVAL are needed (although they

might be used if one wished to access procedures in an environment other than the MATH package).

Thus, if one wished to define a new procedure in the MATH package, one would simply evaluate the

definition inside the MATH environment box; and the notion of sub-packages would similarly be

represented by including a sub-environment (e.g., MATRIX) inside the MATH environment.

Inheritance of names is achieved automatically by virtue of Scheme's environment model; for

instance, if the MATH environment contains a TRUNCATE procedure and the name TRUNCATE

is not bound in the MATRIX environment, then calls to TRUNCATE inside MATRIX will use the

definition inside MATH.

-En ni

Figure 4-9:A hierarchy of environments used as a "package system"

Figure 4-9 shows an extension of this idea, illustrating the notion of an environment (or

package) hierarchy. The global environment contains several sub-environments labeled MAIL,

WORD-PROCESSING, and MATH; the MATH environment itself has been opened up to reveal

sub-environments that act as real-number, matrix, and complex-number packages. Any particular
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sub-environment could be loaded in as a separate modular unit6 ; thus, the user can easily configure a

package hierarchy for any working session. For instance, a hierarchy like that in Figure 4-9 could be

created by reading in MAIL, WORD-PROCESSING, and MATH environments from secondary

storage while working in the global environment, and then, if desired, reading in MATRIX,

COMPLEX-NUMBER, and REAL-NUMBER while working inside the MATH environment. In

fact, one could, by reading in a new copy of the WORD-PROCESSING environment while inside

MATH, achieve the effect of having two separate WORD-PROCESSING packages -- one which

inherits procedures from the MATH package and one which does not. Accessing any of these worlds

is simply a matter of maneuvering about the screen, shrinking and expanding the appropriate boxes.

The kind of functionality achieved here is similar to that described in the SCREEN system described

by Sandewall et. al. [81].

4.3.2 Redefining procedures

As another brief example of how one might exploit the ability to interact with BOCHSER

environments, consider the following situation: one is working in a "deeply nested" environment

box (that is, an environment box corresponding to a frame many levels down from the global

environment), and discovers a bug in a procedure named FOO. Now, in order to fix the bug in FOO,

one must find the procedure to examine its code; but FOO may have been created in any one of the

parent environments to this one. As a last resort, of course, the programmer could examine the parent

frames to this environment, one at a time, until finding FOO inside a bindings box. 'This would, in

fact, not be terribly difficult to do -- but there is a better way to approach the problem.

In Figure 4-10, the situation just described is illustrated. Here, the programmer uses a FOO

procedure which is intended to multiply its argument by 20, but instead appears to be multiplying by

10. The programmer, to find the FOO procedure, simply evaluates the name FOO: the result of this

evaluation is a procedure-object box corresponding to the desired procedure object. Now, in Figure

4-11, the programmer enters the environment box associated with the FOO procedure object,

retrieves the code from FOO's code-box (there is a special editor function that allows the user to

retrieve text from code-boxes), and redefines FOO in the environment in which it was originally

6Admittedly, creating the appropriate sub-environments is at present a somewhat arduous task in BOCHSER: to save
BOCIISER worlds which do not include the usual global bindings, one would have to UNDEFINE all these bindings before
saving. Future BOCIISERs should allow for selective saving of individual bindings, which would make the suggested sort of
sub-environment creation a good deal simpler.
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(foo 4) 140

foo I oc-ob

Figure 4-10: In a lower-level environment, a bug in FOO is spotted

(foo +) 140

foo I -Proc-obJ

DEFINE IF00
(foo x)
(* 20 x)

Figure 4-1 1:FOO is redefined within its associated environment

created. Once this is done, the programmer can go back to working with the newly-debugged

procedure in the original "nested" environment. The idea illustrated here is that in order to find a

BOCHSER procedure, one need only evaluate its name; and because procedure objects come with

the environment in which they were created, they may be redefined in that environment if the need

should arise.

4.3.3 Breakpoints

BOCHSER does not at this time contain an extensive debugging system. A TRACE procedure

has been implemented (and in fact, its use was demonstrated during the earlier discussion of working

with the history of a BOCHSER session); but much more interesting, and powerful, is BOCHSER's

breakpoint facility. The breakpoint facility provides a particularly good illustration of useful

interaction with BOCHSER environments; before launching into a discussion of it, however, the
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problematic nature of breakpoints in the cUrrent Scheme system should be outlined.

In Scheme, breakpoints constitute a powerful debugging aid. A breakpoint may be inserted

into Scheme code by the inclusion of a BKPl' expression:

(define (proc-with-breakpoint x y)

(bkpt "Stop here" (list x y))
..0)

When the BKPT expression is evaluated, Scheme prints out the string and value arguments and stops

evaluating the procedure body. In the standard interface, the user is now presented with a

"breakpoint" prompt, at which point he or she may evaluate expressions in the environment current

at the time of the breakpoint. Using the DEBUG procedure can provide further options: this places

the user in a special Scheme subsystem from which special commands may be invoked to perform a

variety of tasks (examine the bindings within the environment created by the procedure application,
evaluate expressions within that environment, examine the calling procedure, and so on).

Despite the power and usefulness of the breakpoint concept, observation of Scheme students

reveals that very few of them avail themselves of breakpoints in the course of debugging. There are

several probable reasons for this. One is that the present interface's handling of breakpoints, although

wonderfully thorough and powerful, suffers from the same assumption of "linearized programming

activity" that we saw before in the discussion of namespace visibility. The programmer, by

assumption, works at "top level" (i.e., with the normal interpreter), then in the breakpoint system,

and, once the debugging activity is complete, back at top level again. Another problem is related to

the earlier notion of "detuning"; although typing at the breakpoint prompt is similar functionally to

typing at the top-level Scheme prompt, and one wants to do similar things -- evaluate expressions, for

example -- the properties of the interface are subtly different. Typing control-G, for example,

abandons the breakpoint and returns back to the top-level; therefore, if the user evaluates an

expression at the breakpoint prompt and this evaluation results in an error, the usual technique for

"leaving the error state" -- namely, typing control-G -- has the unwanted effect of leaving the

breakpoint state altogether. As for the DEBUG system, it too exemplifies the "linearity problem";

and in order to use it the programmer has to work with commands that have no analogues anywhere

else in Scheme. Most students find its complexity daunting.

The overall difficulty is again one of too many "modes". The earlier quote from Heering and
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Klint pointed out that debugging and programming share a good deal of conceptual overlap; why,

then, should the user be forced into different modes of interaction during these activities?

In BOCHSER, breakpoints have been implemented through the use of breakpoint boxes, which

represent an attempt to "detune" some of the activity of debugging and make it consistent with what

the user already knows of the system. When a breakpoint expression is encountered in a procedure

written in the I3OCHSER system, the value returned is a breakpoint box. Figure 4-12 shows an

example. Here, the FACTORIAL procedure has been written to include a breakpoint expression,

and the user has called this procedure on argument 4; the system has returned a breakpoint box.

In Figure 4-13, several views of the previous figure's breakpoint box are provided; three sub-

boxes are revealed. The first, a code box, contains the code of the smallest expression of which this

breakpoint is a sub-expression; here, the code corresponds to the consequent portion of the COND

clause being executed. The third box (we will return to the second in a moment) is the environment

of the breakpoint; examining the bindings here shows that N, the local parameter of the

FACTORIAL procedure, is bound to 4. The second sub-box is a procedure-object box indicating the

procedure whose invocation created the breakpoint environment -- in this case, the procedure object

bound to FACTORIAL.

Now, in order to evaluate expressions or examine bindings, the user need only enter the

environment of the breakpoint box and do the things he or she has learned to do in every other

environment box: namely, look inside the bindings box or type expressions at the interpreter area.

Although there are a few editor commands (to be explained shortly) that apply specifically to

breakpoint boxes, the environment box within the breakpoint is in no way special -- it is just like

every other environment box. This fact accounts for a great deal of the simplicity of the BOCHSER

debugging system. There is no special "debugging mode" here -- only an environment box that

corresponds to the environment of a not-yet-completed procedure application.

To continue with our example, in Figure 4-14, the user types in the expression

(seti n 3)

to change the value of N in the breakpoint environment. Then, the user places the cursor to the right

of the breakpoint box and uses an editor key to continue on from the breakpoint. The result of this

step (Figure 4-15) is yet another breakpoint box, since the recursive call to FACTORIAL has

encountered another breakpoint. In the environment of the new breakpoint, we can see that the value

59



rDEFINE
(factorial n
(cond ( (= n

(else

IFACTORIAL

0) 1)
(bkpt)
(* n (factorial (-1+ n)))))

(factorial ')

Figure 4-12:A procedure with a breakpoint; a breakpoint box

aAUPC

LV SE 0U E NCE (B8K P T) N ( FA C TOR I AL (1 +N

Figure 4-13:The three sub-boxes within a breakpoint box
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rkpt
rCoi-Proc-obj

rcl-codeh A
* FrNAME-+ FACTORIAL

ARGS+ (N)
(SEQUENCE

(COND
((= N 0) 1)
(TRUE (BKPT) (.. N (FACTORIAL (-1+ N))))))j

CrPr -En _
indings

*PARENT* #rr

ACTORIAL .

N + 4

Brftcjn
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-8kpt-

Figure 4-14:Evaluating an expression in the breakpoint environment

Figure 4-15:The next breakpoint after continuing the evaluation
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(factorial +) 16

Figure 4-16:The result of the evaluation, ignoring remaining breakpoints

Breakpoint box
from (FACTORIAL 4):

dept

Other work done in the meantime:

(define (foo x)
(div (factorial

(factorial
x)
(div x 2))))

Figure 4-17:Temporarily ignoring a breakpoint box to do other work
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of N is now 2, as expected. Using yet another editor key outside this breakpoint box tells BOCHStiR

to continue on ignoring any future breakpoints (Figure 4-16); the system finally returns 6 (which is

not the factorial of 4, but is consistent with the reset value of N earlier).

A useful fact to note about breakpoint boxes is that they need not be continued from

immediately; in fact, they need not be used at all. Thus, one might evaluate an expression that

returns a breakpoint box and move this box to the top of the screen to be used later (as in Figure

4-17). In the meantime, the programmer might work in the outer environment until ready to continue

from the breakpoint. If there are free variables in the code of the procedure to be continued, of

course, altering bindings in the parent environment of the breakpoint may change the result one gets

by continuing it; in our earlier example, redefining, say, the "*" procedure to the value of the "+"

procedure in the global environment before continuing the FACTORIAL breakpoint would have

altered the eventual returned result. Again, the point is that BOCHSER "de-linearizes" the

programmer's activity. Rather than do all debugging at once, the programmer can do a little work in

the breakpoint environment, then a little work back at top level, and finally, when ready, continue on

from the breakpoint created earlier in the session.

Throughout this chapter, we have seen a variety of scenarios which demonstrate the positive

features of the BOCHSER interface -- the ability to format code meaningfully, to monitor current

bindings in a given environment, and to debug procedures using breakpoints, among others. The

following chapter takes up the question of what kinds of programming projects might be facilitated

by the BOCHSER interface.
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Chapter Five

BOCHSER Programming

5.1 BOCHSER and the Novice Scheme Programmer

Having provided an overview of the 13OCHSER system and some of the particular

programming techniques suggested by it, we are now prepared to re-examine the issue of "computer

models" raised earlier in this report. The BOCHSER system is designed around the most important

and powerful model of Scheme presented in M.I.T's introductory course -- namely, the environment

model described in Chapter 3 of the Abelson and Sussman text, and outlined in the first chapter of

this report. The objects seen by the BOCHSER user -- procedure objects, environment objects, and

bindings -- correspond precisely to their counterparts in the abstract model presented in the course.

Procedure objects in BOCHSER, just as one would expect, are combinations of procedure code and

an associated environment; environments are represented by frames linked upward to other frames,

with a global environment as a final step in this sequence; bindings are name-value associations that

are created and altered according to the actions of the programmer.

My own experience as teaching assistant and recitation instructor for the 6.001 course suggests

that the standard environment model, as presented in the classroom, is very difficult for students to

understand. This observation is corroborated by Steven Strassmann [841, a former teaching assistant

for 6.001:
. ... environment diagrams remain in students' minds a rather elusive part of the

curriculum; and very few students feel confident of their knowledge of what they are or
what they're good for."

'The environment model, besides being difficult, also constitutes from the instructor's standpoint a

kind of watershed. Students who master it not only have a better understanding of Scheme

throughout the remainder of the course, but also seem to acquire a firmer grasp of the material

presented earlier (the environment model is presented in full about five weeks into the course).

Students who don't master it struggle through the rest of the term.

In essence, the environment model in Scheme acts as the central instance of a "notional

machine" in DuBoulay, O'Shea, and Monk's sense, or a framework for working with "transactions",
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to use Mayer's terminology. This being the case, and since the model seems difficult to master, it

would seem wise to support the model as explicitly as possible at the level of the Scheme interface

itself. Most of the research done in the pedagogical value of language-specific computer models has

appeared to make the tacit assumption that the model will be presented by a human teacher, away

from the machine. The opacity or sparseness of the language interface itself, on this view, is a given.

However, there is obviously a great deal of value in letting the language interface carry some of the

pedagogical burden of presenting a computer model; and the BOCHSFR system attempts to perform

this sort of service for the Scheme language.

5.2 BOCHSER and the Experienced Scheme Programmer

Beyond pedagogical questions, the contention of this report is that the BOCHSER interface

holds some advantages for experienced programmers as well. This is primarily because of a rather

special property of Scheme. Unlike most languages, which can be adequately (if not very

informatively) conveyed by the classical "teletype-style" interface, Scheme is actually a much more

powerful language than its standard interface suggests. In the standard interface, the user is led into

the habit of working entirely in Scheme's global environment; all interaction with Scheme -- typed

input and printed output -- takes place within that one context. And yet, as our earlier discussions of

objects, breakpoints, and package hierarchies showed, there is tremendous utility in being able to

interact directly with arbitrary Scheme environments. Of equal importance, the centralization of

interactive channels in the standard interface is not in keeping with the semantics of the language.

Scheme environments, as mentioned in the first chapter of this report, are first-class objects: they

may be passed as arguments, returned as the results of applying procedures, and stored within

compound data structures. In all these aspects, there is no special privilege associated with the global

environment. Why, then, should there be any special privilege associated with the interactive

capabilities of that environment? BOCHSER is thus simply reifying at the interface level the power

inherent in the Scheme language itself.

In the following sections of this chapter, we will examine several programs that have been

implemented in BOCHSER. The programs, though not large, illustrate some of the ways in which the

BOCHSER system might be used. The first example, adapted from the 6.001 curriculum, is intended

to suggest BOCHSER's utility as a pedagogical aid; the subsequent examples make use of

programming strategies that may not be suggested by the standard Scheme interface. The intent here

is to show that the BOCHSER interface, by virtue of its faithful realization of the full power of
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Scheme, is a potentially exciting medium for future Scheme programmers.

5.3 Object-Oriented Programming: an Example from 6.001

The first example shown here is an extension of the object-orientcd programming idea

mentioned earlier in the discussion of the MAKE-CTR procedure. In this example, similar to one

used in the 6.001 course, our program is a simple simulator for digital logic elements. The objects we

will create are of type wire, and-gate and or-gate. Figures 5-1 and 5-2 show the text of the program on

the BOCHSER screen. Wire objects can accept messages which inform them of new gates to which

they will act as input, and which tell them to set their state to a high (1) or low (0) value. G.ates can

accept messages telling them whether their input wires have changed state.

In Figure 5-3, a simple combinational circuit has been created in which two input wires are

connected to an and-gate, which sends its output, along with that of a third input wire, to an or-gate.

The output of the or-gate constitutes the output of the circuit, which thus computes the logical

function

(or (and input-1 input-2) input-3)

We see in Figure 5-3 that the environments of wire-4 (the output wire of the and-gate) and wire-5

(the output of the or-gate) have their associated environments open to view. In this case, the state of

both wires is low -- that is, 0 -- since all three input wires are themselves in low states. In Figure 5-4,

the two input wires to the and-gate have been set to high values, and thus outputs of both gates have

changed to 1.

The advantages of doing such a simulation in the BOCHSER system as opposed to a more

"classical" interface should be readily apparent. Here, the student can select which logic elements to

view, and can observe the (possibly manifold) effects of the expressions he or she evaluates. In a

standard interface, such observation would have to take place by continually retyping expressions

"asking" the various objects to print out their state. A related point is that the code for this

BOCHSER example is less complicated than an equivalent simulation for the standard Scheme

system would be, since there is no need to include a variety of purely "interface-driven" object

methods. For instance, the wire objects shown do not contain a "PRINT-STATE" method, since one

can observe the state of a wire by looking at its environment; in the standard Scheme interface, the

inclusion of this and similar methods for other objects would be a necessity.
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DEFINE

(make-and-gate in-wirel in-wire2 out-wire)
DEFINE

se -inpu-value. wire value)
((out-wire 'set-value!)
(cond ((conjunction (= (in-wirel 'value) 1)

(= (in-wire2 'value) 1)) 1)
(else O))

-DEFINE-

sef M)
( cond ((e? m 'set-input-value!) set-input-value!)

(else 'msg-not-accepted))
((in-wirel 'add-input!) self)
((in-wire2 'add-input!) self)
self

FDEFINE -A

DEFINE
Figure 5-1:Thc code for MAKE-AND-GATE. MAKE-OR-GATE is analogous.

DEFINE

(.makew e
(let ((value 0)

(inputs-to nil))
-DEFINE

I7set-valueLv)
(set! value val)
(map (lambda (elt)((elt 'set-input-value!) self value))

inputs-to)
DEFINE

Id-input. input-t)
(set! inputs-to (cons input-elt inputs-to))

DEFINE

(cond ((eq? m 'value) value)
((eq? m 'set-value!) set-value!)
((eq? m 'add-input!) add-input!)
(else 'msg-not-accepted))

sel F)

Figure 5-2:The code for making a WIRE object
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SEQUENCE 1OR-1
(define input-1 (make-wire))
(define input-2 (make-wire))
(define input-3 (make-wire))
(define wire-4 (make-wire))
(define wire- (make-wire))
(define and-1 (make-and-gate input- input-2 wire-4))
(define or-1 (make-or-gate input-3 wire-4 wire-5))

wire-4 -Proc-obj

[LE= -idings
SELF +aI

SET-VRLtd4

VFLUE - 0

wire-S I Proc-obJ

+s 'A -- -indi ngs
ET-VALUE! 4

)RLUE * 0

Figure 5-3:The simulation is initialized, and two wires are examined
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wire-4

wi re-5

bj
JC

1w

roc-obj

a indings
ET-VALUE!

)RLUE .* 1

((input-2 'set-value!) 1) FALSE
((input-2 'set-value!) 1) aFrLSE

Figure 5-4:T7he two wires change state after the input wires are set to
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Other accounts of object-oriented programming in BOCHSI1R, using examples of mutable

queues and movable "monster" objects -- both adapted from the 6.001 curriculum -- may be found in

Fulton [85]. These examples also describe the value of visible objects to students, both for purposes of

comprehension and debugging.

5.4 Object-Oriented Programming: Objects containing Sub-Objects

The second program to be discussed here, outlined in Figure 5-5, is perhaps more interesting in

that it illustrates the notion of objects which contain "sub-objects". In this example, we have created

a "perceptron" object which examines two-dimensional bit-arrays and seeks out particular features of

the bit-patterns within the arrays. For instance, a bit array whose contents are:

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

might be said to represent a square if we interpret the 1 elements as "set pixels" and the 0 elements as

"cleared pixels".

The perceptron that we will discuss is designed to cope with solid shapes (i.e., shapes like the

square above, with no "holes" in them) whose borders are completely contained within the presented

bit-array. Our perceptron looks for "corners" in the bit-array, whether convex or concave. For

example, the perceptron should be able to tell of the square above that it has four convex and no

concave corners. 'The following shape, on the other hand, has five convex and one concave corner:

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 0 0
0 0 0 0 0

In its implementation, our perceptron will contain sub-objects which are smaller, lower-level

perceptrons -- elements which look specifically either for convex or concave corners in the given

bit-array. A "convex corner" perceptron, for example, looks at a particular two-by-two chunk of the

bit-array and increments a "convex-corner" counter if it finds that only one of the four observed bits

is set to 1. (The four bits in the upper left hand corner of the "square" array have this property, and
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Corner-Seeking Perceptron

sub-object-of sub-object-of

Convex-corner Perceptrons Concave-corner Perceptrons

Figure 5-5:An outline of the arrangement of perccptrons to be modeled

-DEFINE
(make-perceptron)

(let ((input-matrix nil)
(convex-done? nil)
(concave-done? nil)
(convex-perceptrons nil)
(concave-perceptrons nil)
(convex-corners 0)
(concave-corners 0))

DEFINE

DEFINE

rDEFINE

DEFINE

DEFINE

self)

Figure 5-6:An overview of the code for MAKE-PERCEPTRON
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Figure 5-7:
The code for initializing the higher-level perceptron with a new
matrix as input, and for making a lower-level convex perceptron

object. The code for ON LY-ON F?, not shown, simply checks whether the 2
x 2 chunk of the matrix whose upper left corner is given by the ROW

and COL UM N values contains one "1" (or "0").

DEFINE

(input-matri x! matr........ix)
(set! convex-done? nil)
(set! concave-done? nil)
(set! convex-perceptrons nil)
(set! concave-perceptrons nil)
(set! convex-corners 0)
(set! concave-corners 0)
(set! input-matrix matrix)
done
DEFINE

(make-convex-perceptron row col )
DEFINE

(cond ((only-one? 1 row col)
(set! convex-corners (1+ convex-corners)))

(else nil))
(lambda (m)

(cond ((eq? m 'examine)(examine))
(else 'msg-not-accepted)))
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Figure 5-8:
The code for MA KE-I S'I'-OF-PER CEPT RONS creates a list of
lower-level pcrceptrons (of type convex or concave), one for each
appropriate matrix point, and assigns the list to the state variable

CONVEX- (or CONCAVE-) PERCEPTRONS. The message dispatch code for the
higher-level perceptron is shown underneath.

DEFIhE

m eist-o-perceptrons type row col count)
DEFInE
(make-row-percepts rowno count)
(cond ((> count (- col 2)) 'done)

(else -IF
(eq? type 'convex)
(set! convex-perceptrons CONS-

make-convex-perceptron rowno count)

(set concave-perceptrons ovex-perceptrons
st -make-concave-perceptron r on

koncave-perceptrwons
make-row-ercepts rowno (1+ count))))

cond (T> count (- row 2)) 'done)
(else (make-row-percepts count 0)

(make-list-of-perceptrons type row col (1+ count))))

DEFINC-

se
(cond ((eq? m 'convex-corners

rF
a se convex-perceptrons)

(make-list-of-perceptrons 'convex (length matrix)(length (car matrix)
IF

map (lambda (p)(p 'examine)) convex-perceptronsjset. -edamine))(set! convex-done t)
convex-corners)

((eq? m 'concave-corners)
IF

i vrj1*094" Ply tedasIF

(set! concave-done? t)
concave-corners)

((eq? m 'corners)(+ Iself 'convex-corners)(self 'concave-corners)))
((eq? m input-matri,) input-matrix!)
(else 'msg-not-accepted))
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thus indicate the presence of a convex corner.) Similarly, a "concave corner" perceptron will observe

a two-by-two chunk of the bit-array and fire if it sees that only one bit has been set to 0. Both of these

low-level perceptron types only exist within the environments of larger "corner-seeking"

perceptrons; there is no global definition of these types of objects.

Our sample perceptron object accepts a number of messages (see Figures 5-6, 5-7, and 5-8).

The "input-matrix" message tells the perceptron to initialize its various state variables and input a

new bit-array to observe. The "convcx-corners" message tells the perceptron to count convex corners

in the bit-array; if necessary, the perceptron will create a set of lower-level "convex-corner"

perceptrons, one for each two-by-two chunk of the bit-array, and send each a message to examine its

own particular chunk of the array. The "concave-corners" message works similarly, again creating

lower-level perceptrons if needed. Finally, the "corners" message tells the perceptron to sum the

existing convex and concave corners and output the result. A demonstration of the working program

can be seen in Figure 5-9. Figure 5-10 shows the environment of a perceptron object, within which

we may examine the environment of a lower-level perceptron.

Several aspects of this code are worthy of mention. First, since the lower-level perceptrons are

sub-objects of the larger perceptron, they are both able to access bindings in the environment of that

larger object. For instance, both the "convex" and "concave" perceptrons make use of the "only-

one?" helping procedure defined within the larger perceptron's environment; similarly, both are able

to access the value of the "input-matrix" state variable. If these low-level perceptrons had instead

been defined within the global environment, they would have had to contain their own local (and

redundant) bindings for these purposes, or would have had to send messages to other objects to

access this information. In more elaborate versions of the same idea, low-level perceptrons might

effectively communicate information to each other via setting and resetting state variables in the

outer environment (that is, the outer environment acts as a sort of "bulletin board" for the low-level

component objects), rather than by sending explicit messages to one another.

More importantly, this code is a closer reflection of the way in which the programmer would

like to think of the perceptron object -- namely, as a compound object containing loosely coupled

sub-objects. In the standard Scheme interface, it would be much easier to implement this program

with the low-level perceptron objects defined globally, since one could not access the higher-level

object's environment for debugging purposes; and besides complicating the code itself, this decision

would lead to a program which is inappropriate to its domain. Programming with sub-objects in
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(define matrix -LIST )
'(0 0 0 0 0)
'(0 1 1 1 0)
'(0 1 1 1 0)
'(0 1 1 0 0)
'(0 0 0 0 0)

(define p1 (make-perceptron))

((p1 'input-matrix) matrix)

(p1 'convex-corners)

IMATRIX

IP1

IDONE

i5

Figure 5-9:A demonstration of the working perceptron program

Figure 5-10:A view of a perceptron sub-object
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Scheme enables the user to maintain an abstraction barrier with respect to the problem: in this

particular instance, one need only work with higher-level perceptrons, whose internal sub-objects

may, in a variety of situations, be safely ignored.

5.5 Production Systems

Our final programming example is a simple version of a system that works with productions --

that is, rules of the form "If a certain situation applies, then take the following action". The use of

productions is a common (perhaps the most common) technique in the development of expert

systems; typical examples of expert systems which make essential use of such rules are the MYCIN

system developed at Stanford and the RI system in use at Digital Electronics Corporation (cf. [Hayes-

Roth 83]). The program to be shown here is a scaled-down version of a system described in Winston

[77].

Our production program is one whose aim is to identify an animal based on information

presented about that animal. 'The input to the program will be a list of facts about the unknown

animal -- e.g., "(hairy (cats meat)(color tawny))" -- and based on this information the program will

use various productions to draw conclusions about the creature's species. For instance, one rule

might be of the form:

"If: The animal is hairy,
Then: It is a mammal."

Another might read:

"If: The animal is a mammal, and it eats meat,
Then: It is a carnivore."

One of the difficulties involved in creating a production system lies in organizing the collection

of productions into meaningful units. For instance, in small production systems, one might simply

have a list of all existing productions, and in order to solve a particular problem one would go

through the list applying the productions rules, one by one. (In the situation above, it would be

important to have the two sample rules "fire" in the order presented, since the conclusion of the, first

rule can be used as a premise for another.) The problem with this idea is that it can rapidly become

impossible to understand the mutual relationships between productions -- which must fire before

which, which can be ignored based on the results of others, and so on. Moreover, there is no simple
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way of looking at the collection of productions and getting an idea of the domain structure which

they are intended to represent. For example, in Winston's version of the "animal" program, all

productions are assumed to be equally "active" at any one time; the image is of many competing

processes all waiting for their premises to be met by some external stimulus. However, a better notion

would be to have the applicability of the rules which are only meaningful for mammals contingent

upon the identification that the animal is indeed a mammal. It is difficult to gain any feeling for

animal taxonomy from examining Winston's rules; with a larger production system it would be

impossible.

Winston is well aware of this situation, and writes of such systems:

"The advantage of not needing to worry about the interactions among the productions
can become the disadvantage of not being able to influence the interactions among the
larger number of productions.... One possible solution, of course, is to partition the facts
and the productions into subsystems such that at any time only a manageable number are
under consideration."

Our BOCHSER program uses exactly this suggested strategy. The way in which productions will be

partitioned is by using environments: rules applicable only to, say, mammals will be represented as

procedures in a particular "mammal-examining environment". The basic idea is that each

environment contains a small set of rules applicable to one piece of the problem domain; within each

such environment, the variable name *THE-RULES* will be bound to a list of all the local rules. In

order to find out which rules in a particular environment apply to a particular animal, we invoke the

procedure DO-RULES-IN-ENV, as follows:

(DO-RULES-IN-ENV env animal-object)

A look at the code in Figures 5-11 and 5-12 will help to explain this idea. Essentially, DO-RULES-

IN-ENV applies each of the rules in the particular environment (as found within the list *THE-

RULES*), one at a time, to the given animal-object. Each rule will return either the atom FALSE (if

the rule does not apply), or a list identifying that this rule has fired and which subsequent

productions in other environments may have applied as a result Thus, rules may themselves make

recursive calls to the DO-RULES-IN-ENV procedure. It should also be noted that the environments

are arranged hierarchically according to the taxonomy being modeled: the ALL-ANIMALS

environment has as sub-environments MAMMAL and BIRD, the MAMMAL environment has

CARNIVORE and UNGULATE sub-environments, and so on.

A demonstration of the program is shown in Figure 5-13. Here, we type in the expression:
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Figure 5-11:
Inside the Al l-AN IMALS environment. '[he code for the I)O-RULES-IN-ENV

procedure, and a view of the MA M M A I. sub-environment. Note that
inside the MAMMAL environment there are CARNIVORE and UNGULATE

environments (the latter cannot be seen just now).
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This procedure, when called with an environment and animal-object,
applies all the productions in the environment to that object.
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(eval '*the-rules* env)))

Here is a sample environment. Note that *THE-RULESm is
bound to a list of productions (procedures).
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Here is one of the rules inside the MAMMAL environment:

rule-1 I

Figure 5-12:One of the rules applicable to mammals only

DO-RULES-IN-ENV (((RULE-1 ANIMAL) ((RULE-2 MAMMAL) (iRULE-1 CARNIVOPE TIGER)))))
all-animals
'(hairy (eats meat)(color tawny))

Figure 5-13:Examining an animal-object in the ALL-ANIMALS environment

Here we define a new rule applicable to carnivores:

carnivore

Figure 5-14:Defining a new rule for carnivores
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(do-rules-in-env all-animals '(hairy (eats meat)(color tawny)))

The result of the procedure call is a list that indicates which rules fired in which environments; the

nesting of the list indicates the dependencies of certain environments upon others. The list tells us

that RULE-1 in the ALL-ANIMALS environment fired, which in turn caused the rules in the

MAMMAL environment to be tested, at which point R ULE-2 fired, and so on. Thus, the result of

our expression not only provides an identification of the animal but gives us a map of its "reasoning"

process.

Working with the production system that results from this kind of structuring is actually

extremely straightforward. For instance, Figure 5-14 shows the process of adding a new rule. Here,

we wish to note that if the animal is a carnivore with a mane, then it is a lion. To add the rule, we go

into the CARNIVORE environment and define the new procedure, adding it into the *RULES* list

as well. Now the rule will be applied any time the "carnivore productions" are applied.

There are other advantages to this sort of structuring. An immediate observation is that the

rules are kept relatively simple by virtue of the information implicit in their surrounding

environment. For example, the rule in our system analogous to the second "if-then" one above has as

its premises merely that the animal eats meat -- the knowledge that the animal is a mammal is

assumed, since the rule is defined within the MAMMAL environment. Moreover, the placement of

rules within local environments, and the hierarchical relationships of these environments to each

other, tells us a great deal about the domain being represented: we know, simply from examining the

system, that carnivores and ungulates are mutually exclusive types of mammals.

An even bigger advantage is seen when the need arises to debug the system. In this situation,

the user is able to test out pieces of the system individually by evaluating rules only in specified

environments. For example, by entering the MAMMAL environment and trying out calls to DO-

RULES-IN-ENV within that environment, only the productions applying within MAMMAL and its

sub-environments, like CARNIVORE, will be run. The same technique can be used to employ the

system in a top-down fashion -- that is, to use the strategy of hypothesizing that the consequences of a

particular rule apply and then seeing whether there are premises that match that rule. To work in this

way, one simply treats the environment argument to DO-RULES-IN-ENV as an indicator of the

"hypothesized conclusion". For instance, if we wish to assume that the animal is a carnivore, we

could evaluate:
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(do-rules-in-env (eval '*parent* carnivore)
'(hairy (eats meat)(color tawny)))

By examining the result of this expression, we can see whether the assumption that the animal is in

the superclass of carnivores (that is, the assumption that the animal is a mammal) justifies our

hypothesis that the animal is a carnivore. Recursive calls to DO-RULES-IN-ENV could now

determine whether our assumption that the animal is a mammal is itself justified.
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Chapter Six

BOCHSER and Other Language Interfaces

'['here is very little in the B3OCHSER interface that can fairly be called new -- virtually every

individual element of the system has been included or at least presaged in one form or another by

earlier language interfaces. Features of the BOCHSER system may be found in various traditions in

interface design -- particularly those of graphical languages, "structure-editing" languages, and

educational "visible computer model" systems. Most fundamentally, BOCHSER reflects its origins

in the Boxer system; many characteristics of the interface are of course derived from its use of the

Boxer editor, and the "interface philosophy" of BOCHSER, involving the aforementioned notions of

"detuning" and "diffusing finctionality", is firmly in the Boxer tradition.

This chapter will attempt to provide a general overview of the BOCHSER system's relation to

other language interfaces. The intent is not only to place BOCHSER in perspective historically, but

also to illuminate some of the strengths and weaknesses in the system to be discussed later. One of

the additional themes that emerges from this exercise is the power and interest of the Scheme

language; Scheme forms a fascinating framework in which to experiment with the interface ideas that

motivate the BOCHSER system.

6.1 BOCHSER and Boxer

Without question, BOCHSER owes most of its fundamental ideas to the Boxer system (cf. [di

Sessa 85b], [Boxer 84]). As already noted, such BOCHSER features as the use of boxes as editor

objects, and the integration of interpreter and editor, are also crucial elements of Boxer. Nevertheless,

there do exist differences between the two systems. Probably the best way to summarize these is to

say that the systems have adapted one editor to different underlying semantics; the Boxer language is

roughly based on LOGO (though with important changes), while BOCHSER is an implementation

of Scheme. It is beyond the scope of this paper to provide anything like a complete description of

Boxer; the following paragraphs, then, will focus only on the salient points of comparison between

Boxer and BOCHSER.
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One of the concepts supported by the Boxer interface, but notably absent in BOCHliSR, is that

of "naive realism": there is an identification in Boxer between screen objects and the "language

objects" that they are intended to represent. For example, a procedure in Boxer may be represented

as a labeled "doit-box", as in Figure 6-1. In order to change the code of this procedure, the user

would move the editor cursor into the box and simply edit the procedure text. Thus, if one wished to

change the illustrated FOO procedure to have the effect of computing factorials, one would enter the

box with the cursor and change the "+" symbol to "*". Similarly, boxes of the "data-box" type, also

shown if Figure 6-1, may be edited directly (data-boxes are Boxer's general data-structuring element,

rather analogous to lists in LISP and L OGO).

The BOCHSER system, based as it is on Scheme, does not enforce the idea of naive realism;

there is not a one-to-one identification between a screen object and a language object. Many screen

objects may represent the identical Scheme object. We have already seen this in the case of

environments, where several environment boxes represent one environment. Indeed, any situation

where two variable names are bound to one object will also exhibit this discrepancy with the Boxer

model; in BOCHSER, we would observe two separate bindings represented on the screen, such as:

A <---> (1 2 3)
8 <---> (1 2 3)

where each binding refers to the linking of a name and, as it happens, one identical object. Moreover,

there is no equivalent in BOCHSER to Boxer's technique of "direct modification". of objects. In

order to change the code of a procedure, or to change the value of any binding, one has to evaluate

expressions within a Scheme interpreter area. One cannot, as Boxer semantics would imply, type

changes directly into a bindings box on the screen; similarly, one cannot change the code of a

procedure-object by editing the code box for that object, but only by redefining the procedure

through a DEFINE expression. In fact, as mentioned earlier, only environment boxes and syntax

boxes in BOCHSER are directly editable; all other species of boxes are "read-only".

There are limitations inherent in both approaches. In Boxer, an additional mechanism -- that of

"ports" -- is introduced in order to achieve the desirable effects of sharing data structures. For

instance, if box B is defined as a port to box A, as in Figure 6-2, then any changes typed into box B

will be reflected in box A. Box A is referred to, in this situation, as the "target" of port B. The point of

including ports in Boxer is that many boxes on the screen may come to represent, in some sense, the

same object, even though there is still one unique screen object that is identified as the target of all
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Figure 6-1:A do-it box and data box in Boxer
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Figure 6-2:Box B is a Boxer port. Typing inside B will change A as well
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the others- and indeed, if this target clement is deleted from the screen, then all the ports which

formerly pointed to it essentially become undefined. Besides having to introduce an additional

mechanism to handle sharing, Boxer runs into occasional difficulty with objects that don't fit easily

into identification with a screen region; for example, there is at present no object in Boxer analogous

to a circular list.

The problems that BOCHSER experiences in this regard are complementary to those of Boxer.

One would like to have a direct handle on Scheme objects; and even though one can always see an

accurate representation of those objects within a bindings box, the "real object" remains to some

degree an abstraction. For example, to understand the sharing inherent in the situation where list B is

bound to the CDR of list A, one has to maintain a mental model of list sharing which BOCHSER can

support, but not fully present. A related issue is that it would often be simple and desirable to edit

bindings or procedure code directly, as one sees them on the screen. The editor function that allows

the user to copy code from a procedure-object's code box into an interpreter area is intended to

simplify the process of redefining procedures, but it would often be easier to redefine a procedure

simply by altering the contents of its code box. There are some avenues along which BOCHSER's

constraints vis-a-vis "editable boxes" could- be loosened, but one must be cautious in making changes

of this sort. To take an example, suppose again that we have a situation in which B is bound to the

CDR of A. Included in our environment's bindings box, then, we might see two lines like the

following:

A (--> (1 2 3)
B (--> (2 3)

Now, if we move our cursor into the bindings box and change the first element of the B list to 4,

should A change as well? That is, our editing change may be analogous to

(SET-CARI B 4)

or to

(SETI B '(4 3))

and there is no way of distinguishing these intentions. In other situations, however -- such as editing

code within a procedure-object box -- it might be worthwhile to experiment with the naive realism

idea in BOCHSER.

A second major point of difference between the Boxer and BOCHSER systems involves the

85



Ijat a

Data

Dat

Data

5Data

Figure 6-3:In Boxer, environment structure corresponds to screen structure

-en'
11, 1

*parent*

Figure 6-4:In BOCHSER, an environment box may, on the screen, surround its logical parent

86

|-En

This box represents the
parent environment of the
Isurrounding one.



meaning of box containment. In 11oxer, all box boundaries implicitly specify environment boundaries

as well; that is to say, every box represents its own particular environment. The bindings which are

accessible within a box are those resulting from definitions performed within the box itself and all its

parent boxes. Figure 6-3 illustrates this idea. Here, BOX-I has bindings for variable names X and Y;

BOX-2 has bindings for X, Y, and Z; and IIOX-3 has bindings for X and Y, where the former

binding results from the "interior" definition of X. This identification between box boundaries and

environment boundaries makes for a straightforward mapping between the information presented on

the screen, and the logical structure of Boxer environments.

In BOCHSER, the situation is somewhat more problematic. It is trivial to arrange the screen

such that box containment fails to correspond with environment containment. Figure 6-4 shows one

such arrangement: the user has evaluated the name *PARENT* within an environment box, and the

result is an environment box which corresponds to the parent environment of the one in which we are

typing. Thus, the user is still forced to maintain some internal model of an environment hierarchy;

and again, although BOCHSER can help in this regard, it will not in general present a complete and

unambiguous representation of that hierarchy to the user.

A final point of comparison between the two systems really stems from a difference between

LOGO (Boxer's closest predecessor in terms of language semantics) and Scheme. The BOCHSER

system employs a lexical scoping discipline, while Boxer uses dynamic scoping. The choice in Boxer

is motivated by adherence to a two-stage model of procedure invocation:

1. Copy the text of the procedure into the calling environment on the screen.

2. Execute the text of the called procedure.

This model is extremely simple to grasp in the context of working with the Boxer system: the

environment of procedure execution is associated with the place from which it is called. It is, however

possible to run into difficulty when a procedure is invoked from an environment in which some of its

free variables have unknowingly been re-bound. Essentially, the Boxer system has opted for

understandability and representational consistency at the possible expense of what is generally

acknowledged to be, in large systems at least, a less problematic lexical scoping discipline.

The BOCHSER system, as we have seen, makes essential use of Scheme's lexical scoping.

BOCHSER's model of procedure invocation is thus somewhat more difficult to understand than

Boxer's (and, indeed, LOGO's). Still, the graphical representation of procedures as "objects
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associated with environments" is intended to alleviate the understandability problem as much as

possible while preserving the tractability of lexical scoping in the construction of large programs.

6.2 Other Interfaces

As noted above, virtually every feature of the BOCHSER system can be found in one form or

another in other language interfaces. The notion of "shrinking and expanding structures" to

designate language objects can be seen in the Cornell Program Synthesizer for PL/CS (an

instructional dialect of PL/1) described by Teitelbaum and Reps [81], in which entire syntactic units

like IF-THEN statements can be inserted and deleted like one character, and in which "comment

templates" act rather like labeled boxes in BOCHSER. The Xerox Star interface (cf. [Smith 83]), in its

notion of "opening up" icons such as file folders to display their contents, also involves this notion.

In fact, the use of icons in general seems strongly associated with "shrunken" and "expanded"

representations: multiply-sized icons can be found in interfaces like that of the PICT/D graphical

language developed at the university of Washington [Glinert 84] and the "Robot Odyssey" adventure

game [Dewdncy 85]. In PICT/D, program icons can be expanded to reveal their pictorial contents; in

the Robot Odyssey game, the user enters a "shrunken" robot in order to see its interior expanded to

full-screen size. Additional examples of the "expandable icon" idea are not hard to find.7

The concept of integrating usually distinct programming language "subsystems" (e.g., editors,

interpreters, debuggers, and so on) is widely associated with the SMALLTALK system [Goldberg 83]

[Tesler 81]. SMALLTALK supports an object-based programming language with various menu-

operated subsystems: a "browser" for editing objects and doing file-management, an "inspector" for

examining objects, and "notifier" and "debugger" views for error notification and program

debugging, respectively. A less well known but nonetheless interesting example of integration can be

found in Wilander's description of the PATHCAL system, an interpretive system for Pascal

[Wilander 80]. In the PATHCAL system, as in BOCHSER, program text is edited in the same

"mode" in which it is debugged and run. Moreover, PATHCAL checks the syntax of expressions as

they are being typed in by the programmer; thus, some of the features of a compiler are also present

within the system.

7Cf. the representation of procedure activations in Turbak's GRASP system [Turbak 86], Ciccarclli's example of an
icon-style interface [Ciccarelli 84], and the syntax-directed editor of the Pecan system [Reiss 84], among many others.
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Numerous programming language systems have been implemented which attempt to provide a

visible language-appropriate model of computer operation. Typically, the systems are designed to

teach the particular language being illustrated, rather than as true production programming

environments. Languages which have been represented in this way include BASIC [Barr 76],

assembly code [Leap 84], FORTRAN [Shapiro 74], microprogramming code [Parker 84], and a

simple language intended to demonstrate the use of concurrent processes [Colville 83]. More

ambitious systems, which demonstrate language operation graphically for the purposes of debugging

and program development, include Lieberman's TINKER system for LISP [Lieberman 84], and the

PECAN system in use at Brown University [Reiss 84]. Both of these systems present information

about the control structures of programs as they run, and can be used to obtain multiple perspectives

(i.e., both textual and graphical) of the objects being manipulated by the developing program. The

PECAN system also includes a syntax-directed editor like that of the Cornell Program Synthesizer.

Franklyn Turbak's GRASP system (presently in development) is, like BOCHSER, designed around

the Scheme language; in GRASP, procedure invocations are constructed and represented graphically,

and the changing state of program control is visible as a little animated man tracing his way through

the program as it runs [Turbak 86].

Turbak's system represents, in part, yet another tradition of language interface design -- the

construction of graphical languages. The general motivation of these systems is to replace at least

part of the procedural representation of programs with pictorial elements instead of text. One of the

best known early efforts in this direction is Sutherland's graphical programming system [Sutherland

66]; subsequent graphical languages include AMBIT/G, a SNOBOL-like language implemented at

M.I.T. [Rovner 69], Smith's PYGMALION system [Smith 75], and the aforementioned PICT/D

language.

There are many dimensions along which BOCHSER may be compared to these systems. The

"box as editor object" seems to be a particularly useful construct both for the purposes of managing

screen space (as in the Cornell Program Synthesizer's editor) and as a uniform general-purpose iconic

device with which to delimit procedures, environments, regions devoted to graphics (Boxer has

"graphics boxes" for this purpose) and other standard language constructs. The fact that a box is

treated as one character by the editor, although simple in description, has extremely positive

consequences for users: for instance, when BOCHSER prints out a list of procedures, the screen

representation of this list is one of boxes surrounded by parentheses, and this text may be traversed

with the cursor just like any other text on the screen. This incorporation of "multiply-sized elements"
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within the context of a text editor is not seen in most systems employing expandable icons, while the

multi-purpose nature of the box object makes it more versatile than a language-specific syntactic

"template".

BOCHSER's level of integration as a system is enhanced both by its use of the Boxer editor and

by the Scheme language's notion of first-class environment objects. The former enables an easy

diffusion of the interpreter and editor functionalities; the latter, by virtue of its inclusion in

breakpoint boxes, significantly enriches BOCHSER's debugging capabilities. In this respect,

BOCHSER may be easier to work with than SMALLTALK, since the notion of environment is much

more fundamental within the Scheme language than are SMALLTALK's "inspector" debugging

views within that language. Beyond that, however, it must be admitted that the level of BOCHSER's

integration is still embryonic when compared with that of SMALLTALK; the runtime error system

and file-management capabilities of the former are at present rather spare. This topic will be

addressed once more in the next chapter.

BOCHSER, as has been noted, is intended to provide a useful "model-explicit" programming

environment for students of Scheme. The last two sample programs shown in the-previous chapter,

however, were meant to illustrate that the BOCHSER interface can potentially transcend

classification as a purely pedagogical device. The power that a user may derive by easy interaction

with Scheme environments is applicable to the design of large and interesting programs. Many of the

educational systems mentioned above are geared only toward the creation of small programs. To take

two examples, the system described by Leap for teaching assembly code is limited to programs of 100

words, of which only 22 are visible on the display screen; while programs written in the PICT/D

graphical language cannot employ procedures with more than four input parameters (since each

parameter is represented by one easily distinguishable color), and the parameter values must be

numeric.

An area in which BOCHSER is clearly weak is in its depiction of the control paths of Scheme

programs. In this respect, BOCHSER is no more informative than the standard Scheme interface

(less, in fact, since the 9836 interface includes a stepper). Many of the systems described above pay

particular attention to this element of program understanding: the PECAN system, to take the most

spectacular instance, shows the control path of a program not only through highlighting portions of

program code, but also through dynamic depictions of abstract syntax trees and Nassi-Schneiderman

flowcharts. At the very least, some kind of stepping mechanism should be added to BOCHSER to
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enhance the comprehensibility of the Scheme programs written within the system.

Finally, although BOCHSER does contain some graphical component in that it is not a purely

textually-based Scheme system, that component is minimal. This is a deliberate choice, inasmuch as

the intent was to enhance the representation of Scheme objects, but not the straightforward syntax of

Scheme expressions themselves. Besides, as di Sessa points out in his discussion of Boxer, there is

some benefit in allowing a computational environment to take advantage of the user's familiarity with

natural language; in largely graphical systems, even the act of speaking or writing about programs

requires the use of a textual "metalanguage" -- a language for describing the graphical elements of

programs. It would nevertheless be desirable to incorporate graphical objects into BOCHSER, not as

elements of Scheme syntax or new representations of Scheme primitives, but rather as data objects

analogous to numbers or procedure objects. This idea will be taken up later within the context of

adding new object types to BOCHSER.
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Chapter Seven

BOCHSER - Current Status, Problems, and
Future Directions

The present BOCHSER system is more in the nature of a prototype than a true production-

quality system. Nevertheless, it has been used as a demonstration tool for Scheme on numerous

occasions (to 6.001 students among others), and to unanimously positive response. Besides the

author, the only extensive programming projects in the system have been done by Jim Fulton, an

M.I.T. senior [Fulton 851. His opinion, too, was highly positive (despite noting problems with the

system):

"Perhaps the best thing that I liked about BOCHSER was that it made working with
Scheme a lot of fun. Many of the things that I didn't understand when I first learned the
language fell quickly into place after just a few minutes of playing with environments. A
number of my friends who are learning the language now responded with envy when I
described BOCHSER. In spite of its implementation problems, BOCHSER presents a
very good model [of] how a language can be melded with its environment to produce a
better tool for programming."

That said, however, there are still many existing problems with the system, and a variety of

additional positive features that could be incorporated into the BOCHSER interface. The remainder

of this chapter will be devoted to a description of BOCHSER's flaws, as well as potentially exciting

future directions in which the system might be taken.

7.1 Speed

BOCHSER is too slow. This is probably its most glaring weakness at the moment, and is the

first problem mentioned by Fulton in his review. In particular, those operations that require heavy

use of the display functions -- for example, transforming a large area of the screen, with many

sub-boxes, into a syntax box -- take a demoralizingly long time. Most problematic of all, the system

evinces the cardinal sin of programming environments; it gets slower as the number of defined

procedures gets larger.

BOCHSER will have to run much faster in order to be a serious alternative to existing systems.
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It is likely that a thorough but unimaginative rewrite of the code could increase its speed by a factor

of at least five -- but even greater improvement will be necessary (some operations, such as opening

Lip new environment boxes with a large number of bindings, take more than five minutes).

Eventually, then, a working BOCHSFR system would require some radical improvements either in

the design of many of its key algorithms, the hardware on which it is implemented, or the level at

which its software runs (e.g., some of the display algorithms might eventually be programmed at the

microcode level). An incremental compiler for BOCHSER procedures would also be an important

addition in making the user's programs run faster. Actually, improvement in all of these directions is

eminently possible; an increased speed of operation by about two orders of magnitude appears

feasible, and would make BOCHSER a viable production-quality Scheme system.

7.2 Customizability of the BOCHSER Interface

At present, outside of the formatting capabilities inherent in the Boxer editor, there is very little

customizability to the present BOCHSER interface. For example, it was mentioned earlier that a

BOCHSER programmer might achieve the effect of having an "editor buffer" by maintaining an

environment box for this purpose; and that it might be desirable in this context to set various editor

parameters independently within the two boxes. At present, there is nothing in the BOCHSER

interface that would allow this kind of customization. Fulton, too, mentions the value of being able

to do such things as specify properties of box icons (e.g., default box size, whether bindings boxes will

automatically appear within environment boxes, and so on).

Essentially what is being proposed is that BOCHSER be augmented by some kind of

"presentation system" (to use Ciccarelli's [84] terminology) for the properties of the BOCHSER

interface itself. It would be extremely desirable to experiment in this direction, although there is an

inevitable tension between the range of user options and simplicity of a given system: beyond a

certain point, the complexity of the presentation system itself outweighs the power of the options it

offers. Nevertheless, greater user control over the BOCHSER interface itself would be, in the

system's present state, an unambiguously positive step.
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7.3 Scrolling Boxes

One possible area for customizing boxes might be to create scrolling portions of an

environment box, or perhaps environment boxes in which the interpreter area has a default scrolling

property. The discussion in the fourth chapter was mainly devoted to the advantages of non-scrolling

boxes -- and indeed, given an either/or situation, the non-scrolling box is strongly preferable. Even

so, there are common situations in which the user wishes to evaluate an expression only once; and to

make the user responsible for erasing all such one-time expressions on the screen is bothersome.

Often in the course of programming in I3OCHSER, the screen becomes cluttered with no-longer-

wanted expressions, and extra time must be taken to eliminate them from the screen.

This problem could perhaps be alleviated by allowing the user to specify whether a particular

environment or syntax box has a scrolling property, or by instituting scrolling regions (analogous to

"panes" in many existing window systems) of boxes.

7.4 Hardcopy

One of the thornier issues in making a production-quality BOCHSER interface involves

generating hardcopy of Scheme programs created in the system. It is an inherent dilemma in interface

design that the more one exploits the power of the display screen, the more problems are created for

representing programs on paper, and BOCHSER has not escaped this problem. We have already seen

a number of BOCHSER programs that, when represented on the screen, contain too many nested

boxes to be translated directly to the printed page.

Although difficult, this problem is not unapproachable. An experimental box-printout

program was developed for an earlier version of the Boxer system; this program used multiple pages,

with flowchart-style pointers as off-page references, to represent boxes that were too large or complex

to depict on one page. More elaborate programs might in fact be developed for BOCHSER, allowing

the user to format hardcopy on the screen so as to print out or highlight only meaningful portions of

boxes. In any case, the non-trivial relationship between the BOCHSER screen and the printed page

should be seen as an impetus to develop better methods of representing complex Scheme programs,

rather than as an excuse not to exploit the power of display screens.
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7.5 New Object Types

One of the more exciting prospects generated by an interface like BOCHSER is that it suggests

various extensions to the range of object types usually supported by Scheme. For example, Scheme

systems tend to be weak in the area of text manipulation; although there are string objects in the

language, there are only a minimal number of primitive procedures for dealing with them. More

important, one often wishes to deal with text in a two-dimensional representation; that is, viewing the

text not as a long string but rather as a series of rows (or rows divided into columns). An interesting

project for BOCHSER, then, would be to include a two-dimensional "text box" object for which row

and column selectors, as well as a powerful set of text-editing procedures, could be supplied.

Along the same lines, it would be desirable to experiment with "graphics boxes", and Scheme

primitives for manipulating them, in BOCHSER. This would be an ideal use of the BOCHSER

screen, as well as suggesting a variety of new programming projects. Graphics boxes could be seen as

Scheme objects in the same vein as numbers or procedures, with their own associated primitives and

semantics. The Boxer system has historically made excellent use of graphics, while at present the

9836 Scheme system is limited to rather simple line-drawing primitives and a single "display object"

-- namely, the entire terminal screen employed in "graphics mode".

Another interesting type of object to'include in BOCHSER -- one not new to Scheme -- would

be continuations. At present, these are not included in the system, although breakpoint boxes,

inasmuch as they represent processes which can be completed at a later time, have some similarities

to what might eventually be thought of as "continuation boxes". One challenge in including this type

of object would be to develop a representation for continuations as straightforward and useful as are

BOCHSER's environment boxes.

BOCHSER's file-management system could also be augmented with "directory boxes";

similarly, communication with other systems might be accomplished with boxes that can be shared in

real time with other terminals. For instance, one environment might be represented by environment

boxes on two different screens; and any changes made to the bindings of the environment would be

reflected on both screens simultaneously. This kind of addition would be useful for extending

BOCHSER's applications to those of local-area networks (another of Fulton's desiderata). On a less

elaborate scale, "mail box" objects might also be included in the system so that BOCHSER users

could communicate via electronic mail. All of these species of boxes -- for file-management,

networking and mail -- if made into sensible Scheme objects, would greatly enhance the system's
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level of integration.

7.6 Stepper

BOCHSER's power of illustrating the Scheme "language model" would be served well by

including a stepper in the system -- that is, a facility in which the various sub-expressions encountered

in the course of applying a procedure could be evaluated one at a time. Although one can use

breakpoints within procedures to generate some of the effects of this type of stepper, an explicit set of

primitives for this purpose would be useful for students and within the debugging process. As noted

earlier, this inclusion would help to remedy the weakness of BOCHSER in presenting Scheme's

control structure in comparison to previous "model-explicit" systems for other languages.

7.7 Multiprocessing Schemes

Finally, it is interesting to consider how the BOCHSER interface could be extended to more

complex and elaborate future versions of Scheme which include notions of parallelism as part of the

language semantics. At this point, such an extension to BOCHSER is purely a matter of speculation,

but one might imagine, say, boxes representing individual processes or subtasks. These "process

boxes" could each maintain individual user interfaces, just as environment boxes do now; thus,

programs that involve the generation of individual processes might be debugged via inserting

breakpoints into the program and then interacting with individual processes to examine their states.

In any case, however notions of parallelism are dealt with in a BOCHSER-like system, it is certain

that the more complex and non-intuitive the underlying Scheme "language model" becomes, the

more necessary an interface like that of BOCHSER will be for Scheme programmers at all levels of

sophistication.
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Chapter Eight

Conclusion: Toward a Pragmatics of
Programming Languages

The design of a programming language interface is often seen as an effort distinct from the

design of the language itself. Typically, the computer science community, when it "defines" a

language, thinks in terms of various levels of formal description of the language itself, such as a

Backus-Naur grammar representation for syntax, a description in terms of denotational semantics for

the "meaning" of language constructs, or a quasi-formal English definition of the language for

programmers. Rarely if ever are there standards or even suggestions for what the programmer in this

language will sec. A typical example of this phenomenon is the report of the Algol 60 committee,

whose work is regarded as among the most influential in the history of language design: there is not a

word in their report about how this language will be presented to the programmer [Algol 63].

This omission within the Algol 60 report is actually quite reasonable; at the time the report was

drafted there were few options in the design of language interfaces, and little concern for the subject

in general. But the neglect of these considerations has not changed all that much in the past two and a

half decades. Although Alan Kay [84] writes,
"The user interface was once the last part of a system to be designed. Now it is the

first. It is recognized as being primary because, to novices and professionals alike, what is
presented to one's senses is one's computer."

nevertheless; the fact is that the prevalent practice in the design of new computer language

concepts and new computer architectures is still to think of the user interface as an afterthought. One

case in point is illustrated by the description of the "Cosmic Cube" multiprocessing project at the

California Institute of Technology; after a fascinating discussion of the hardware itself, and the

programming projects to which the new machine is applicable, the author acknowledges that a good

interface to the machine has yet to be developed [Seitz 85].

The BOCHSER system which is the subject of this report is unfortunately still an instance of

the "interface following the language" phenomenon -- the point of the system is to take an existing

language and supply the most informative and powerful possible interface to it. It is interesting that

one result of this process is that new types of Scheme objects and programming applications are
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suggested, as the previous chapters have demonstrated. A similar effort for other languages, like

1ROLOG or ADA, would no doubt be highly desirable; but future language design projects need to

include considerations of user interface in the very earliest stages. To date, the SMALL'ALK,

INTERLISP, and Boxer projects have been among the very few to really follow Kay's suggestion.

Part of the problem in this regard is that the computer science community, on the whole, has

paid too little attention to how programming languages are defined by use rather than by abstract

definition. The academic definition of computer languages regards languages as entities that exist on

paper, and whose "power" and "expressiveness" are somehow divorced from what people might

understand of them. A language like FP is described by Backus [781 as powerful because it is

mathematically tractable, even though to this day (to the author's knowledge) no one has ever written

a large program in it; the language is simply too abstruse with regard to normal patterns of human

communication (although it might indeed be a good language for computers themselves to work

with). One might similarly imagine another language with a GO-TO statement that in practice is

rarely used; computer scientists would likely publish diatribes about the dangerous semantics of the

language, while programmers would quietly go about the business of writing perfectly

understandable code.

Semiologists, in studying systems of symbolic communication, refer to a dialectic between

"language" and "speech": the former is seen as the abstract system of communication, considered

apart from its actual use, while the latter is seen in the actual communication which takes place (cf.

[Barthes 64]). The important point to make about this distinction is that the two entities, language and

speech, are seen as in some sense dependent upon one another: speech can only take place given the

framework of an existing language, but the language is learned and altered over time via its

realization in speech. Similar considerations apply to programming languages as well; in order to

understand them, we will have to regard languages not merely as a set of syntactic rules to express an

abstractly-defined semantics, but rather as what they are in practice -- a means of human expression

and communication. It will therefore be important to study what programmers actually do with

languages: which concepts they use, and which they ignore; what kinds of programming projects the

language suggests; and how programmers generate their ideas and convey their knowledge to one

another. Ultimately, the point of interface design must be to provide its users not merely with an

automated realization of a language manual, but with a tool for expanding their very human powers

of communication.
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Appendix A

BOCHSER Editor Commands

What follows is a description of the editor commands available in BOCHSER. The prefix

"Ctrl-" before a key name indicates that the given key is to be pressed while the "Control" key of the

3600 is held down; the prefix "Meta-" indicates the analogous situation for the 3600's "Meta" key.

The prefix "Ctrl-Meta-" indicates that both the Control and Meta keys are to be held down when

using the given key. The reader familiar with EMACS will note that most of the cursor movement

commands are identical or similar to those of that editor (cf. [Stallman 81]). Note that for those

commands which refer to "characters" and "words", a box is treated as both a character and a word

(i.e., a one-character word). Thus, for example, if the cursor is to the left of a box and the user types

Ctrl-F, the cursor will move to the right of the box -- one character position forward.

Commands followed by a star (*) are commands special to BOCHSER -- that is, they do not

exist in the original Boxer editor.

CURSOR MOVEMENT; TEXT EDITING

Ctrl-A Move cursor to beginning of line

Ctrl-B Move cursor back one character

Ctrl-D Delete character following the cursor

Ctrl-E Move cursor to end of line

Ctrl-F Move cursor forward one character

Ctrl-K Delete row following cursor

Ctrl-L Redisplay the screen

Ctrl-N Move cursor to the next line

Ctrl-O Open a line at the cursor

Ctrl-P Move the cursor to the previous line
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Ctrl-V

Ctrl-Y

Ctrl-(

Ctrl-)

Rubout

Meta-B

Meta-D

Meta-F

Meta-V

Meta-Rubout

Mouse-Middle

BOCHSER

Ctrl->

Ctrl-<

Symbol-K

Mouse-Left

Mouse-Right

BOCHSER

Line(*)

Ctrl-Space(*)

Meta-Space(*)

Vertically scroll the box surrounding the cursor

Retrieve the last deleted item and insert it at the cursor position

Move the cursor into the box beside it

Move the cursor out of the box surrounding it

Delete the character preceding the cursor

Move the cursor back by one word

Delete the word following the cursor

Move the cursor forward one word

Vertically scroll backward the box surrounding the cursor

Delete the word preceding the cursor

Move the cursor to the spot pointed to by the mouse arrow

BOXES

Expand the box surrounding the cursor

Shrink the box surrounding the cursor

Create a label line for a box (or move the cursor to an already-existing label line)

Shrink the box surrounding the mouse arrow; double-left shrinks the box to its
shrunken state

Expand the box surrounding the mouse arrow; double-right expands the box to
full-screen size

EXPRESSIONS

Evaluate the expression preceding the cursor (if the cursor is to the right of a
closing parenthesis; to evaluate an atomic expression, the LINE key is used with
the cursor to the right of the expression on an otherwise empty row).

Save an expression to be restored with the Meta-Space key.

Restore an expression saved with Ctrl-Space. These two keys, Ctrl-Space and
Meta-Space, are typically used to retrieve expressions from Code boxes so that
they can be edited and evaluated inside an environment box.
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When executed with the cursor to the right of a closing parenthesis of a list whose
CAR is atomic, this key creates a syntax box with that CAR as header, replacing
the original expression.

BREAKPOINTS

Ctrl-Meta-C(*)

Ctrl-Mcta-l(*)

When executed with the cursor to the right of a breakpoint box, the computation
is continued from the point of the breakpoint; the result of the computation

replaces the breakpoint box on the screen.

When executed with the cursor to the right of a breakpoint box, the computation

is continued from the point of the breakpoint, ignoring if necessary any future
breakpoints encountered; the result of the computation replaces the breakpoint
box on the screen.
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Appendix B

BOCHSER Primitive Procedures and Special Forms

This appendix contains a brief description of the primitive procedures, pre-defined variable

names, and special forms in BOCHSER. The first two categories are lumped together in the

following tables, since they simply indicate those bindings that are found in the BOCHSER global

environment; there is of course no deep difference between bindings with procedure values (like

CAR) and those with non-procedure values (like FALSE) in the sense that in either case the binding

might be altered by a DEFINE or SET! expression.

In most cases, the BOCHSER primitives and special forms are identical or analogous to their

Scheme counterparts, and the description of those terms here is minimal. Readers interested in a

thorough explanation are referred to the current Scheme manual [Scheme 84]. In those cases where

the BOCHSER term is not found in Scheme or is significantly different from its counterpart, a longer

description is provided.

Primitive Procedures and "Pre-defined" Variable Names

* Multiply

+ Add

Subtract

-1+ Decrement

1+ Increment

< Less-than predicate

Numeric equality predicate

> Greater-than predicate

apply Scheme APPLY

atom? Atom predicate
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car

cdr

cons

div

eq?

equal?

eval

false

false?

force

list

nil

print

procedure-env

read-scheme-file

read-world

replace-world

save-world

Scheme CAR

Scheme CIR

Scheme CONS

Divide

Scheme EQ? predicate

Scheme EQUAL? predicate

Scheme EVAL -- takes an expression and an environment as arguments, and
evaluates the expression in the given environment

This name is bound to the Scheme FALSE boolean object.

Predicate which returns TRUE if its argument evaluates to FALSE, and FALSE
otherwise.

Scheme FORCE. "Forces" the evaluation of a delayed object.

Scheme LIST

Bound to FALSE. In future versions, the empty list object and the boolean false
object may be separated.

Analogous to Scheme PRINT. Prints out its argument expression on the line
following the cursor's present position, moving (if necessary) subsequent already-
existing lines downward on the screen.

Takes as argument a procedure object and returns the environment object
associated with that procedure.

Takes a file-name as argument. The file-name should contain a specially-formatted
list saved from an EMACS editor buffer; this primitive will return a large quoted
expression containing the sequence of list expressions in the file.

Takes a file-name as argument. The file should be a BOCHSER world saved with
SAVE-WORLD;the result of the READ-WORLD expression is the saved
environment.

Takes a file-name as argument. When invoked from within the global
environment, the present BOCHSER world will be replaced by that in the saved
file (which should have been created using SAVE-WORLD).

Takes a file-name as argument. Saves the current BOCHSER world in an
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set-car!

set-cdr!

set-print-depth

sqrt

t

trace

true

untrace

appropriately-named file. Note that only bindings are saved; thus, objects which
are not accessible via the bindings of the global environment will not be saved.

Scheme SET-CAR!

Scheme SET-CDR!

Takes a numeric argument. Tells the BOCHSBR editor how many top-level
elements of a list to print out when a list value is returned. Elements beyond the
print-depth value are represented by ". ETC" at the end of the list.

Scheme SQRT

Bound to TRUE

Analogous to Scheme TRACE-ENTRY

Bound to TRUE

Analogous to Scheme UNTRACE

Special Forms

bkpt Takes an optional symbol argument to be printed out when the breakpoint is
encountered. When this special form is evaluated, a breakpoint box is returned.
See the description of BOCHSER's breakpoint facility in the fourth chapter of this
report.

comment

cond

The remainder of the expression is unevaluated.

Scheme COND

conjunction

cons-stream

Scheme CONJUNCTION

Takes two arguments; evaluates the first argument and returns a cons pair of the
result of that evaluation and a DELAYed version of the second argument. That is,

(CONS-STREAM <exp1>(exp2>)
can be viewed as an alternate way of writing

(CONS <expi> (DELAY <exp2>))

Scheme DEFINEdefine

delay Scheme DELAY. Takes an expression and returns an object of type "delayed-
object". If this result is used as the argument to FORCE, the original argument
expression to DELAY is evaluated in the environment in which the DELAY
expression was evaluated.
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Scheme I)ISJUNCTION

if Scheme IF

lambda Scheme LAMBDA

let Scheme LET

make-environment
Analogous to Scheme MAKE-ENVIRONMENT. Takes as argument a list of
Scheme expressions to be evaluated sequentially within the newly created
environment. This is slightly different from the syntax of the Scheme version, in
which MAKE-ENVIRONMENT may take a series of expressions as arguments,
rather than a list of expressions.

named-lambda Scheme NAMED-LAMBDA

named-let Scheme NAMED-LET

quote Scheme QUOTE

sequence Scheme SEQUENCE

set! Scheme SET!

undefine Takes a name as argument, like DEFINE. When evaluated, the most local binding
for that name is eliminated. Actually, this special form might better be named
UNSET!, since it is closer to an inverse of SET! than l)EFINE, in that it may undo
bindings outside the most local frame of the environment in which it is evaluated.
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