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ABSTRACT

Though notoriously difficult, real-time programming offers children a rich new set of
applications, and the opportunity to engage bodily knowledge and experience more
centrally in intellectual enterprises. Moreover, the seemingly specialized problems of
real-time programming can be seen as keys to longstanding difficulties of programming
in general.

I report on a critical design inquiry into the nature and potential of real-time
programming by children. A cyclical process of design, prototyping and testing of
computational environments has led to two design innovations:

- a language in which declarative and procedural descriptions of computation are given
equal status, and can subsume each other to arbitrary levels of nesting.

- a "live text" environment, in which real-time display of, and intervention in, program
execution are accomplished within the program text itself.

Based on children's use of these tools, as well as comparative evidence from other media
and domains, I argue that the coordination of discrete and continuous process should be
considered a central Big Idea in programming and beyond. In addition, I offer the
theoretical notion of the "steady frame" as a way to clarify the user interface
requirements of real-time programming, and also to understand the role of
programming in learning to construct dynamic models, theories, and representations.
Implications for the role of programming in education and for the future of
computational literacy are discussed.
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Chapter 1: Introduction

PROLOGUE

Nick, aged 15, and Tor, 14, are programming a robotic seesaw. Along the length of the
seesaw runs a track for a ball. The challenge: program the seesaw to roll the ball back
and forth along the track, without letting it run off either end. The robot is connected
to a computer by a cable. It has a motor to tilt the track this way and that, and I have
just helped them mount a distance sensor at one end to detect the position of the ball.

Once the distance sensor, which is color-coded white, has been mounted, the boys’
first order of business1 is to check its readings. At the computer, they write

P: white_distance()

Immediately, this line of code begins showing the continually updated current value
of the variable P (for position) that they have created. They slide the ball up and
down the length of the seesaw, checking that the sensor continues to “see” and
respond to the ball. It does.

When encountering this challenge for the first time, learners often try programming
the seesaw to raise the left side when the ball is on the left, and raise the right side
when the ball is on the right. Nick and Tor tried this a half hour ago, and they have
since decided that almost as soon as the ball gets going in one direction, they need to
start adjusting the tilt against it, or it will fly off the end. They need to attend to the
ball’s direction rather than its position. So Nick adds a second line to their program,
which now looks like this:

P: {47} white_distance()
SPEED: {-4} delay(P,20) - P

The new line computes, at each moment, the distance (negative distance, but this
doesn’t matter) the ball has traveled in the last 2 seconds. They move their hands up
and down the length of the track. It works: When they move their hands slowly to the
left, the flickering numbers for SPEED are negative, and when they move their hands
to the right, they get positive numbers. Now they can tell the ball’s direction. They are
ready for their first attempted solution.

P: {47} white_distance()
SPEED: {-4} delay(P,20) – P
WHEN SPEED < 0

DRIGHT()
WHEN SPEED > 0

DLEFT()

(… where DRIGHT—“down right”—and DLEFT are simple subprocesses they have
defined to turn the motor one way or the other.)

They turn these lines on, and the seesaw leaps into action, without waiting for the ball
to appear on the track. The seesaw jerks this way and that spasmodically. The story
on the screen makes the reason clear. As sensor readings fluctuate, SPEED is virtually
never zero, but rather a small negative or positive number. Consequently, at any

                                                       
1 This vignette is excerpted and distilled from a longer story. Prior to this episode, the boys
had worked for a while with a different sensor arrangment, a series of light sensors embedded
under the track. Some code from this earlier phase remained (inert) in their program for a
while. For clarity of exposition, I am omitting some twists and turns in the boys’ process.
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moment either DRIGHT() or DLEFT() is lit up, and the device can never rest. Nick
changes the zeroes to –8 and 8, respectively, and the apparatus calms down.

Now they can test the seesaw’s response to the ball. They try this in various ways,
sometimes letting the ball roll freely, other times nudging it one way or another, and
sometimes holding it in their hands, waving it up and down the length of the track.
The robot’s response is confusing. Sometimes it seems to be responding to the motion
of the ball, other times it seems not to be paying attention. When they roll the ball
from one end to the other, the robot waits much too long, finally starting to change
the tilt just as the ball is approaching the end. Nick has an idea to account for the
sluggishness. He changes the time delay to 10 so that SPEED now measures change
over the last second, instead of the last two seconds. This improves the response
somewhat. Now, when the ball is started from one end of the ramp, the robot
succeeds occasionally in reversing its direction once, and sometimes even attempts to
reverse it again, before losing control. They are making progress.

P: {19} white_distance()
SPEED: {11} delay(P,10) – P
WHEN SPEED < -8

DRIGHT()
WHEN SPEED > 8

DLEFT()

Nick and Tor still have a long way to go to meet this difficult challenge. Changing a
two-second delay to a one-second delay was a good step, but the boys will need to
continue inching closer to a concept of instantaneous speed in order to get adequate
responsiveness from their robot. The boys have not yet come to terms with seesaw
calibration, so their program has no way to find a level position. Gears grind noisily
when the motor attempts to push past the limit on either side. And to refine their
control of the ball they will need to get deeper into the relationships among tilt,
acceleration and deceleration. Beyond that, to avoid recurring runaway, they made
need to think about making the apparatus anticipate as well as respond to the ball’s
motion.

But we have perhaps seen enough of the story to make a few observations that help
reveal where this dissertation is headed.

First, the seesaw setup is plainly a rich learning environment, and shows potential to
be even richer. The apparatus is fun, and the ball-control challenge is compelling. The
boys are tackling deep questions about speed and acceleration, in a context where
gradual mastery of these ideas is immediately empowering.

Second: the boys are engaging these ideas through programming. Programming a
robot creates a context where understanding can be translated into power.

Third: the program is, in part, a model. Just how this kind of model compares to other
models we will have to work out, but most importantly, it is a “live” model. It is built
to reflect aspects of that situation as the situation is unfolding.

Fourth: the model is partly expressed in terms of dynamic variables, which contribute
both intelligibility and power to the boys’ evolving solution. These variables create a
logically and perceptually stable representation (a “steady frame,” as I will call it) for
monitoring , interpreting, and responding to a changing situation. Speed is a
particularly well-known dynamic variable with a well-established place in our
culture and in school curriculum. Later we will see examples of much less celebrated
variables, some of them categorical rather than numerical, some of then invented on
the spot, playing equally significant roles in student projects, and helping to
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illuminate the essential strategies we use, in programs and in our discourse and
understanding, to master change by containing it.

Finally, we must make note of the specific programming language, Flogo II, which
helps to make this project possible. That Flogo II does not figure prominently in the
story as I have just told it, is, paradoxically, one indication of just how important its
design is to the richness of this learning environment. Any other language would
have had a larger role in the drama, and some would have stolen the show entirely.
Among the essential ingredients in Flogo II’s comparative transparency is that it runs
“live.” The code displays its own state as it runs. New pieces of code join into the
computation as soon as they are added. In the story so far, we can see the value of
liveness in quickly resolving questions, such as: is the sensor hooked up correctly? Is
it registering the ball all along the track? What range of values is it reporting? Which
direction corresponds to positive speed, and which to negative? Why is the first
program producing such jittery motion?

Live programming allows a much more open and fluid relationship among the
program, the robot and its environment, and the programmer. Taking up the idea of
another boy who also worked with the seesaw, I will later encourage Nick and Tor to
write two more lines:

WHEN LEFT_ARROW() DLEFT()
WHEN RIGHT_ARROW() DRIGHT()

This is all it takes to allow Nick and Tor to drive the robot motor directly using the
arrow keys on the computer keyboard. Reflecting on their own strategies to control
the ball will help them generate new ideas and insights for a programmable solution.

The time is ripe for a renewed and expanded epistemological investigation of the
intellectual substance of programming, and its potential educational values. But our
view of programming as an intellectual endeavor is filtered through the available
programming languages and the kinds of activities they support, and these remain
deficient in some very important respects. The goal of Flogo II is to change the nature
of computer programming in ways that will help us take the epistemological
investigation farther. The story of the design research that led to Flogo II will occupy
many of the pages that follow. The generative liveness and other properties achieved
by Flogo II could not have been grafted onto an existing language, but required a
thorough reworking of the computational paradigms appropriate for learners.
Children’s use of Flogo II (and its predecessor, Flogo I), takes up the remainder, as I
report on what these prototype languages have so far helped to reveal about some
essential ideas and broader values of programming—as it has been, and as it may
soon become.

CONTEXT: THE PLACE OF PROGRAMMING IN EDUCATION

Debates of the 1980's about the essence of programming, the challenges in learning it,
and its optimal place in education have fallen into relative quiescence—lapsed, one
might say, into a fatigued polarization. In the minds of many educators, perhaps
representing the mainstream, the question is resolved: programming is a specialized
skill, too difficult for most kids, and it is not necessary for realizing the educational
potential of digital technologies. At the same time, a small community of researchers,
teachers, and other educators persists in pursuing and studying learning
opportunities in programming that seem, to them, both profound and
rare—profound because of the depth and power of some concepts involved in
programming, and rare because of the opportunity to empower children's roles as
investigators, creators and designers in relation to almost any educational domain.
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Communication between the two points of view has been low, but there are signs that
the time may be ripening for a renewed dialog. Research yielding qualified support
for the benefits of programming, along with more specific lessons and insights,
continues to accumulate (Clements, 1999; diSessa, 2000; Noss&Hoyles, 1996). The
arguments in favor of programming have grown in sophistication, and some of the
old arguments have found receptive new audiences and compelling new
instantiations. Programming has been shown to offer children a new intellectual
landscape, with inviting routes into geometry (Papert, 1980), algebra (Hoyles&Noss,
1996), and physics (Sherin, 2001), and access to frontier areas of robotics (Resnick,
1993; Miller & Stein, 2000) and complex systems modeling (Resnick, 1994;
Wilensky&Stroup, 2000). These demonstrations have helped to displace the old
straw-man argument for programming, viz.: that it might bring about some nebulous,
generalized improvement in children's problem-solving abilities. A considerably
more specific case can now be made that programming provides an excellent
immersion for the skills and practices of engineering; that it makes mathematics
applied, concrete, and empowering; that the core concepts of programming belong in
any meaningful definition of computational literacy; and that programming provides
a rich medium for creative expression and for cultivating the skills of design; and that
as a general model-building and toolmaking tool it supports constructionist learning
across the curriculum (e.g. Papert, 1980; Kafai, 1995; Kay, 1991; diSessa, 2000).

The past decade has brought new programming languages and environments that
extend beyond the terms of the old debates. Newer general-purpose programming
languages, beginning with Boxer (diSessa, 2000), and now including ToonTalk (Kahn,
1996) and Smalltalk's reincarnation Squeak (www.squeakland.org) are radically
different from the Logo and Basic of old, and even Logo and Basic have changed in
significant ways. There are also new programming languages for more specialized
purposes, such as the modeling languages StarLogo (Resnick, 1994; Wilensky, 1995),
NetLogo (Wilensky & Stroup, 2000), Agentsheets (Repenning, 2000), and KidSim
(ref), the introductory geometry construction language Turtle Math (Clements, 1999),
and the virtual reality entertainment authoring language Alice (Cooper, Dann, &
Pausch, 2000). In small ways and large, all of these developments reframe the
programming process and enable new learning trajectories which remain largely
unexamined. The envelope has also been pushed by new contexts of use. Children
have been programming for new kinds of purposes, including robotics (Martin, 1996),
the design of games and tutorials (Harel & Soloway, 1991; Kafai, 1995; Hoyles &
Noss, 1999), the construction of virtual worlds and communities (Bruckman, 1998),
and the creation of virtual reality entertainment (Cooper, Dann, & Pausch, 2000).
Meanwhile, many other new environments have collectively smudged the boundaries
of the category "programming." These include commercial construction and puzzle
games such as The Incredible Machine (Sierra), Widget Workshop (Maxis), Yoiks!
(TERC), and MindRover(Cognitoy).

Many of these boundary-blurring tools can be found in schools: for example,
geometry tools, (Cabri, Geometer's Sketchpad), data analysis tools (Fathom),
simulation environments like Model-It (Jackson et al., 1999), spreadsheets, and web
and multimedia authoring tools. In fact, it is increasingly clear that many of the most
interesting educational tools, old and new, gain much by being programmable.
Meanwhile, research and development involving programming continues quietly,
under more acceptable banners such as "scripting" and "modeling." In short, while
programming may have been removed from the mainstream educational agenda, it
has proven difficult to banish it altogether. Will it continue to lurk on the fringe, and
under the hood? Or do these developments suggest a potential return to educational
legitimacy?
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Perhaps the broadest articulated vision for a new role for programming comes from
diSessa (2000), who envisions an increasing amount of discourse, within education
and beyond, taking place within a “computational medium” with scope and effects
fully comparable to those of paper-based media over the last several hundred years.
The most important difference between diSessa’s computational medium and the
computer-based media in wide use today is programmability at the user level. On the
social and individual level, investment in computational literacy will yield rich
returns. Kay has captured a similar idea in his characterization of computers as a
“metamedium” (Kay, 1991).

However far off realization of these visions seem, socially and politically, it is in
intention of the current work to take them seriously, and to inquire into the
technologies and understandings that will help to increase their feasibility.

Advocates of programming have unfinished work to do

I count myself firmly among the programming partisans. I find many of the
arguments persuasive and examples compelling. Programming in its current forms
has, I am convinced, a tremendous amount to offer young people, given the right
conditions. But I believe that a renewed dialog with the mainstream will require a
stronger case than now exists. Most importantly, the continuing problem of the
difficulty of programming, particularly in contexts of interest to children, has not yet
been adequately dealt with. In addition, the need has not been fully met for a clear,
comprehensive, and coherent account of the intellectual substance of programming,
and its relation to major educational and cultural values.

The failure of programming to take hold in most schools reflects a complex web of
factors. Bringing anything into school that is perceived as a large addition to the
curriculum is a monumental task. Moreover, the full educational implications of
programming run strongly counter to a long standing (and recently resurging)
tendency, deeply embedded in school culture, to view education in terms of topics,
facts and skills. Nonetheless, undeniably intertwined with such factors is the simple
fact that programming has been hard to learn, for both students and teachers
(duBoulay, 1989; Pea, Soloway, & Spohrer, 1987; Perkins&Martin, 1986).

The problem of programming’s difficulty has, if anything, become thornier in recent
years. The kinds of programming tasks that were found to be difficult in the 1980's--
averaging or sorting lists of numbers, producing drawings on the screen, interacting
with users via text prompts and typed responses—are still difficult, though less so.
But the world has moved on to very different kinds of programming challenges.
Many children (boys, especially) want, even yearn, to make video games. Yet with the
available tools, only the most persistent can produce a working game, and a very
crude one at that. This is a shame, because a good educational opportunity is being
missed.

If the difficulty of video game programming is a shame, the difficulty of robotics
programming is, in my opinion, a major embarrassment to the cause of educational
programming. Across the country, in afterschools and many other extracurricular
settings, we find not only throngs of interested children, eager to invest hours of
effort in programming a robot or other device to behave autonomously, but also
phalanxes of smart and committed volunteers and educators working to help them.
Yet once again, as I will detail in Chapter 3, the results (vis-à-vis programming,
specifically) are meager and a major educational opportunity is being missed. Why?

What video game and robot programs have in common is that they interact with an
independent environment that proceeds according to its own schedule. They are real-
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time programs, meaning they must respond to events as they occur, and not just when
the program asks for them. Real-time programming is hard for experts as well as
novices. The nub of the problem is process coordination: real-time problems, by
definition, require that multiple, semi-independent processes inside and outside the
program be able to share information and influence each other's actions.2 A mature,
cognitively congenial set of tools for creating such coordination does not yet exist.

A solution to this problem is urgently needed, not only to capitalize on the
educational opportunity in children’s desire to program robots and video games, but
also because of the wider implications of such tools for the expressivity of a universal
computational medium. With better real-time programming in the hands of children,
teachers, and educational developers, there is reason to hope for a flowering in the
development of all kinds of dynamic tools, representations, and construction and
inquiry environments (“microworlds”—Papert, 1980) at a new level of richness,
dynamism and immediacy. To understand why this might be so, consider that, in
terms of the programming requirements, an animated microworld is just a kind of
video game, and a digitally enhanced laboratory apparatus—a controllable seesaw,
for example—is just a kind of robot.

"Misconceptions Unite!"

I mentioned two gaps in the case for programming. Difficulty was the first; the
second is the need for a coherent account of programming as an intellectual endeavor.
Here we have something far less than a scandal, but we do face a challenge. The same
new developments that help to earn programming also create something of an
identity crisis for programming. With the greatly increased diversity of tools and
activities to which the label might arguably be applied (and the still greater diversity
of forms likely yet to be created), one can ask whether programming is likely to
remain a useful, coherent category at all, distinct from the various themes and
concepts that appear among subsets of these disparate environments.

“Scripting” is a term that has gained currency in recent years. Educational software
with some programmability is described as having “scripting capability.” In part, a
meaningful distinction is being made: a scripting language promises greater
simplicity in return for reduced expressive power. But there is a rhetorical agenda as
well: to reassure the listener that no dangerously substantial ideas lurk within. The
idea is afoot that students will have no need for the specialized skills of
programming, because they can just “script.” This is thin gruel for growing minds.
With no sense of a growing competence and power to which students’ tool-related
programming experiences, large and small, might synergistically contribute, the
scriptable tool scenario promises a balkanized educational technology, where
students’ ability to “go beyond the representation given”3 does not get off the
ground4. The much preferable alternative, argued in detail by diSessa (2000), would
include educational tools in, or interface them to, a unifying “computational
medium.” Every episode of scripting would then also be an investment in what

                                                       
2 I say “by definition” because even in the minimal case, a single-threaded program must
coordinate with the independent process constituted by external events and inputs.
3 Paraphrasing Bruner (1973)
4 The component architecture strategy that some have advocated (e.g. Roschelle, Kaput,
Stroup, & Kahn, 1998; see also Kynigos et al., 1997) is an inadequate solution to this problem, I
believe. This is not the place for a full discussion, but the core problem with the component
model is that tool interconnections are fixed in advance by the developer. For full flexibility of
tool interconnections, you need a programming language. In fact, you need a real-time
programming language.
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diSessa rightly calls a new computational literacy, and I am here calling
programming.

Some of the former challenges of programming—syntax, for instance—are gradually
yielding to improved language designs and user interfaces. Will everything that
students of programming once struggled to learn turn out to have been an artifact of
immature technology? Surely not. One is not going too far out on a limb to predict
that topics such as data structures and Boolean logic, and concepts such as variable,
argument (or parameter), algorithm, and even loop, will have an enduring role. But
we need an understanding of these and many other issues that transcends individual
languages.

For example, a well-known misconception among students learning about looping is
the expectation that iteration can end in mid-loop, the instant a termination condition
becomes true. And yet in this document I will present a language with looping
constructs that work in just this way, are accepted as perfectly reasonable by
inexperienced programmers, and are used by them to build effective robot behaviors.
Does this mean that the old "misconception" can now be discarded as another artifact
of the arbitrary requirements of an immature medium? Actually, in this case and
many others, I think something much more interesting happens. What used to appear
as a relatively isolated misconception is transformed into a part of a more general
learning challenge with clearer connections to the rest of the world. In this case, for
example, children still need (eventually) to master the differences between the two
kinds of looping and the appropriate uses of each , along with parallel distinctions
throughout the language. But in the meantime, they are free to use a construct that
matches their intuitions and meets their needs. The unifying “big idea,” which will be
elaborated in later chapters, concerns the different ways that processes, actions, and
events can interact.

To build the case for programming as a new literacy, then, we need a more detailed
account of the conceptual challenges of programming, and their connections to
broader educational goals. This epistemological enterprise is in part an empirical
undertaking, requiring comparative studies of learning issues across different kinds
of programming environments—something Clements (1999) has called a “gaping
hole” in the literature. But it is also a design challenge, a quest for an educationally
optimal delineation and mapping of programming as an intellectual endeavor. Both
research and design naturally proceed in dialectic with work on new programming
environments themselves.

One might ask whether dialog with mainstream educators and the institution of
school is an advisable or necessary way to bring the benefits of programming to
children. Writers have considered whether the culture of School is intrinsically
incompatible with programming and the constructionist ethos associated with it
(Hoyles,1993, Papert, 2002), as it has seemed to be in the case of so many educational
"reforms" (Tyack & Cyban, 1996). The institution of School as we know it is under
attack from many quarters, and some have prophesied its doom. Developers of
children's programming, meanwhile, focus most of their efforts on informal
education contexts such as museums, community technology centers, home
schoolers, robotics leagues, and home use of commercial products. These venues are
important in their own right, and may also be the thin edge of a wedge back into
school. But if one takes seriously the notion of computational literacy growing from a
critical mass and variety of programming opportunities, then the time that children
spend in school needs to figure centrally in the plan. There is much at stake in the
educational frameworks and technologies now taking shape. Programming must be
on the table, and it must be the very best "programming" we can muster.



18

RESEARCH GOALS AND METHOD

The tone of the foregoing has been, I hope, no more polemical than necessary to
motivate and contextualize the goals of the present work. This dissertation seeks to
amplify the values of children’s programming, and further the epistemological
enterprise around programming, by asking:

Q1: How can language design change the nature of real-time programming in order
to make it more accessible and rewarding for learners?

This design question is the major focus of the thesis. Note that the question is posed
so as to require not only a good design but also a critical account of the principles
underlying its successes and failures. If we can succeed, to some degree, in deepening
learners' engagement with real-time programming, we are then in a better position to
investigate:

Q2: What does learners' engagement in real-time programming begin to reveal
about the intellectual substance of real-time programming, and of programming in
general?

A full investigation of this second question is beyond the scope of this project. The
treatment here will be exploratory. Within the project as a whole, this question
provides one additional test, on a “proof of concept” level, of the language design
and the principles I attach to it, and of my claims about the educational importance of
real-time programming.

Research Method

The function of criticism is the reëducation of perception of works of art; it is an
auxiliary in the process, a difficult process, of learning to see and hear. The conception
that its business is to appraise, to judge in the legal and moral sense, arrests the
perception of those who are influenced by the criticism that assumes this task.

(Dewey, 1958, p.324)

The work reported here is conceived as a critical design inquiry. It is increasingly
remarked that educational research is properly concerned not only with how things
are, but how they might be (e.g. Collins, 1999). Growing interest among educators in
the relationship between design and educational research and development is
reflected in the increasing volume of papers and projects addressing it (e.g. Gorard,
2002; Hoadley, 2002; Kelly&Lesh, 2002, JLS special issue). Much of this discussion
builds on seminal papers by Collins (1992) and Brown (1992), introducing the notion
of a “design experiment,” in which research on learning proceeds in dialectic with
efforts to fashion and test learning materials and learning environments. The present
project does combine design with attention to student learning. However, a typical
design experiment concludes with a design evaluation based on some measurement
of student learning. The present study addresses a question that is logically prior to
such measurement, namely: what kind of learning should we be looking for, and
why? I will be developing some recommendations about what ideas are worth
children’s time. This is not the sort of question that can be resolved by an experiment
in the commonly understood sense of the term5. To what test, then, can my designs
and recommendations be put? The appropriate paradigm is criticism.

Papert’s (1987) has called for a new genre of literature to be called “software
criticism.” Here the model is the work of art criticism—criticism not in the sense of

                                                       
5 Experimental data can, of course, be relevant in judging an epistemological recommendation,
but only within a broader web of considerations.
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disparagement, but in the sense of aiming “to understand, explicate, to place in
perspective.” In comparison to experiments designed to isolate the effects of a single
treatment variable, Papert argued, computer criticism is far more relevant to the
construction of a radically different educational future. Since then, few people seem
to have accepted Papert’s invitation6. However, as the complement to an ambitious
exploratory design project such as this one, I find Papert’s paradigm more helpful for
coming to terms with the multiple influences on how a designer poses problems,
generates possibilities, and makes choices. The design experiment model seems better
suited to a “normal science” phase (Kuhn, 1970) of design, where the design problem
has become more circumscribed. Because this project includes both design and a
critical assessment of the design and its context, I call this undertaking a critical
design inquiry.

Papert’s paper is a brief work of advocacy and repartée, not a detailed manual.
However, Eisner (1991) develops a strongly resonant model of qualitative research,
also based on the paradigm of art criticism (especially as analyzed by Dewey), which
helps one to fill in much of the missing detail and framework. I have discussed
elsewhere (Hancock, 2001b; 2002) some of the rationale and characteristics of a more
elaborated software criticism. The essentials are easily summarized in terms of
software criticism’s work, function, and validity criteria.

The work of software criticism. In Eisner’s rendering, criticism combines four kinds of
work: description, interpretation, evaluation, and thematics. I have already ventured
a description and interpretation of the current place of programming in education. In
addition, I will be offering descriptions of the programming challenges faced by
children, and the design problems faced by language developers, interpretations of
these in terms of conceptual, epistemological and technical issues, and evaluative
discussion of several programming languages, including the ones I am presenting. I
will also develop two related themes, “steps versus processes” and “the steady
frame,” that connect many of the project’s concerns.

The functions of software criticism are to…
• clarify context and values
• develop new categories and finer distinctions
• reveal unsuspected dimensions of choice
• pursue generative insight and practical understanding
• pick out revealing details and telling examples

Through these sorts of functions, it is my hope that this thesis will be helpful in
opening up new possibilities for what programming might become, and identifying
the implications of these possibilities for the future of education.

A work of computer criticism gains validity by means of the following tests (my four-
part answer draws heavily on a similar three-part answer by Eisner).

Test #1: Illumination

We noted earlier that criticism aims to educate the perception of its readers. Whether
it has succeeded in doing this is something that a reader can judge for herself. Does
the reader find that she can now discern patterns, connections, or dimensions of the
phenomenon better than before? Eisner calls this criterion “referential adequacy”:

                                                       
6 For examples of the genre (in my estimation—the authors don’t mention software criticism),
see Harvey (1991), Gough, (1997), and diSessa(1997a, 1997b, 2000).
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Criticism is referentially adequate to the extent to which a reader is able to locate in its
subject matter the qualities the critic addresses and the meanings he or she ascribes to
them. In this sense criticism is utterly empirical; its referential adequacy is tested not
in abstractions removed from qualities, but in the perception and interpretation of the
qualities themselves. (Eisner, 1991, p.114)

It will be up to the reader, then, to judge whether the themes, interpretation and
designs offered here are true to the phenomena described, and help, from the reader’s
point of view, to illuminate the interplay of programming, media, and learning.

Test #2: Corroboration

Critical explications are more reliable when they are supported by a variety of kinds
of evidence, from a variety of sources. In this dissertation I seek corroboration for my
themes and interpretations by comparing known phenomena across a range of
contexts, including diverse programming languages as well as linguistics,
philosophy, music education, mathematics education, and sports.

In the case of a critical design inquiry, corroboration also comes longitudinally, in the
story of the twist, turns, and insights that brought the design to its current state. My
design narrative (Hoadley, 2002) accordingly forms a substantial portion of this
document.

Test #3: Implementation

The implementation of working language prototypes provides strong evidence for
the feasibility and coherence of the principles they embody. The value of those
principles gains confirmation from their observed role in children’s programming
success, and from evidence of substantial thinking and learning.

Test #4: Consensus and Dialog

A critical work gains validity when it secures what Eisner calls “consensual
validation,” defined as “agreement among competent others that the description,
interpretation, evaluation [and/or] thematics … are right.” Eisner stresses that a
community should not expect or pursue full agreement among all critics. Each work
can still be judged according to how well it presents a particular point of view, and
how well it contributes to the advance of understanding on the community level. This
judgment emerges through the combined efforts of “competent others.” To such a
process, this work is respectfully submitted.
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Chapter 2: Situating the Design Goals

A central concern of computer criticism is the role of larger assumptions,
interpretations, values and commitments in the design of learning technologies. In
this chapter I briefly review two major programming environments for learners, and
discuss specific design features in terms of their connection to these broader themes.
This project does not aim to develop a programming environment as complete as
those described here. In tackling the problems of real-time programming, however, it
does aim to generate solutions and approaches that might become part of such an
environment. In this chapter, strongly contrasting language designs can be seen to
reflect very different assumptions—about the nature of programming power, the
factors that make programming hard to learn and do, its intellectual essence and
broader connections, and the role it might play in children’s education and in society.
Against this background we will be able to situate and clarify some of the major
design criteria driving the present work.

TOONTALK

ToonTalk is a programming environment built for children, and positioned as, among
other things, a competitor and potential successor to Logo (Kahn, 2001b). Its founding
goals are (i) to be learnable by children without the involvement of a teacher, and (ii)
to be “a very powerful and flexible programming tool” (Kahn, 1996). ToonTalk’s
power comes from its underlying computational model, called concurrent constraint
programming. The strategy for learnability begins with ToonTalk’s fundamental
form: a virtual play environment that resembles a video game more than it does a
conventional computer tool.
A ToonTalk programming session begins with a user-controlled helicopter hovering
over a toylike city. I bring the helicopter in for a landing. My avatar (a simple cartoon
person) jumps out, with a cute little four-legged toolbox trundling along behind. I
steer my avatar into a building and sit him (or her) down. Now the floor is my
workspace, and I work through the avatar’s arm. The toolbox hurries over and opens
up, offering me bins of numbers, text, container boxes, fresh robots that I can train,
nests with birds for sharing data between processes, scales for specifying comparison
relationships, trucks for dispatching new processes, a bomb for obliterating this
workspace, and a notebook for saving work. That may seem like a long list, until we
note that this is the only palette in the whole environment. There are no menus at all.
Everything you do in ToonTalk you do via the nine items in the toolbox, plus a
handful of hovering characters (a vacuum for erasing, a wand for copying, a pump
for scaling views, Marty the Martian for help, a mouse for arithmetic), spatial
navigation among buildings that represent workspaces, and a few special keys
(arithmetic keys, <escape> for exiting, function keys for summoning characters). A
few more advanced tools and options are tucked away in the notebook. This is a
triumph of economy. With names reminiscent of Pee Wee’s Playhouse—Dusty the
vacuum, Tooly the toolbox, Marty the Martian, Pumpy the pump—the characters
present a somewhat grotesque first impression, but win one over with their faithful
service and whimsically individual styles. One quickly grows comfortable in this little
world.

ToonTalk is clearly a technical tour de force. Its most important contribution to the
discourse in children’s programming is, I believe, that it greatly widens the space of
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possibilities of what programming, and programming environments, might be.
ToonTalk looks like no other programming language, and that helps to shake us all
out of our complacency. ToonTalk’s interface, in particular, is highly flexible and
dynamic. The stiff minuet of conventional user interaction is wonderfully loosened
up, into a kind improvisational dance, and, remarkably, the result is not chaos.
Objects obligingly shrink and grow to improbable size as needed. Sidekick characters
faithfully tag along, following the user’s movements without getting in the way.
Programs, tools and user are all able to pursue their separate activities without
tripping each other up.

Fig. 1: When numbers need to be added in ToonTalk, a mouse runs up and hammers them
together. Also visible in the picture are ToonTalk’s copy wand and vacuum cleaner (lower
left), Pump for size control (below avatar thumb), notebook, and toolbox. Illustration from
Kahn (1996).

ToonTalk’s characters and props are the foundation of its pedagogical strategy. The
rationale is that what makes computational concepts hard is their alien form: “…
maybe the difficulty is not in the concepts per se, but their lack of accessible
metaphors” (Kahn, 1996). Accordingly, ToonTalk language elements all appear as
familiar-looking (though not always familiar-acting) objects: a process appears as a
house, a method appears as a robot, a comparison test appears as a set of scales, a
communication channel appears as a bird and its nest, and so on. Elements of the
programming interface—deletion, for example—likewise appear as animated
characters.

In comparison to a more simply presented language, such as Logo, getting anything
done in ToonTalk takes more time. And not just time, but mindshare. When a normal
computer environment works well, its commonly used interface elements quickly
vanish into transparency. When closing a window, one doesn’t consciously think
“now I’ll move the arrow over to the close box and press the mouse button;” or even
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“now I’ll click the close box.” One simply closes the window. Experienced ToonTalk
users certainly become more fluent with its operations, and the interface’s ability to
play out actions such as house-building very quickly also helps. Still, the activity of
erasing something by using a big arm to hold a vacuum cleaner that sucks things into
its mouth can be made only so transparent. It is not simply that more clicks are
required and more screen activity is generated: animated objects and characters call
out to be recognized in a way that simple boxes and arrows do not. This is where the
concrete begins to weigh us down.

All this stage business demands screenshare as well. To accommodate it, or perhaps
from a desire for consistency and simplicity, Kahn is willing to sacrifice fundamental
facilities like the ability to see and edit the program that one has written. Yes:
incredibly, this is a programming language where the programs cannot be seen.7 It’s
not that programs don’t exist, or aren’t central to the construction process: they do,
and they are. But a program is laid down by demonstrating a series of actions to a
robot, who memorizes them. The only way to see the program again is when the
robot acts out what it has memorized. If I want to change a method I’ve defined, my
only option is to retrain the robot by acting out the entire procedure again.
Ordinarily, programmers think as they code, often editing as they go (“Let’s see, start
by doing X, then Y, no wait—first do W…”). This is impossible in ToonTalk8. For the
nitty gritty business of programming, ToonTalk is extremely frustrating and
inefficient.

In view of this, Kahn’s recurring emphasis that ToonTalk implements a “powerful”
underlying computational model and allows one to do “real, advanced
programming,”9 can be perplexing. As best I can understand it, the terms “powerful”
and “advanced” do not apply to the program behaviors that children are able to
construct (these are usually exceedingly simple) but rather to the sophisticated
algorithms that can be expressed in ToonTalk (a recursive merge sort, for example).
This is a very inward-directed notion of power. ToonTalk’s usability problems work
against building a large or medium-sized application program in which such
algorithms might be applied, so simply demonstrating the algorithm remains a
leading paradigm of use. Kahn claims that “ToonTalk is more appropriate for a wider
age range than Logo … while 5 year olds enjoy the basic elements of ToonTalk,
university students can use ToonTalk to explore and visualize concurrent algorithms
and distributed programming” (Kahn, 2001b). But enjoyment, exploration and
academic study are not the same as getting results. As a tool for constructing
programs that do something, ToonTalk is not optimized to meet the needs of either
group, nor those in between.

And what about learnability? Can one really make programming easier to understand,
while simultaneously making it harder to do? ToonTalk’s driving assumption is that
programming ideas are hard to understand because they lack direct correlates in the
physical world. By rendering the elements of concurrent constraint programming in
terms of familiar-looking characters and objects, and by using these to repeatedly act
out the processes of a program, Kahn hopes to make programming more accessible

                                                       
7 This will not be so incredible to those familiar with the field of programming-by-
demonstration, where invisible programs are quite common. However, such PBD systems are
generally intended to help users avoid programming, not to help them learn it. If ToonTalk is
attempting to help people learn programming by avoiding it, that seems like an uphill battle.
8 The upcoming v.3 release features multiple Undo, which only partially addresses this
problem. Visible, editable programs may be in the works (Kahn, 2001). It will be interesting to
see how far this addition can overcome the original assumptions of the language design.
9 Kahn, 2001b, p.1
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and more fun. I can vouch for appeal of the characters and their behavior, for both
adults and children. And the ability to watch processes in action no doubt helps
children follow the mechanics of a program. But understanding is not a function of
surface familiarity. The skills and expectations that kids bring with them about birds,
boxes, and vacuum cleaners do not directly prepare them to work with the
completely different properties of these familiar-looking objects on the screen.
(Indeed, part of the fun is in seeing objects’ conventional properties happily violated
in this wacky world where mice wield sledgehammers, and houses are built in under
two seconds). And watching programs being acted out contributes only a fraction of
what one needs in order to construct programs that do what one wants. The core
problem of learning to program remains: that is, to develop a repertoire of ways of
using the language’s given objects to meet a widening range of goals, weaving this
repertoire together with a growing understanding of the structural principles that
explain how primitives and higher-level constructions work.

ToonTalk’s notion of “concrete” is too simplistic. While language primitives may look
concrete, the strategies needed to deploy them are anything but. Moreover,
opportunities are lacking for ideas to gain concreteness through meaningful,
empowering use. In ToonTalk’s tutorial game mode, Marty the Martian guides us
through the language features by means of a series of challenges. Consider whether
one would call these challenges abstract or concrete:

“See if you can make a box with exactly 24 zeroes in it.”
“Let’s figure out how many seconds there are in a day.”
“Let’s try to fill a bird’s nest with at least five different whole numbers starting

from 2.”
These tasks may be concrete in the sense of inanimate, disconnected, or heavy, but if
one judges concreteness in terms of connection to webs of personal meaning
(Wilensky, 1991), these tasks weigh in as highly abstract.

Language or Microworld?

In Morgado’s (2001) presentation of very young children’s play with ToonTalk, I was
struck by one particularly inventive trick. One pair of children had devised a
repeating pattern in which a bird carried some datum from one house to another, and
then another bird brought it back, and so on. Birds are normally used in ToonTalk for
interprocess communication, but here they were used as material to construct an
interesting scene. The datum, likewise, served no role except to trigger the birds’
flight. This kind of construction is not programming so much as computational play.

Children’s own suggestions also seem to push in the direction of play within
ToonTalk’s imaginary world. Kahn (1999b) reports that children often enthusiastically
suggest extensions to this world. They would like to be able to land the helicopter on
rooftops as well as on the street, explode houses by landing on them, venture into the
water around the island, ride boats, swim, drown, see sharks. Kahn rejects these
ideas:

Very few suggestions from children for changes to ToonTalk have actually been
followed. This is because every item or action in ToonTalk supports the fundamental
purpose of the system — enabling its users to create programs. Much effort went into
making them fun and appealing as well. ToonTalk has a magic wand because there is
a need for copying things when programming. Many children find it fun to play with
the wand, but it also serves an essential function. Blowing up houses by landing on
them or drowning, not only do not serve useful functions, but they interfere with the
task of programming.
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This austerity is sadly misplaced. Having created an appealing virtual world where
interesting things happen, Kahn is underutilizing it, because of the
mischaracterization of ToonTalk’s proper mission. What ToonTalk clearly wants to be
is not a programming environment but a computational microworld.

As I discovered firsthand, ToonTalk can be very absorbing. I enjoyed setting myself
challenges and learning my way around. My daughter, then aged four, was attracted
and intrigued by the friendly characters and their strange, magical behaviors, but
stymied by Marty’s heavily numerical challenges. Why not embrace the notion of
ToonTalk as a superb “toy” programming environment? Add more characters and
places. Enlarge the set of computational materials: let programs compute with
seashells and ice cream cones, not just numbers and character strings. Replace the
scenario of fixing Marty’s spaceship computer with a more interesting story that
generates less contrived challenges. Instead of making kids build games on raw
graphics sheets, give them a suite of programmable effects and interactions to create
scenes and games right within the environment. This is a kind of power that
ToonTalk is well equipped to offer.

Lessons So Far

The case of ToonTalk helps to bring several of the design priorities of the current
work into focus—some by similarity, but many by contrast. To meet the broad goals
outlined at the beginning of this chapter, the present work aims toward a
programming environment embodying the following properties and principles.

1. Make programming easier to learn by making it easier to do. ToonTalk sacrifices
programmer usability in favor of “concrete” portrayals of computational primitives.
But primitives are not the main problem: structures and strategies are. These can best
earn a place in learners’ minds by providing genuine empowerment, repeatedly. The
environment’s usability characteristics should maximize learners’ ability to achieve
results in their programming. It must be a finely honed tool.

2. Support a version of programming that is engaged with the world, useful and able
to produce personally meaningful results. This implies, for one thing, a strong
emphasis on application programming and user interface construction. More
generally, it implies a large set of primitives and a large and extensible repertoire of
useful tools. In contrast to ToonTalk’s view of sorting, for example, as an opportunity
to explore interesting algorithms, this principle suggests that sorting utilities should
be ready to hand (which doesn’t prohibit thinking about the algorithms when one
wants to, of course).

3. The language should reveal its own workings in an intelligible and useful way.
ToonTalk is, as Kahn says, “self-revealing.” It shows what it is doing as it is doing it.
However, as a corollary of principle #1, I seek less in the way of high-bandwidth
explanation-oriented graphics, and more in the way of handy tools to reveal the
specific aspects of program state that matter to the programmer at a certain moment,
e.g. when testing or debugging. In short: Reveal to empower, not to explain.

4. The language should be protean. Programming is, in part, modeling. When writing
a program for playing bridge, for example, it’s a good idea to organize the program in
terms of entities like “card,” “hand,” and “discard pile,” and actions like “shuffle,”
“deal,” and “bid.” One might even add some internal displays to help monitor
program state, showing current hands graphically, for example. Comparatively bland
primitives such as variables, keywords, and subroutine names are readily assimilated
into whatever story the particular program needs to tell. A scene full of bombs and
birds’ nests, on the other hand, leaves less room, on the screen or in the mind, to



26

maintain these model entities. ToonTalk’s program elements are anything but
protean, and they illustrate the drawbacks of hogging the metaphor
space—drawbacks, that is, if one is interested in programming substantial
applications. ToonTalk’s approach is more justifiable in a language devoted to
programming itself as the object of interest. To say it another way, programming in
ToonTalk is opaque: when one looks at a program, one sees ToonTalk. I seek
transparency: the ability to look at a program and see what it is saying about the
domain of application.

5. Provide strong tools for real-time programming. This is a corollary of principle 2
(engaged with the world), and technically it implies that concurrency should be a first
class language property. This is true of ToonTalk’s concurrent constraint paradigm,
and the benefits to the environment’s interface are clear. It is less clear that adequate
tools are provided for the coordination challenges of, say, a video game. But I agree
with Kahn’s (1996) argument that the heritage of single-thread programming has
always been artificially limiting, and is especially problematic in view of kids’ interest
in games and other real-time applications.

6. Support a wide range of users, from beginners to experts. I do not accept Kahn’s
implication that ToonTalk adequately meets the programming needs of users from
age 5 to college. Yet I agree that the proverbial “low threshold, high ceiling” is a
highly desirable property. Most programmers work in some kind of community, be it
a school, a club, a business, or a network of friends. Some members will be doing
more advanced programming than others: if all are working in the same language,
there is more sharing of help and inspiration. A language with a high ceiling provides
a smooth ramp of challenges and rewards that help to draw interested learners ever
onward. Then too, a language that serves advanced users often is simply more
polished and evolved as a working environment, and its smoothness and reliability
can be felt by all users—as modest home cooks appreciate professional cookware.
Finally, a language with a high ceiling is more likely to be extensible. It supports the
gradual accumulation of useful tools, which, though built by advanced users, can
extend the creative range of beginners.

To bring forth more guiding principles it will be helpful to have a second reference
point. We turn now to Boxer.

BOXER

Boxer is positioned, even more explicitly than ToonTalk, as a successor to Logo. Boxer
appropriates Logo’s goal—“to provide the simplest, but most powerful and
unconstrained computational resources possible to ‘just plain folks’ in the service of
enhancing learning” (diSessa, 1997a)—some aspects of its syntax, and its trademark
turtle graphics. In Boxer, this heritage undergoes a deep restructuring, changing the
way programs are presented, organized, and used.

The key to Boxer’s uniqueness is its space. The virtual space of a Boxer environment
accommodates not only program code, but program data, user interface elements,
and other media objects. The space is organized by means of two complementary
structures, text and boxes. Boxes can be included in text (where they behave like just
another character), and text can be entered in boxes. Boxes can also contain graphics,
video, file access, crosslinks into other parts of the document, or links across the
Internet. The result is a roomy hierarchical structure of unlimited depth, well suited
to organizing a variety of mixed media documents, any portion of which might be
executable code. The full capabilities of this flexible structure take some getting used
to. Boxer can serve as a vehicle for tutorials or courseware, an email client, a simple
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alternative to PowerPoint, a file system browser, even an alternative World Wide
Web. It is for these reasons that Boxer is labeled a “computational medium,” not just a
programming language (diSessa, 2000). For diSessa, Boxer represents the emerging
potential for a new literacy in our society, potentially as pervasive as print. What
makes a literacy both worthwhile and learnable, in diSessa’s view, is its repeated use
in a wide variety of contexts, some mundane, others profound. Just as reading
grocery lists helps to justify and maintain the skills that also let us study the Bill of
Rights, so writing a simple script to process email helps to justify, develop, and
maintain skills involved in programming a simulation, a mathematical tutorial, or a
custom visualization for scientific data. The integration in Boxer of so much material
that is not itself code increases the occasions where programming can be useful. Here
we have a different model of the nature of programming power and means by which
it can be acquired.

As a programming language, Boxer has several interesting properties, many of which
flow from its document structure. What stands out at first look at is all the boxes.
Boxes demarcate blocks of code (what begin/end does in Pascal, brackets in Logo, or
indentation in Python). Boxes also delimit procedure definitions, establish variable
storage and bindings, and organize data structures and object (i.e. code + data)
structures. One important consequence of all this boxing is that program code and
program data can coexist in a coherent organization. In most programming
languages, variables are invisible entities somewhere off in computer memory. In
Boxer, a variable is a box that can be kept right near the code that uses it. Execute a
line that modifies the variable, and you see the effect immediately. If you want a
different value in the variable, just edit it. DiSessa calls this Boxer’s “concreteness”
principle: that “the user of a computer system can pretend that what appears on the
screen is the computer system” (diSessa, 1997a). (Compare this with the ToonTalk
sense of concreteness as familiar solid object). This kind of concreteness removes a
cognitive stumbling block, but also greatly enhances usability, adding openness and
fluidity to the processes of coding, testing and debugging. It s a good example of the
slogan offered earlier: “reveal to empower.”

Fig 2: Boxer snapshot illustrating coexistence of code, data, and a rudimentary form of
user interface (the box of double-clickable lines of code, at left)

Boxer shares with many interpreted languages the ability to execute a single line or
other small chunk of code at a time. This feature gains power when the domain of
effects of the code (in this case, variables and data structures) are visibly present at
the same time and in the same place, allowing for a type of activity that diSessa calls
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“semi-programming,” the use of incremental coding and execution either to explore
and learn, or to gradually accumulate a program’s worth of tested code.10

Fig. 3: A simple game to explore the mathematics of motion. The user must
successfully dock the command module with the lunar module,

 using an acceleration vector to control the craft.

There is one more property of Boxer that is important to mention here: the ability to
construct and include interface elements directly within the programming space. Fig.
2 shows a very simple instance of this, where a box containing lines of code serves as
a rudimentary menu. In Fig. 3 we see a more elaborate interface featuring a slider
(bottom left) and interactive graphical views. Even here, the code that drives the
game is accessible. The impact of this integration of interface and program within a
single space is quite profound. To begin with, it simplifies user interface
programming by short-circuiting the cycle of coding and testing. It also allows the
programmer to pepper her code with handy little programmer’s tools that may have
graphical interfaces. But beyond that, at what one might call the sociological level, it
breaks down the barrier between being a programmer and being a user. Clearly it
supports the notion of programming on one’s own behalf—whether to develop a
simulation or other kind of inquiry device, to process personal data such as email, or
to customize one’s work environment. But it also means that any program shared
between people comes with a built-in invitation to look inside. It is easy to make a
gradual transition from using a program as a black box, to poking around in the code,

                                                       
10 Semi-programming first appeared with the Logo turtle, and is also familiar from
spreadsheets. Repenning and Ambach (1996) use the term “tactile programming” to describe a
related property of programming in Visual AgenTalk.
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perhaps twiddling some parameters, then making modifications or additions, or
borrowing chunks of code for use elsewhere.

An extension of this model of program sharing is diSessa’s notion of “open toolsets”
(diSessa, 1997b). A beginning cook’s creative range is greatly augmented by packaged
sauces and mixes, frozen crusts and doughs, and the like. Gradually one gains the
knowledge and confidence to make more parts of the meal from scratch, as desired,
but prepared components are always a useful resource. Similarly, open toolsets are
domain-specific collections of useful computational components that can be
combined in many generative ways. With an open toolset, one has the added ability to
get inside a component, to customize or adapt it in ways unanticipated by its original
creator. An appropriate open toolset can help both beginner and expert get more
interesting products up and running more quickly in a particular domain, be it
Newtonian physics, text processing, or video control. Open toolsets also have the
potential to grow and evolve in an open-source style, through the contributions of
those who use them.

The foregoing presentation has surely not concealed my approval of many aspects of
the design of Boxer, and the accompanying models of how programming can
empower people, how they can learn it, and how computational media might support
intellectual and cultural communities in schools and beyond. Of the six principles I
put forward earlier, Boxer scores high on all but one (the exception is real-time
programming—see below). Indeed, Boxer does so many things right that it has
sometimes made me worry for the prospects of programming in schools. If something
this good has failed to catch on, will anything? I argued at the opening of this chapter
that we need a better kind of programming in order to win educators over. But how
much better can programming get? Will schools continue to resist programming no
matter how well it is realized? Or alternatively, are my quality judgments way off?

With all of Boxer’s strengths, I think one can identify a short list of significant reasons
that may account for a good deal of its difficulty in spreading in our culture.

First, there is a collection of issues I’ll call polish and appeal. As diSessa has
acknowledged, Boxer needs an interface makeover. Its visual style is dated and not
that pretty to look at. Boxer’s interface is not immediately inviting, requiring
knowledge of special keys and special places to click. Its repertoire of user interface
elements and graphics tools is small and rudimentary. In addition, Boxer lacks a rich
set of polished sample programs—games, microworlds, courseware—to draw
children and teachers in. Nor is there yet a strong collection of open toolsets for
multiple domains.

Second, there is the user threshold problem. Boxer has a low threshold for beginning
programmers: that is, it is not hard to get started programming in Boxer. But what if
your immediate goal is not to start programming but simply to try out a friend’s
game, or a colleague’s physics materials? Unfortunately, the flip side of Boxer’s
integration of code and interface currently means that you can’t really use these
things without knowing something about how to navigate Boxer and run code. It’s
not too hard to learn those things, but the point is, all you wanted to do was use a
program, so in practice this can be a very effective barrier. Boxer’s user threshold
drastically reduces the pool of potential users of Boxer programs, and deprives Boxer
of one of its best opportunities to spread: by letting a programming community
gradually emerge from within a much larger user community.

The two problems mentioned so far are fairly straightforward: fixing them is just a
matter of work (and money). The next two are thornier.



30

The real-time problem is the same general problem that I have identified and that is the
subject of this thesis. The dynamism of Boxer programs is severely limited by the lack
of tools for creating and coordinating multiple processes. The lunar lander game
shown above illustrates the issues at a level of polish. To play the game I invoke the
“go” procedure. Then for the duration of one game, my cursor is shaped like a watch
(to show that a program is running), which is ugly and makes it hard for me to see
where I’m pointing, and the rest of Boxer’s interactivity—menus, editing—is
disabled. To stop playing I have to press a special interrupt key. These are some of the
awkwardnesses of running in a single-thread system. DiSessa says “Boxer has a
multithreading system, but we haven’t bothered debugging it fully because it hasn’t
proven useful” (1997a). I suspect that Boxer has simply not been pushed hard in the
direction of real-time applications like robotics, video games, or even highly polished
interfaces. Yet applications like these would attract many more programmers and
users, in addition to opening up new learning opportunities.

As a computational medium, a dynamic Boxer would have a very different feel from
the current Boxer. The Boxer universe is relatively static. It is a realm of ideas and
contemplation, and not of action. Lunar Lander has the form of a video game, but it
isn’t a real video games; it lacks action or immersion. One does not become truly
physically engaged with it. Animated though it is, the feel of playing it is closer to a
crossword puzzle than to a computer game.

Questioning the social value of “twitch” video games, one might wonder whether
Boxer is better off remaining relatively static. But of course, twitch games are only one
manifestation of real-time interaction. The great promise, in general, of a real-time
computational medium is a new bridge between the intellectual and the physical,
between our bodies and our ideas. The revolutionary potential of this bridge is not
easily spelled out in words, and we may not fully appreciate it until we see it, but I
think it is something that children understand viscerally.

Finally, Boxer faces one more problem, which this work will not help to solve, but
which bears thought. I call it the parallel universe problem. Boxer represents a grand
vision, remarkably fully elaborated, of a computational universe considerably more
open and empowering than the one we have. It clearly illustrates how radically
empowering programming could become if differently integrated into the fabric of
computer systems and institutions. Yet to take full advantage of this now, one has to
“move in” to the Boxer world, forsaking valuable tools that are not part of Boxer.
DiSessa (1997a) writes “consider how nice it would be … to be able to write a simple
program to sort mail for you.” But actually, my current mail program sorts my mail
just fine most of the time; if I could run a Boxer program on my mail every now and
then I might, but the difference is not enough to warrant me switching to Boxer’s
email system. Boxer also offers “network browsing.” The only catch is, all you can
browse are other Boxer systems. The World Wide Web that we all know is off limits. I
wish that Tim Berners-Lee had conferred with diSessa back in 1989, before
developing HTML and all that. If he had, we might have a much more congenial
World Wide Web. But now that we’ve got the one we’ve got, there’s no giving it up.11

In short, the opportunity, if there ever was one, to build our entire computational
world within a humanely programmable computational medium has passed. The
parallel universe of Boxer stands as a demonstration of what might have been, and
perhaps a pure model for something that in reality can only be achieved messily and

                                                       
11 I don’t mean to imply that diSessa wants us to abandon the “real” WWW. But meanwhile,
the isolation of the Boxer web from the WWW is a real problem, and the fact that, in my
opinion, a Boxer-like web might have been better, is now moot.
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partially. Several questions follow from this: Just how far can a programming
language now get in permeating the computational universe, and especially that of
children? What combination of strategies, technical and social, could get us there?
Would it be far enough to gain the critical mass of use needed for a flowering of
computational literacy?

Summary of Language Design Principles

Combining the previous list of design principles with major points from the Boxer
discussion, we get the following list of desiderata for an educational programming
language.

1. Make programming easier to learn by making it easier to do.

2. Support a version of programming that is engaged with the world, useful and
able to produce results.

3. The language should reveal its own workings in an intelligible and useful
way.

4. The language should be protean—able to include representations of entities in
the application domain.

5. Provide strong tools for real-time programming.

6. Support a wide range of users, from beginners to experts

7. Integrate code, data, and interface elements within a single space.

8. Support development of polished, self-contained applications usable by non-
programmers.

Most of these principles will come into play, to some degree, in the designs presented
here. Still, I want to be clear that the current project does not aim to produce a
complete language fully exhibiting these properties. Rather, this will be a design
exploration of the challenges and implications of principle #5, with the remaining
principles helping to define the context in which the solution to #5 should eventually
fit.
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Chapter 3. Robotics Programming and the Design of Flogo I

THE STATE OF CHILDREN’S ROBOTICS PROGRAMMING

Robotics is a relatively new domain for children, but a domain that is quickly gaining
interest among educators, researchers, and especially children. In general, children
love to build robots and create behaviors for them. In doing so, proponents argue,
they can learn on many levels—about science, mathematics, engineering, design, and
artistic expression, as well as programming (Druin&Hendler, 2000; Resnick, Berg, &
Eisenberg, 2000). Miller and Stein (2000) list several educational goals for robotics,
including exposing students to basic engineering principles, providing a motivating
context for application of math skills, building problem-solving skills, building
teamwork, and promoting interest in science, math, and school in general. Turbak &
Berg (2002) advocate creative robotics as a context for learning the “big ideas” of
engineering, including “iterative design, real-world constraints, tradeoffs, feedback,
complexity management techniques”. Such ideas, they argue, are important for all of
us, not just professional engineers. (No-one, it should be noted, is advocating robotics
as a regular school subject. At the precollege level, robotics is occasionally a
classroom enrichment activity, more often an afterschool or club offering.)

While these writers have undoubtedly achieved some of these goals in their own
work, a more widespread and longer-lasting impact is by no means assured. The
problem is that programming a robot to behave in interesting or intelligent ways can
be surprisingly hard. Like generations of AI researchers before them, children often
find that goals must be repeatedly scaled back as the complexity of producing
seemingly simple behaviors is revealed. Many writings on robotics for kids are still at
the stage of early enthusiasm, and critical problems are not fully confronted in the
literature (but see Martin, 1994 & 1996). Children’s degree of mastery and
accomplishment in robotics programming is not easily measured, and little
measurement has been attempted. Yet at some level it seems clear that children’s
robotics programming has not really taken off. For example, Lego Mindstorms™ is
sold as a children’s product; certainly some children make sustained, rewarding use
of it, yet a substantial proportion of purchasers of Mindstorms are actually adult
hobbyists, who draw on a deep prior knowledge of computation to get interesting
results. In my experience of robot-making here at the Media Lab, children often
construct fixed action patterns, perhaps triggered by a single sensor crossing a
threshold, or else extremely simple sensor-effector dependencies. The same was true
at the 2003 Boston Robotics Olympics, where teams of schoolchildren aged 10-14 had
constructed and programmed robots to meet a variety of challenges, such as:

- slowest robot contest: use gearing systems to make your robot go as slowly as
possible

- obstacle course: using two touch sensors as steering controls, drive your
vehicle through an obstacle course.

- ball delivery: robots are required to pick up a ping-pong ball, carry it across a
table surface, and drop it into a cup.

One might expect the ball delivery challenge to involve sensor-based navigation to
find the ball or the cup and engage correctly with each. In fact, each robot was
programmed with a fixed series of motions which succeeded or failed based on how



34

precisely the robot was initially positioned, how sensitive the dropping action was to
variations in the relative positions of cup and robot, and luck. Of the seven
challenges, only two involved sensors at all. One was the obstacle course, where the
only programming needed is to make each motor output contingent on the
corresponding switch. In the other, the robot was required to sweep packing peanuts
from a square area marked off by black tape, while remaining within the square. This
was one of the most difficult challenges and had far fewer entries than most. No
entrants used sensors to detect the peanuts (instead, the robots simply moved and
flailed about until the time limit was reached) but two did use sensors to detect the
perimeter line. According to an event organizer, this year’s challenges required
somewhat less sensor use than the previous year’s—evidently an adaptation to what
the contestants were able to produce with available tools (LEGO Mindstorms RCX
and RoboLab software).

For older children, expectations of robotics programming are often not much higher.
The FIRST robotics league is a major organizer of robotics events for high school
students. Up until now, this has been a contest of manually controlled robot behavior.
The coming year’s competition will be the first with any requirement that robots
operate autonomously—and the requirement will be limited to a special segment of
the trial, lasting just 15 seconds. Similarly, the annual submersible robot competition
hosted this year at MIT, and attended by college and high school teams from around
the country, featured manually controlled robots only.

Some events place a higher emphasis on autonomous control, for example the FIRST
Lego League, the KISS Institute Botball program (Miller& Stein, 2000), and the Trinity
College fire-fighting robot contest12. In these contexts, it appears that younger teams
get by through a combination of coping strategies, including substantial
programming work by adult mentors, the provision of task-specific program
templates, and delegation of programming responsibility to a single knowledgeable
team member. With all that, the final behaviors may still be very simple.

Constructing behavior is an essential part of robotics. Propping up children’s
programming work is a time-limited strategy. The flip side of the story I have told is
that children are often fascinated with constructing behaviors for robots, and are
willing to work hard at it, and gain a very special kind of satisfaction from getting
even the simplest autonomous behavior working. But without a sense of growing
power to understand and create interesting behaviors, most children will eventually
lose interest. In the absence of broad numerical data, I will venture a guess that while
many children who try robotics in one context or another have enjoyable and
worthwhile first experiences, far fewer are drawn into sustained work, because
behaviors beyond the most elementary ones prove too hard to achieve. Without better
programming tools, the prevalent reality of children’s robotics will not catch up to
current visions, compelling though they may be.

Robotics languages for children

Among robotics languages for learners, only a few are regularly used by children.
These are:

Cricket Logo13, which grew out of LEGO/Logo (Resnick&Ocko, 1991), is a core subset
of the Logo programming language, with a few additional primitives for querying
sensors and controlling motors. It includes two control structures added with robotics
in mind: a “waituntil” construct that pauses execution until a given condition is
                                                       
12 http://lor.trincoll.edu/~robot/
13 http://llk.media.mit.edu/projects/cricket/doc/index.shtml
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satisfied, and an implicitly parallel “when” clause, which can be used to set up a
single “demon,” e.g.:

when (sensorA < 100) [beep backup]

LogoBlocks (Begel, 1996) features a syntax and feature set which are almost identical to
Cricket Logo, but syntactic units ride on draggable blocks, coded by color and shape,
which can be arranged to form programs and procedures. This iconic interface
eliminates common syntactic problems such as balancing delimiters, correct
formation of control constructs, and so on. A similar iconic language, RCX Code,
accompanies the retail version of the Lego Mindstorms robotics kit.

RoboLab (Portsmore, 1999) is a simple iconic language that executes step-by-step
programs visually. Control is by means of branches and conditionals. RoboLab is
built in LabView, so many people assume it shares LabView’s dataflow paradigm.
But RoboLab is a conventional procedural language.

NQC (“Not Quite C”—Baum, 2002) is a small subset of C, augmented with fairly
direct access to the firmware capabilities of several robotics microcontrollers,
including Lego’s RCX. The language omits many of C’s data types and includes
arrays as the only data structure. Still, NQC is rooted firmly in the culture of C, and
relatively abstract features and conventions remain: for example, the #define macro-
definition facility and the use of named integer constants (e.g. OUT_A/OUT_B for
outputs, OUT_FULL/ OUT_HALF for power levels) in API calls. Interactive C
(Newton Research Laboratories) is a complete C environment for several robotics
controllers, originating in MIT’s 6.270 robotics challenge course. Both NQC and C
allow for line-by-line testing. Both have been used by middle and high school
students (Miller&Stein, 2000).

A true dataflow programming model is provided by the commercial robot simulation
game MindRover (www.cognitoy.com). The language is a variant of the wiring model,
in which each wire stands for some dependency between two components. However,
the exact dependency cannot be read directly from the wiring diagram; instead, each
dependency can be viewed and edited in a dialog accessible via its wire. MindRover
programs can be used to program virtual robotic vehicles on the screen; they can also
be downloaded to physical robots.

In addition to the foregoing, a number of interesting programming environments
have been developed for research purposes. Most of these fall into one of four
categories: procedural, dataflow, rule-based, and formula-based (Ambler, 1998). For
example, LegoSheets (Gindling et al., 1995) is a simple introductory-level robotics
programming tool developed within the AgentSheets (Repenning, 2000)
programming environment. A LegoSheets program consists of a set of rules
associated with the robot’s effectors. There is no provision for higher-level structuring
of effector groups: each must be programmed separately. LegoSheets’ explicit design
goals include providing a paradigm (rule-based programming) better suited to the
non-sequential needs of robotics programming; and supporting “live” real-time
execution, to help students make sense of their programs in action. In the same
general family is the actor-based children’s language Cocoa, which has been applied to
robotics in research settings (Heger et al., 1998). More eclectic is the work of Cox and
colleagues (Cox et al., 1998; Cox&Smedley, 2000), who have experimented with
combinations of dataflow, finite state machines, subsumption architecture,
programming by demonstration, and tools for building custom visual environments
that in turn allow user to specify behaviors more concretely, in terms of visualizations
of the robot and its environment.
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At the Media Lab there have been explorations of a variety of programming
approaches for robotics, ranging from straightforward adaptations of the Logo
language, to multitasking extensions of Logo (Resnick, 1990), iconic program-
construction tools (Begel, 1996), and programming by physically wiring up simple
logic components (Hogg, Martin, & Resnick, 1991). While not applied to robotics,
Travers’ (1996) agent-based programming models engage equivalent problems in
constructing behavior in onscreen worlds, or what Travers calls “animate systems.”
Travers’ “Dynamic Agents” model, in particular, achieves an interesting kind of
power by bringing constraint-based programming into the framework of concurrent,
hierarchical agent structures. While children are envisioned as ultimate beneficiaries
of an agent-based approach to programming, the models actually developed by
Travers are not targeted toward beginning programmers.

FLOGO I

The impetus for the development of Flogo I came from the perception of a potential
opportunity to raise the level of children’s robotics programming by providing better
tools. In particular, the design sought to improve on existing environments by:

1. opening up the computational black box by revealing the executing robotics
program

2. supporting the development of larger projects and open toolsets
3. providing better means of managing the concurrent processes involved in

robotics programs

The first goal addresses a major handicap afflicting almost all available robotics
environments14: that to run a program one must first download it to the robot
controller, so that program state is completely invisible while the robot is behaving.
This situation creates an obvious impediment to comprehension and debugging.

The second goal reflects an observation that considerable research effort in robotics
languages for learners has gone into making languages more accessible at the level of
language primitives. The drawback of this approach is that the most beginner-
friendly primitives may become an impediment as projects become larger. Flogo I
sought leverage for beginners in recombinable graphical tools that could be built
within the language itself.

The third goal is the thorniest. It is really one of the fundamental problems of real-
time programming. I began to appreciate the problem in 1998, when I helped to run a
brief robotics workshop15 for a small group of children aged 10-13, involving some
moderately complex programming tasks (simulating the popular electronic toy
Bopit16, in particular). That these behaviors were too hard for young beginners to
construct on their own was not surprising. What surprised me was my sense, as we
began to work with the children, that the necessary programming tricks were too
arcane to be worth children’s time. We decided to simply provide the completed
program. Around the same time, conversations with Bakhtiar Mikhak about the
possibility of modular computational components (both physical and virtual) passing
data along wires suggested the possibility of a new visual data flow language, in

                                                       
14 The exception is the small prototype environment LegoSheets (Gindling et al., 1995)
15 Entitled “Concentration,” this workshop was a joint project with Bakhtiar Mikhak and
Claudia Urrea.
16 Against a catchy rhythmic background track, this toy issues repeated, randomly chosen
action commands (“Bop it!” “Twist it!” “Pull it!”). The player tries to perform each action in
time for the next command.
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which inherent parallelism would make Bopit, and many other robotic behaviors,
simpler to program. The result was Flogo I.

As the name suggests, Flogo I supports the representation of program processes in
terms of data flow. Flogo I is not unlike the visual dataflow language LabView
(National Instruments), but optimized for use by learners in robotics (differences
between Flogo I and LabView will be reviewed at the end of this chapter). Flogo I’s
distinguishing features include:
• the ability to run on a desktop computer with a “tethered” robot, so that program
can be viewed, as well as edited and intervened in, while the robot is behaving.
• a generalized capability for dataflow components to have graphic interfaces that
make their activity easier to monitor and control.
• an encapsulation facility allowing nested organization of circuits within
components.
• a planned, but not completed, notational language, allowing users to define new
components in terms of actions to be taken at each system tick. (Instead, we made do
with a LISP-based component definition language, not appropriate for novice use).

• a variety of small innovations designed to make common graphic operations
simple—for example, moving one end of a wire, inserting a component on a wire,
managing rearrangement of diagrams when opening and closing components.

Why dataflow?

Several considerations give plausibility to the idea of using a dataflow representation
for robotics programming:

- The match between dataflow and robotics is especially clear at the robot’s
sensorimotor periphery: A sensor acts a source of a stream of data values;
likewise a motor acts on the basis of a stream of control values.

- The natural parallelism of dataflow programming seems to fit well with the
inherent parallelism of many real-time control problems.

- There are successful precedents for the use of dataflow programming in real-
time applications (e.g. LabView in scientific instrumentation, Opcode’s Max in
music synthesis and processing).

- Dataflow presents particular opportunities for “liveness” (Tanimoto, 1990) in
the programming interface. I will explore this theme in depth later in this
document, but the main reasons can be stated simply: (1) an up-to-date
display of changing data values on wires can be maintained without
disrupting program editing or display; and (2) one can envision the intact
parts of a dataflow program continuing to operate meaningfully even as other
parts are being edited.

But there were grounds for caution as well as optimism. Visual and dataflow
programming paradigms are known to have weaknesses of their own in comparison
to textual and procedural ones (see e.g. Green & Petre, 1992; Whitley, 2000). Even
scaled-back conjectures that their representations are superior for certain types of
tasks have not been easy to confirm (Good, 1996). Flogo I work was conceived as a
design exploration through which both the needs of learners of robotics
programming and the potential of dataflow to meet those needs might become
clearer, with the understanding that major changes or extensions to the dataflow
paradigm might ultimately be required.
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In conjunction with Flogo I, we used “cricket” control computers, developed at the
Media Lab (Martin, Mikhak, et al., 2000). Rather than downloading programs to the
cricket’s on-board processor as most programming environments do, we kept the
cricket tethered to a desktop computer via a serial cable, so that the operation of the
program can be seen and adjusted in real time.17 Robots were built mostly in Lego,
with some additional craft materials.

A Simple Flogo I program

Fig. 3 shows a simple Flogo program that controls a vehicle with reflectance sensors
for detecting the surface of a table. On the left side of the program are components
corresponding to the sensors, with black fill that shifts up and down as sensor values
fluctuate. The connection is “live,” so, for example, one can hold the robot and move
one’s hand near and far from the sensor, and watch the components respond
onscreen.

Figure 3. A “Table Explorer” robot and a simple Flogo program to control it. When a sensor
moves off the table, the diagonally opposite motor is inhibited.

From the sensor components, wires carry the stream of constantly updated sensor
values to two simple threshold units, which convert the data to either 1 (sensor value
above 58, therefore sensor over table) or 0 (value below 58, therefore sensor off table).
These values, in turn, are passed to the on-off inputs of components that drive the
motors. Each sensor is used to control the motor on the opposite side of the robot. The
net effect of this simple program is to prevent the robot from driving off the table. If
the robot approaches the table edge at an angle, it will turn just enough to drive along
the edge.

                                                       
17 The cable adds some awkwardness, especially to mobile robots. In principle one could use
radio communications instead, but we found the cable adequate for our needs. A natural
addition to Flogo I would be the ability to compile programs for download after program
development is complete. Since this is unrelated to the project’s focus on the programming
process, we did not implement it.
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What if the robot drives straight to the edge of the table, so that both sensors go off
the edge simultaneously? In that case, the program in Fig. 3 will stop the motors in
time to prevent a fall, but the robot will remain stopped. Fig. 4 shows a more complex
program with two new components inserted in the center area. When both sensors
are off the table, these components cause one wheel to drive backwards, causing a
reverse turn until one of the robot’s sensors is back on the table and normal
locomotion can resume. (The understandability of this program for beginners is a
topic to which we return in Chapter 4).

Figure 4. A more complex Table Explorer program. If both sensors go off the table, one wheel
turns backwards. (The second input node on the TIMOTORB component controls motor
direction).

Some basics of Flogo I are visible in this example; others don’t come through in a
snapshot. Flogo I components accept inputs on their left side and generate outputs on
their right side. Wires carry information in one direction only; the direction is
indicated not by arrowheads but by a marquee-style animation on the wire. Multiple
wires can branch out from a single node. Each input and output has a name, which is
displayed when the mouse passes over (Fig. 5). For example, the three inputs to a
TIMOTORA component (stands for Three-Input Motor A) are named, from top to
bottom, “on?” “backwards?” and “power.” A constant input value can be simply
typed in next to the corresponding node. Thus the TIMOTORA component in Fig. 4
may be switched on and off, but it never runs backwards, and always runs at power
level 4.

Figure 5: holding the mouse over an input to find out its name

Pulses

Another important entity in Flogo I is the “pulse,” which travels on special pulse
wires and can be used to signal events and initiate actions. (Pulse wires appear yellow
in contrast to the green of ordinary data wires). Figure 6 shows a typical use of a
pulse in connecting the behavior of a touch sensor and a light. In Figure 6a, inputs
and outputs are connected directly, much as in the earlier examples. This means that
the light will stay on just as long as the sensor lever is depressed. When the lever is
released, the light goes off. Figure 6b changes this. The signal from the touch sensor
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goes into a component that detects the crossing of the threshold (the exclamation
mark in “>50!” designates this function), and will fire a pulse at the instant that its
input crosses above 50. This pulse travels along a pulse wire to a “switch”
component, where it triggers a change in the switch’s state (if the switch is off, it turns
on; if on, it turns off). With this program the touch sensor behaves like a power
button: press it once to turn the light on; press again to turn the light off.

(a)   (b) 

Fig. 6. (a) Sensor state fed directly into output state. (b) Use of a pulse-activated switch to hold the
output on or off. Wire flashes red momentarily as pulse passes through.

Pulses are the standard protocol for objects that need to be started or stopped, and for
objects that perform discrete transactions of some kind, such as incrementing a
counter or toggling a switch. A number of Flogo I components help with the
management of pulses: they emit pulses at regular intervals, route pulses along
different wires, count pulses as they are received. The pulse-delay, which imposes a
time delay in the path of the pulse, comes in handy in a number of contexts, such as
the idiom in Fig. 7, which emerged early in the Flogo work, for turning an output on
for a specified period of time:

Fig. 7. Using pulses and delays to turn an output, such as a light, on for a fixed period of time. Clicking
a touch sensor generates a pulse, which has turned a switch on. A delayed copy of the pulse will arrive
at the switch one second later, turning off the output. The delayed pulse appears as a red dot moving

across the PULSE-DELAY component.

Encapsulation

Flogo I’s encapsulation model facilitates hierarchical program organization and
language extensibility. Fig. 8 shows how the little trick of using a delay to turn
something on and then off again could be made into a standard component, by a
series of steps. First, part of a Flogo I program can be enclosed in a box, and wires to
and from funneled through input and output nodes. This box can be closed and
opened as needed to hide or reveal detail. If desired, this new component can be
made the prototype for a new class of components, accessible from the construction
palette18. Finally, an interactive graphical interface can be defined for the component.

                                                       
18 Flogo I includes a subclassing model whereby a class can be defined in terms of its
differences from a parent class. For example, “mslider” (motor slider) is a subclass of slider in
which the low and high values are preset to the range required by motor s. Yellow buttons are
defined as a subclass of buttons with a yellow color scheme. In a traditional object-oriented
language, subclasses modify their parent classes solely through the addition of new or
shadowing instance variables and methods. In Flogo I, the user is additionally free to change,
rearrange or delete elements defined in the superclass, so the meaning of inheritance becomes
alittle trickier. In practice, Flogo I’s subclassing model was only lightly used, and when it was,
it was most often used as a way to set default parameters, as in the examples mentioned. As
an alternative to subclassing, it is easy to make a new freestanding class by copying and
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(In the current prototype, however, interface construction is an expert feature that
requires writing a small amount of LISP code.)

(a)  

(b) 

(c)      

(d) 

Fig. 7: Stages of encapsulation in Flogo I. (a) Put a box around working subdiagram, routing wires
through input. (b) Object may now be closed. (c) Object becomes prototype for class definition. (d) A

graphical interface may be added, using textual methods. [picture cleanup pending]

An important property of this sequence is that one has a functioning program at each
step of the way. Code initially written and tested as a single construction can be
encapsulated and generalized in place. It is reasonable to expect that this low
abstraction barrier would both support understanding and encourage frequent use of
encapsulation, but this remains a conjecture as it was not a focus of Flogo I user
testing. However, Flogo I’s encapsulation facility was used extensively by me and by
the project’s undergraduate assistants, and it served us well. (We used a combination
of wiring encapsulation, as shown, with textual method definition, described below).
For example, I was able to build Flogo I’s interactive timeline editor (see “player”
object, Fig. 8) in two hours one evening—in time to be used by children returning the
next day. The programming is unusually simple because Flogo I handles the double-

                                                                                                                                                               
editing any existing component. Another way to get some of the effects of subclassing is to
create a new component which includes a subcomponent of the “superclass” type, adding
transformations to its inputs and outputs, and shadowing external variables. Given these
alternatives, as well as its conceptual complexity, inheritance seems not to be a vital feature for
a language like Flogo I. A good system for parameter defaulting would probably be more
useful.
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buffered animation. All one has to do is straightforwardly describe how the interface
should look—and, if desired, how the component should respond to the mouse—at
each system tick. Fig. 8 shows some of the components, which have built in Flogo I
using this facility.

Fig. 8: Flogo I construction with examples of tool components with their own interfaces.

Step-by-step encapsulation, as shown above, depends in part on Flogo I’s integrated
display of subdiagrams. In most visual dataflow languages that allow encapsulation
(e.g. LabView, ProGraph), the interior of an encapsulated diagram must be displayed
in a separate window from the main diagram. This has several drawbacks. First, any
editing action that brings up a separate window imposes a cost—in time, in the
breaking of visual context and activity flow, and in subsequent window management.
Second, it becomes difficult to watch the subdiagram’s activity in the context of
activity in the larger diagram: not only have the two become visually disconnected,
but there is a good chance that one will be partially obscuring the other. And third,
the encapsulation of part of a diagram becomes a choppier transition. In short, the use
of separate windows for subdiagrams makes them harder to create, edit, test, observe,
and understand. Flogo I is, to my knowledge, the only dataflow language in which
components can be opened in place, without unnecessary disruption of the
surrounding circuit.

Two features help to make this possible. First, Flogo I circuits can be displayed at a
wide range of scales. By default, subdiagrams open up at about 75% of the scale of the
containing view—still quite legible, but better able to fit into the surrounding context.
Second, Flogo I takes special measures to ensure that components can be conveniently
opened and closed without disrupting the arrangement of neighboring elements.
When a component is opened, surrounding objects automatically move out of the
way; when it is closed, they return to their previous positions. Positional adjustments
propagate as far as necessary to avoid legibility problems—for example, preserving
the left-right relationships of connected components, so that wires are not forced to
angle “backwards.” These measures succeed in being hardly noticeable: subdiagrams
can be edited and tested in context, the cost of opening and closing a subcomponent is
reduced to a single click, and the environment simply “does the right thing” to make
room.

Uses of text in Flogo I

One of the design themes of Flogo I was to explore possible roles for text in a visual
dataflow language. If it could be integrated in the right way, text might add
convenience and clarity to some computations, and enlarge the language’s expressive
range. As Flogo I was taking shape, several opportunities arose to combine textual
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programming with data flow diagrams. These reached varying degrees of completion
in the prototype.

Common to all uses of text is the Flogo I name space. The ability to refer to some
values by name, rather than receive them via a wire, is sometimes a useful alternative.
Names can help reduce clutter, especially for long-distance references; they create
more options for diagram arrangement, and they have explanatory value as well. All
nodes and subcomponents in a Flogo I component have names. (A third named
entity, the method, is described below). Nodes are like variables, and a node’s name
can be used to refer to its value. The values at nodes are either typed in by the
programmer (or user), received along a wire, or set by a component method (see
below). Nodes outside the current component can be referred to by compound names
that describe the path to that node. For example:

up.temp refers to a node named temp, one level up in the enclosing
diagram.

meter.out refers to a node named out within a subcomponent named
meter.

top.distthreshold  refers to a node named distthreshold that can be found within
the topmost diagram. The top level can be a useful place to
store important global parameters.19

These addressing methods can of course be combined, e.g. top.meter.out or
up.up.preprocess.delay.buffer, but it seems unlikely that one would want to do this
very often. The names of components have no other current use besides their role in
addressing nodes and methods (see below), and as labels.

Node names can be referenced in all contexts where Flogo I allows textual code.
There are three principal contexts: unary operations or “ops,” lambda-style functional
expressions or “funs”, and component methods.

Unary Operations

The “op” is a very simple device, but quite a successful one. The op was used
extensively by children and helped to meet a clear need that emerged in piloting. The
initial problem is simply to make some arithmetic adjustment, such as subtracting 2
or dividing by 10, to a stream of data, often coming from a sensor. In the first Flogo
workshop, I noticed that although children knew about Flogo’s arithmetic
components, they did not seem to think of using these in situations where one
operand is a constant. Constructions of the sort shown in Fig. 10(a), for example,
although very simple, were rarely originated by children. (I am speaking here of ten-
year-old novices using Flogo for just two days. I expect that with more time they
would have learned this construction as a standard idiom). They did not seem to fit
the way children were envisioning the computation—that is, as a unary (and unitary)
operation. A much better fit was provided by the “op” device, which allows one to
type in simple half-expression such as +20 or /10 (Fig. 9). As a bonus, the op is more
readable, more space-efficient, and quicker to install. (A similar device is found in the
experimental language V — Auguston & Delgado, 1997).

                                                       
19 A technical note: the designation “top” need not be absolute. Any diagram can be declared
to act like a “top” container from the point of view of all the subdiagrams and
subsubdiagrams within it. The price of this, however, is that no nodes or methods above the
level of this “top” container can be addressed from anywhere inside it: all information must
arrive and leave via input and output nodes. A “top” component is thus lexically sealed off
from its environment. A corrollary of this is that such a component could, in principle, reside
on a separate device.
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Fig. 9. “Ops” such as those labeled “+20” and “<90?” are easier to create and read than the traditional
dataflow equivalents at left. Ops may also signal events, and refer to node values (bottom).

A few small extensions added to the power of the humble op. Comparison operators
can be used, as can unary operators such as abs, sqrt, and not. Node values can be
used instead of constants. Finally, by appending an exclamation mark to a
comparison, one transforms the op into an event detector that will fire a pulse every
time the comparison becomes true. This became the standard threshold detection
device used throughout Flogo I programming.

Formula Components

The op’s big brother is the functional component or “fun.” The user can create an
arbitrary number of named input nodes, and type in a formula that defines the output
in terms of the inputs. The formula can also refer to nodes, as described above. This
object is quite similar to LabView’s “formula node.” The “fun” was developed but not
extensively tested.

Once debugged, the “fun” is intended to replace another formula device in Flogo I,
the node formula. Like a spreadsheet cell, a node may contain either a static value, or
a formula describing how its value should be derived. At each system tick, the
formula is re-evaluated to generate an updated value for the node. The facility is
useful, but confusing to read, because the formula is not visible. The “fun” improves
on the formula node by making the formula visible.

Component Methods

In addition to its visible nodes, component, and wires, a Flogo I component can also
have methods. These are not visible on the diagram itself (though it might be better of
they were), but accessible via a small envelope icon at the component’s upper left.
Some component methods are invoked by the system. When a component is first
created, if it has a method named “setup,” it will be run at that time. If a component
has a method named “go,” that method will be called once per system tick. Methods
can call other methods. For example, one common way to define a go method is

(to do go ()
(!update)
(!draw))

This will in turn invoke two separate methods, one to update the component’s state,
and another to update its appearance. Methods serve two main uses:
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1. They provide the bottom layer of language definition. That is, components
can be defined in terms of other components, and so on, but at the leaves
of this tree of definitions, one will find textually defined behaviors. For
example, the “count-up” component increases its counter each time it
receives a pulse on its first input (up!), and resets the counter when it
receives a pulse on its second input (reset!). This is achieved via the go
method shown in Fig. 12.

2. They are the current means for defining component graphics and user
interaction. For example, the code that generates the count-up’s graphic
appearance is also shown in Fig. 12.

It is permissible, and occasionally useful, for a component to combine wiring-based
and method-based computations. Other means of invoking methods from within a
component as well as from outside it, were also envisioned but not prototyped.
As the examples reveal, methods are defined in a variant of LISP (called “flisp”),
which includes special notational devices for method calls and node references. This
was seen as a temporary stand-in for a future notational Flogo I language,
syntactically similar to LOGO, which would be usable by children. The transition to
the LOGO-like language would also have been the occasion to build true multitasking
into the system. As it stands, methods are run to completion one after another. If any
method takes a long time, the whole Flogo I environment waits for it. This was fine
for prototyping—we simply wrote no slow methods. But the proper solution is to
allow methods a limited number of operations per tick, and let unfinished methods
continue at the next tick. (This approach has since been implemented in Flogo II).

Fig. 12: the count-up component and its methods. Two count-ups are shown at left, one opened and one
in the normal closed state. The dialog shows the methods for the count-up class. The go method

provides basic functionality, incrementing and resetting the counter. The draw method generates the
dynamic appearance shown at lower left. In the prototype, methods are defined in a variant of LISP. A

more accessible, LOGO-like method language was ultimately envisioned.

How Flogo I differs from LabView

Given the family resemblance between Flogo I and LabView (National Instruments),
it is important to note the major differences. While LabView is successful in scientific
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markets, efforts to use LabView in high schools or with novice students of
programming have not taken hold (NI staff, personal communication). It appears that
some kind of adjustment is needed to make the power of visual dataflow accessible to
learners. The design of Flogo I represents a specific conjecture about what those
adjustments might be.

Many of Flogo I’s most important differences from LabView relate to ways in which
Flogo I endeavors to provide an open, responsive, and unified programming
environment:

Following one of the principles introduced in Chapter 1, Flogo I integrates code,
data, and interface elements within a single space. Many objects under
program control also accept user intervention. For example, a switch (Fig. 5)
can be toggled by receiving a pulse on a wire, but also by a click of the mouse.
In LabView, interface elements do not appear in wiring diagram, but are
instead kept in a separate window.

As discussed above, Flogo I is able to display subdiagrams within diagrams rather
than in a separate window. This allows subdiagram execution to be monitored
and tested in context.

Flogo I programs normally reveal much about their state as they run. Data wires
are dynamically labeled with their current values, pulse wires show the
transmission of pulses, components show things such as sensor levels, time
delay progress, counter status, switch states, and so on. In a special slowed-
down mode, LabView can animate the movement of data through the
program—a useful feature. However, during normal operation, a LabView
wiring diagram is, by default, visually inert. Monitoring can be turned on for
specific wires, but that requires the programmer to know what she is looking
for. Moreover, LabView has no equivalent to Flogo’s use of animation to
reveal component state.

While a LabView program is running, one cannot modify it or intervene in its
execution. In Flogo I, one can.

These differences all relate to the liveness of the programming environment. Tanimoto
(1990) distinguishes four levels of liveness, or immediacy of semantic feedback, in
programming languages (Fig. 14). According to this scheme, Flogo I is at level 4,
because it not only provides immediate feedback to incremental changes in the
program (level 3), but also an ongoing portrayal of the program’s actions in response
to input streams and user interface elements. LabView, because of its distinct modes
for editing and running, achieves only level 2.

Flogo I’s other main difference from LabView is at the paradigm level. Most dataflow
languages, including LabView, represent the movement of data in terms of discrete
data values. These little pellets of data are scrupulously accounted for. An operation
will not fire until it has received exactly one value at each of its input notes;
moreover, firing is delayed so long as any values previously output by the operation
remain on the output wires. These rules, which were laid down in the first major
paper on dataflow (Davis & Keller, 1982) and reflect dataflow’s heritage in functional
programming, enforce a strict interlocking of behavior of operations throughout the
program. For Flogo’s purposes, a looser coupling seemed appropriate. In Flogo I, a
wire always has a current value associated with it. Outputs from operations are
construed as updates to the wire’s current value, rather than as discrete messages to
operations downstream. Component computations are triggered not by the arrival of
values, but by a system tick. Flogo I components are thus “always on.”
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4.
Stream-driven updates

Informative, significant, responsive and live

3.
Edit-triggered updates

Informative, significant and responsive

2.
Executable flowchart

Informative and significant

1.
Flowchart as ancillary description

Informative

Fig. 14 (After Tanimoto, 1990). Tanimoto’s four levels of liveness in visual programming.

Flogo I’s approach has more in common with that advocated by Brooks (1991), who
describes a robotics architecture in which components constantly transmit their
current information, whether it is needed or not: this extravagance of transmission
pays off in simplicity of architecture and elimination of tricky handshaking and
coordination issues. Tanimoto’s proposed real-time video processing language VIVA
(Tanimoto 1990), likewise adopts an electronic circuit metaphor, in which signals on
wires are updated pseudo-continuously, and operators are “simultaneously and
continually active.” Like Flogo I, these designs grow out of a primary concern with
real-time applications. The pellet model can be used in real-time
programming—LabView is a strong case in point. Nonetheless, real-time
programming is a context in which this alternative paradigm—let us call it the
“circuit model”—gains in interest. The potentially large cognitive impact of the circuit
model’s “steady frame” is discussed in the next chapter.

Flogo I’s inclusion of pulse data is a consequence of its circuit model of dataflow. In
LabView and other dataflow languages, data values serve a dual role of fixing
parameters and triggering execution. Parts of programs can be activated by sending
them data, and deactivated by cutting off their supply of data, and individual data
values can be transmitted in order to trigger actions or processes. In Flogo I these
roles are separated. Data wires carry continuously updated information, while pulse
wires are used to signal events.



48



49

Chapter 4. Flogo I: Findings and Interpretations

Piloting of Flogo I yielded insights at several levels: about the real-time programming
as an intellectual domain; about the kinds of knowledge that children bring to bear on
this domain, and about the role of dynamic representations in supporting children’s
engagement and learning. Considering each of these in turn puts us in a better
position to evaluate the strengths and weaknesses of Flogo I. The chapter concludes
with reflections on the limitations of Flogo I’s visual dataflow paradigm.

PILOTING OF FLOGO I

Flogo I was piloted with sixteen 10- and 11-year-olds with varied, but generally
slight, previous experience of Logo Microworlds programming. Eight children
participated in a two-day workshop. Eight more, plus one of the first group,
participated in a four-day (20 hour) workshop which was preceded and followed by
informal clinical sessions in which children, in pairs, were introduced to new
language features and took on a variety of programming and problem-solving
challenges.

Entitled “The Robotic Arts,” the workshops attempted to support a variety of creative
agendas, including those of children who might not be drawn to robotics in its more
familiar forms. In conjunction with Flogo I, we used “cricket” control computers, part
of a long lineage of robotics control devices developed at the Media Lab (Martin,
Mikhak, et al., 2000). Physical constructions were built in Lego, with additional craft
materials. As well as the customary robotic humanoids and vehicles, children built
such things as a model fairground ride, a “gardener’s helper” which spreads seeds by
spinning, and assorted kinetic sculptures with interesting movement and light
patterns. In the second workshop, the group collaborated to construct mechanized
versions of scenes from a storybook (Seeger & Hays, 1994); these were used to make a
video of the story.

Fig. 1: An “Indiana Jones” puzzle. The challenge is to trigger the motor and open a secret compartment.
(This is the second puzzle in a series of three.)

The children mostly used Flogo I to build small programs of their own. In addition, I
occasionally presented them with small puzzles, both to probe their understanding
and to offer another way to learn about the language. In a series of “Indiana Jones”
puzzles, children were presented with a complete Flogo I program controlling a Lego
treasure chest (Fig. 1 shows one of these puzzles). The challenge is to manipulate the
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two sensors in a way that opens the secret compartment. Often children can get the
compartment open in a few seconds, simply by aggressive clicking and poking. Only
after they do this is the full challenge explained: find a way to open the compartment
without letting the beeper go off once (the beeper means Indiana Jones has been
bitten by a snake), and whenever you’re ready, you can play just once, “for keeps.”
These rules were readily agreed to and prompted a more careful investigation of the
puzzle.

REFLECTIONS ON THE DOMAIN: PULSE VS. DATA IN FLOGO I

Let us look first at what children’s use of Flogo I helped to reveal about the
intellectual substance of real-time programming. Of course, in robotics there is plenty
of substance to choose from, and some of it was on display in Flogo I piloting. To pick
one example, children often struggled when confronted with the need to map data
values from one scale into another, e.g. a sensor value between 0 and 255 translated to
a motor output between 0 and 7 (or worse, –7 and +7). But one issue stood out as
particularly related to the problems of real-time control, and that is the focus of this
section.

In the preceding chapter I outlined Flogo I’s distinction between two kinds of signals.
The data signal is a steady stream of information representing the variation of some
quantity over time. A pulse is an instantaneous signal carrying no informational
content other than the moment at which it occurs. Pulses are used to report events
and to initiate actions.

Children were not always clear on the distinction between pulse and data. A common
context for the problem is in situations where the program detects a sensor crossing a
threshold value. It is easy to confuse the event of the sensor value crossing over the
threshold with the span of time during which the sensor stays over the threshold
value.

So, for example, when students confronted the mystery program in Fig. 1, they would
expect the “Which” component to remain in the downward position as long as sensor
B was pressed. This would happen while students were actually playing with the
program, and manipulating the sensors. They could observe a relationship between
the switch position and the sensor’s value going under the threshold. They would say
things like “the switch needs the sensor to be below 100,” and make corresponding
action errors, holding down the sensor value well in advance, instead of timing the
press. “Backsliding” was observed: when asked to look closely, a subject might
correctly state that the pulse happens when the sensor value crosses over, but then
repeat earlier errors. Also observed was correct action together with incorrect
description: children saying that the switch is open while the sensor value is below
100, but in fact timing their movements to make the value cross under at just the right
time.

Related errors occurred in other contexts:
• using the term “pulse” as the equivalent of “true.” For example, “This one is

more so it sends a pulse to the switch”
• when a pulse was used to start a component’s action—initially believing that

the path taken by the initiating pulse needed to remain open for duration of
the action (whereas it only needs to get through once, and the action will
proceed).

• indiscriminate wiring of pulse nodes to data nodes, and vice versa.
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There are several layers to sort out in this phenomenon. Of course, part of it is kids’
understanding of the pulse/data distinction in Flogo I’s ontology. But it also appears
that kids are not practiced in distinguishing events and durations when analyzing
real-world processes.
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Figure 6: Varieties of Temporal Coordination

A. In Flogo

(pulse) (data)

B. In MultiLogo
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Fig. 2: Flogo’s pulse/data distinction compared to process coordination in MultiLogo (Resnick,
1991). Upward arrows indicate the passage of time in distinct threads of computation. A. On left,
actual event-triggered relationship between an input button and a “WHICHWAY” switch in one of
the Indiana Jones puzzles; on right, a recurring misconception that the switch stays on as long as
the button. B. In MultiLogo, learners may not recognize major differences in execution depending
on the order and type of interprocess calls. C. If a process is asked to run a motor for a specified
time, but then aborted, students expect the motor to stop; in fact, it will run forever.

The distinction between events and durations is an important part of understanding
how to use multiprocess programming languages. In a study of children’s
understanding of MultiLogo, a text-based concurrent programming language,
Resnick (1990) observed a variety of “synchronization bugs,” in which children either
expected that one agent, having asked another agent to do an action, would wait until
the action was finished (whereas in fact it would start immediately), or, conversely,
that an agent could start a time-consuming action of its own and then ask another
agent to do something in parallel (whereas in fact the second agent doesn’t get asked
until the action is finished). Again, the difficulty is in the general area of sorting out
instantaneous versus time-consuming actions, as they are coordinated among
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different processes. Children also had trouble with agents executing the “onfor”
command. They thought that halting the agent would also halt the motor (whereas in
fact, halting the agent before it could turn off the motor led to the motor staying on
indefinitely). Here, children fail to realize that an apparently continuous engagement
of two processes is actually nothing more than two instantaneous interactions. The
drawings in Fig. 2 suggest the relatedness of all these confusions.

As described so far, the event-duration and pulse-data distinctions, and their cousins
the synchronization bugs, look like issues specific to programming in parallel or
multiprocess languages. And they are indeed more visible there. But similar
phenomena occur in real-time programming with procedural languages. Fred Martin
(personal communication) has observed many difficulties with what he calls
(borrowing from related electrical engineering terminology) the “edge/level
distinction,” among schoolchildren and college students, programming robots in a
variety of procedural languages. Martin has found that students’ robotics programs
often reveal a conflation of situations defined by a condition being true, with
moments at which a condition becomes true.

We can also note the relevance of a well-known misconception of novice
programmers, that a while loop will exit anytime its looping condition becomes false,
whereas the condition is actually checked just once per iteration. In other words, does
the condition apply over the duration of the loop, or by means of discrete condition-
checking events. So even when there really is only one process, the naïve expectation
seems to imply multiple processes, so process coordination is still an issue!

Finally, beyond the realm of programming, it is interesting to note a cognate
phenomenon in the realm of music analysis. Bamberger (1991) has investigated in
depth a dichotomy in children’s invented representations of rhythm. For example,
she would have students clap the rhythm corresponding to the verse fragment “five,
six, pick up sticks; seven, eight, lay them straight” (Note: I am providing this verse
fragment as a way to communicate the rhythm to the reader. In her studies,
Bamberger simply clapped it.) Over a wide range of ages, responses often fall into
two categories, either:

Ο Ο Ο Ο Ο    Ο Ο Ο Ο Ο

…or:

Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο
Bamberger calls the first representation figural, the second formal. She reports that
producers of one kind of representation have considerable difficulty seeing any merit
in the other representation. An appreciation of both representations and the
relationship between them is generally arrived at only through an extended process
of dialog and reflection, often spanning days if not weeks.

A full interpretation of these representations entails many subtle issues in musical
cognition, and will not be attempted here. What is not too hard to discern, however, is
a difference in the way the two representations reflect temporal duration. The lower
variant (“formal”) consistently describes each clap in terms of the time duration to the
next clap. It represents the rhythm as a series of temporal durations. In the upper
form, each circle seems more connected to something qualitative about the clap itself,
rather than to the duration; hence the inconsistent correspondence between circle size
and temporal interval.

Music, like robot behavior, is something that unfolds over time. In trying to describe a
temporal process, music students confront a similar problem: integrating event-
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oriented and duration-oriented information about the process. Both are
essential—each notation, above, is only a partial description of the rhythm—yet we
have a tendency to try to describe both kinds of information with the same
representational tools. This is a problem that any approach to real-time programming,
and the learning of real-time programming, must address.

REFLECTIONS ON LEARNING: THE ROLE OF ACTION KNOWLEDGE AND TINKERING

DiSessa (1986) has described how programming competence can be based on a
patchwork of partial understandings. The understandings include structural
knowledge (knowing something about the mechanics of computation, and the ability
to predict, on this basis, how some computations will run) and functional knowledge
(context-based “how to” knowledge for achieving desired ends), as well as schemas
and expectations carried over from other domains. Development as a programmer
will entail expansion, interconnection and reconciliation of these partial
understandings, including both structural and functional understandings.

These types of knowledge were apparent in children’s use of Flogo I. Here is an
example of functional knowledge. All the children eventually learned that if you
want a button to turn a motor on indefinitely, instead of just as long as the button is
pressed, then you need to put a switch between them. This knowledge worked for
them – they could use it to build working programs – even though most were hazy on
what kind input the switch takes (pulses that say when to turn on and off) and what
kind of output it generates (data about the current on/off status).

Now, what kinds of knowledge, and what ways of gaining knowledge, are we adding
to the mix when children have a completely new way to interact with programs?
Consider the Indiana Jones puzzles mentioned earlier. As I said, the challenge of
playing for keeps, which requires the ability to open the compartment reliably, with
no missteps, encouraged careful investigation by the children. However, it would be
a mistake to call this investigation a mechanical analysis of the puzzle, by which I
mean a tracing of cause and effect based on structural understanding of the
primitives. There is some mechanical thinking (varying from learner to learner), but
at least as important is a process of gradually identifying useful visual cues, and
working out how to coordinate one’s actions with these cues.

For example, in solving another Indiana Jones puzzle, one boy developed a mantra,
“one...two...three… send it across” – a terse guide to what to do and what to pay
attention to in the program. The slow counting marked out how long a particular
touch sensor needed to be pressed; the “it” that was sent across was a pulse that
needed to get to a target part of the program, past some logical obstacles which the
“one…two…three” action would temporarily clear. The word “send” marked the
moment at which this pulse should be launched, by touching a second sensor. By
borrowing the mantra, his partner, who had made even fewer mechanical
interpretations of the puzzle, began to be able to open the compartment as well.

Flogo I’s live, graphical interface, I suggest, brings into play a third kind of
knowledge and learning: not structural, not functional, but based in action. Action
knowledge— rhythms, timings, movements, alertness to specific cues—of course
plays a large role elsewhere in children’s lives. What is its potential value in
programming? By developing their action knowledge of Flogo I, children were

1. Building a practical, action-oriented sense of program processes which can be
gradually coordinated with the other kinds of knowledge
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2. Honing skills in program reading—not just reading the static program, but
“reading” its execution process. When there is a lot going on simultaneously,
choosing what to watch is a nontrivial skill.

3. Developing the practice of experimenting with program components and
working them for desired effects.

Tinkering

The term “tinkering” has been used in the literature of constructionism to describe an
open-ended, exploratory process of programming (Turkle & Papert, 1992; Turkle,
1995). Like the bricolage of Levi-Strauss (1966), programming-by-tinkering is a process
guided neither by well-formulated plans nor by firm goals. Instead, the tinkerer
responds rapidly and flexibly to emerging results of partial constructions, and may
arrive at an end product very different from that initially envisioned—if an end
product was envisioned at all. Programmers with a solid structural understanding of
the programming language may sometimes program by tinkering. However, for the
many learners whose structural understanding is not fully developed, tinkering is an
approach that helps to leverage satisfying results from incomplete knowledge.
For example, consider the big box, called a “back-forth”, in the lower left of the
Indiana Jones program (Fig. 1). One pulse into this box will make the compartment
open; the next one will make it close, and so on. Most kids did not try to analyze how
it worked, but they knew what it did, and that it was the target in these puzzles.
Based only on this exposure, two pairs spontaneously used a back-forth in their own
constructions: one to make a car drive back and forth; and the other to make two arms
of a kinetic sculpture wave one way, then the other. (Note that these are different
from the original application, so it appears that they had abstracted the mechanical
essence of the back-forth.)

Figure 3 shows one of these appropriations of the back-forth, for driving a kinetic
sculpture. The pulse-repeat sends a pulse to the back-forth once every second (the 10
is in units of 1/10 second). Inside the back-forth, the first component has the job of
ignoring any pulses that follow within 3-1/2 seconds of the previous pulse. (This
prevents the movement from being interrupted in midcourse.) So only one pulse in
four gets through. These details presumably escaped the notice of the programmer,
who was happy with the overall behavior.

Fig. 3. Example of programming by tinkering: Successfully re-using a Back-Forth in a non-standard
way (three out of four input pulses will be ignored).

The fact that the programmer was able to get a successful program working without
understanding everything about how it worked, through a process of tinkering, is a
good thing. Turkle and Papert (1992) defend programming-by-tinkering as a
legitimate manifestation of cognitive style. But tinkering can also play an important
role as a leading edge for learning. Tinkering gives learners a chance to succeed, and
to gain various kinds of knowledge and experience, while their structural knowledge
and planning skills are still fragmentary. Structural knowledge gains not only time to
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develop, but also a framework of other kinds of knowledge with which it can be
“webbed” (Noss & Hoyles, 1997). Programming will become more learnable as we
make its deep ideas more accessible, but also as we allow children more time and
context to learn them, by supporting tinkering.

Some may worry that too much tinkering may slow learning, by removing the
necessity of confronting the deeper structural ideas of the language. I agree that
educators need to consider moments and methods to provoke a shift from tinkering
to deeper reflection. But this is not an argument against tinkering. It is tinkering itself,
after all, that helps to lay a foundation, sometimes over very long time periods, for
such teachable (or thinkable) moments. No matter how well one tinkers, structural
knowledge can still help one get farther faster. The fact that structural knowledge is
empowering implies that children will still value it, and that ways will still be found
to promote it.

If we take support for tinkering to be desirable in a programming language, what are
some of the characteristics that would contribute to this support? One of them would
surely be the ability to test programs, and parts of programs, in the live way that kids
investigated the Indiana Jones puzzles. “Action learning” about these components
would be one way for the tinkerer to sort out what aspects of execution to pay
attention to, and how to adjust for them.

Flogo I has a second language property that appears to support tinkering: a spatial
layout of program components in which distinct regions interfere with each other
relatively little. Functional and non-functional parts of a program can coexist in the
same program: the non-functional part does not prevent the functional part from
working. This property can greatly reduce the price of experimentation. It is easy to
add new components and wires to a program, without fear that they will introduce
damaging side effects. Fig. 4 shows a snapshot of an extended programming session.
The functional core of the program is surrounded by partial constructions, some
abandoned, others in process. The children worked iteratively, making a few
modifications (some planful and some haphazard), testing them onscreen or via the
robot, interpreting the results (in terms of structure, or just success), and modifying
again. Because they never had to “break” the working parts of the program in order
to try new ideas, forward and lateral progress far outweighed regress. By the end of
the session, real progress had been made.

Fig. 4. Another tinkering example. Work-in-progress shows non-functional, experimental and test code
coexisting with functional core.
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To put in another way, I am suggesting that Flogo I’s “live” dataflow representations
help to make programs less fragile. The principle could be summed up as follows: if
your program behaves as you build it, and if each part behaves where you built it, then
the program breaks less when you tinker with it—and when it does break, it will be
easier to do something about it.

A third way that a language can support tinkering is by closing off false leads in the
exploratory process. Flogo treatment of data vs. pulse signals illustrates this. During
most of the time that children used Flogo I, the difference between data and pulse
was simply a matter of interpretation. A pulse was defined as the moment of a
signal’s transition from 0 to a positive number. There were a number of situations
where one could conveniently connect a signal that, conceptually, carries data, to a
node where pulses are expected (e.g. connecting a touch sensor component directly to
a beeper, or to a “player”—Fig. 3-9). But for every situation in which mixing pulse
and data conveniently did the right thing, there were many opportunities for children
to connect the wrong nodes—through confusion, by accident, or as a way to
explore—and by mystified by the results.

After seeing children’s difficulties with pulses and data, I changed Flogo I to make
the distinction more explicit. Pulse and data nodes look different, as do the wires
between them, and Flogo I refuses to connect a data node to a pulse node. I thought
that this might force the issue of pulse vs. data and get kids thinking and talking
more about the difference. In a follow-up session with two boys, I presented and
explained the new system. Without further discussion of the nature of pulse and data
the boys proceeded confidently on their project. Finding, as time went by, that some
attempted wirings were now prevented, one of the boys good-naturedly remarked,
“these orange nodes are really messing us up… they make it harder.” In fact, though,
only dead ends were thwarted, and I believe they got their constructions working
more quickly than they would have with the earlier version. A language change
developed with structural understanding in mind thus turned out, in the short term,
to have a different kind of value. With no immediate effect on structural
understanding, it nevertheless helped to make the tinkerers’ search for useful
behaviors more efficient. (Meanwhile, the potential value for structural
understanding over the longer term is not ruled out).

REFLECTIONS ON MEDIA: THE STEADY FRAME

The design of Flogo I placed a high priority on “liveness,” and, as recounted above,
the effort seems to have paid off in opening up new ways for children to approach
programming. At this point, the concept of liveness merits a closer look. As we saw
above, liveness is defined as a feedback property of a programming environment, and
this is the way it is commonly discussed in the literature (e.g. Burnett et al., 1998).
And yet, if making a live programming environment were simply a matter of adding
“continuous feedback,” there would surely be many more live programming
languages than we now have. As a thought experiment, imagine taking Logo (or Java,
or BASIC, or LISP) as is, and attempting to build a live programming environment
around it. Some parts of the problem are hard but solvable, e.g. keeping track of
which pieces of code have been successfully parsed and are ready to run, and which
ones haven’t. Others just don’t make sense: what does it mean for a line of Java or C,
say a = a + 1, to start working as soon as I put it in? Perhaps I could test the line right
away—many programming environments allow that. But the line doesn’t make much
sense in isolation, and in the context of the whole program, it probably isn’t time to
run it. In a sense, even if the programming environment is live, the code itself is not.
It actually runs for only an infinitesimal fraction of the time that the program runs.
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The possibility of meaningful liveness depends on the structure of the way that
computation is represented. This section asks: what are the properties of
representations that help to make liveness possible? Since programming languages
are rather complicated things, we start with a simpler example.

Gregory Bateson (1980) offered a contrast between two kinds of feedback loop. As an
example he compares the process of hitting a target with a rifle versus hitting it a
machine gun. I find the contrast even clearer between a bow-and-arrow and a water
hose, so let me describe it that way. Hitting a bull’s eye with an arrow is a careful
process: you aim, shoot, string another arrow, carefully correct the aim, shoot again,
and so on. It is difficult enough that archery is an Olympic event—a distinction
unlikely to be accorded to the challenge of hitting a target with water from a hose.
What is it about a hose that make it so much easier to aim? The evident difference is
“continuous feedback”: as we adjust which way the hose is pointed, the stream of
water from us toward the target reflects back as an uninterrupted stream of
information about the consequences of our aim. But how does this help? A reasonable
first explanation might be that more, faster feedback simply allows us to compress
what the archer does into a much shorter time. The rate of feedback surely matters,
but does not fully explain the difference. The archer and the waterer are engaged in
qualitatively different processes, and the key to the difference is this: the waterer
never stops aiming. The only movements the waterer needs to make are corrections to a
single, evolving aim.

The archer, on the other hand, makes a series of distinct aiming actions. Each time she
makes a new shot, she fits a new arrow to the bow, and then undertakes the feat of
reconstructing how she aimed the previous shot. This is an essential step, because her
previous aim is the basis for any correction she might make. Reconstruction requires
a tremendous amount of concentration and skill. It has to be very precise: any
correction she makes will be only as good as her approximation of the previous aim.
Reconstructing previous shots is a substantially larger source of error in archery than
making the right correction (it has to be, otherwise, having hit the bull’s-eye once, it
would be easy to keep hitting it20). Correspondingly, many of the training efforts and
equipment advances in archery can be understood as promoting the repeatability of
shots.

For the waterer, reconstruction is a non-problem: there is no need to “reload” the
hose, the way an archer sets up the next arrow. There is a requirement to maintain the
current aim, but this is much more manageable, and maintenance is assisted by
availability continuous feedback. If my arm starts to droop, I’ll see the stream of
water start to drift off that bush at the other end of the flowerbed, and I will correct
without even thinking about it.

In other words, continuous feedback only makes sense in response to a continuous
action. The archer’s firing is not continuous; rather, it is made up of a series of actions
that unfold over time; having occurred, they disappear. Continuous feedback is not
simply absent: it is meaningless. In watering with a hose, on the other hand, the
“shot” has escaped its temporal embedding. An action sequence has been converted
to a stable entity—to wit, the holding of a hose nozzle—and the ephemeral sequence
of aim, fire, result, has been replaced by a persistent relationship, visibly rendered by
an actual arc of water, between nozzle position and where the water is landing.

                                                       
20 Cannon ballistics is a bit more like this, because the cannon’s aim is mechanically
maintained from one shot to the next.
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In comparison to archery, hosing creates what I propose to call a steady frame for the
activity of aiming for a target. A steady frame is a way of organizing and representing
a system or activity, such that

(i) relevant variables can be seen and/or manipulated at specific locations within
the scene (the framing part), and

(ii) these variables are defined and presented so as to be constantly present and
constantly meaningful (the steady part).

If we take the not unreasonable position that aim is a highly relevant variable in
aiming, then this definition tells us that hosing is a steady frame for aiming, because
aim is constantly present and meaningful via the hose nozzle, while archery is not,
because aim is only intermittently represented by the bow and arrow.

Of course, the use of the term “relevant” opens up room for qualitative variation in
steady frames, as well as for disagreement. One steady frame may be better than
another if it presents more variables that are relevant, or variables that are more
relevant, than those offered by the other. There can also be qualitative differences in
the ways that variables are represented. For example, a set of knobs to control a
hose’s aim would be steady, but far less easy to work with.

Aim is not the only relevant variable in aiming. The spot that the arrow or stream of
water travels to—let us call it the aim outcome—is just as important. And in general,
in any dynamic system or activity we will be interested in relationships among two or
more variables, and in ways that some variables can be manipulated to achieve
desired effects in other variables. The qualitative judgment of variable relevance
depends on this web of relationships. If a variable has no intelligible or usable
relationships with any other relevant variables in a system, then we are unlikely to
judge it a relevant variable. The relationship between aim and aim outcome is a very
well-behaved one—a continuous mathematical function with few reversals—and this
too contributes to the value of these variables in working with the system.

The qualitative judgment of variable representations also has a basis in these
relationships. We will prefer representations that make relationships easier to
perceive. For example, if I am unfortunately forced to control hose aim remotely via
knobs that operate like polar coordinates, and if I can’t see where the water lands
with respect to the target rosebush, but must instead look at readout dials showing
this information, then it is more helpful if these dials show aim outcome in polar
coordinates with respect to the bush, as opposed to x/y offsets from the bush,
because these will be easier to correlate with my aim inputs. Best of all, of course, is
holding the hose and watching the water. Then my perspective yields a very simple
mapping: turning the nozzle to the left makes the water land a little more to the left,
and so on. Moreover, the arc of water between my hand and the bush helps me to
track the time lag in the aim outcome relationship, making it easier for me to avoid
overcorrections and other lag-related difficulties.

In short: if we are interested in exploring dynamic systems through real-time
feedback, many factors will affect the quality of our experience. The notion of the
steady frame emphasizes one factor that is, in a sense, a prerequisite for the
rest—namely, the structuring of the system in terms of true dynamic variables. If a
system that we organize or apprehend in terms of action and event sequences can be
recast in terms of persistent variables and relationships, a new space of
representational possibilities opens up.
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Another example: the oscilloscope.

The oscilloscope’s ability to make high-frequency wave patterns visible is based on
the way it maps a signal onto two-dimensional space. As the oscilloscope constantly
retraces the signal across the display, patterns matching the oscilloscope’s retrace
frequency become visible. Each phase of the signal, with respect to the tuned
frequency, appears within its proper vertical slice in the display. The result is a steady
frame that allows us to observe waveform variations in real time. Note that the
variables made steady by an oscilloscope are, in a sense, virtual constructs. Consider a
single vertical slice of a sound wave pattern: signal level at, say, offset +1 mSec. At a
fine enough time scale, we see that this seemingly constant variable is actually based
on an intermittent series of momentary values that occur once per oscillation. The
phosphorus of the oscilloscope screen and the receptors of the retina work together to
maintain our perception of the variable, and indeed the whole waveform, across these
time intervals. The waveform presented by an oscilloscope is thus not a given of
nature. It is an abstraction, a construct that recasts sequential events in a steady
frame—one that has proven indispensable for all kinds of scientific and technical
work.

The oscilloscope lets us look at just one frequency at a time (or a few, counting
harmonics). Another steady frame device, the real-time Fourier spectrum graph, is
able to reveal a whole range of frequencies at once, using a different spatial
organization—the trade-off being that for each frequency we see only an amplitude,
not a waveform.

Dataflow as a Steady Frame

Returning our attention to programming languages, we can see visual dataflow, and
especially Flogo I’s circuit-style dataflow, providing a steady frame at two levels.

The first and most significant steady frame is at the level of program execution. As
the program runs, we can see input values and derived values changing. Each one is
constantly present, each is localized to a wire or component, and each has a visible
derivation, as well as a constant interpretation, such as “value from sensor B,”
“whether the left side is off the table,” “whether motor A should go backwards.”
Because these variables are held steady, we can (given a live programming
environment) experiment with them. For example, we can move the robot so that its
left sensor crosses back and forth over the table’ edge, and watch the effect anywhere
in the program.

Just to remind ourselves that this orderly access to a dynamic process is not to be
taken for granted, consider some alternative frames for the same information.
Suppose we could look inside the computer’s CPU as the program ran. All the same
data values would pass through at various times, but since multiple quantities use the
same space, the effect is a complete jumble. Or imagine watching a LOGO or C
program execute. Perhaps the lines light up as they are executed, but this is hard to
make sense of as execution flashes by at incomprehensible speed. If we can see into
memory and watch the values of variables, we are doing better—but only to the
extent that the programmer has chosen to store relevant computational results in
variables with steady meanings (an issue we will return to in a later chapter). Almost
certainly there are important parts of the program’s computation that are not
reflected in variable values, but rather in other aspects of program state, such as
which clause of a conditional one is in, or the values of transiently evaluated
expressions.
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(a) ↓              (b)→

loop
if sa <= 60 and sb <= 60

then
setmotorA(‘on)
setmotorB(‘onreverse)

otherwise
if sa > 60

then setmotorA(‘on)
otherwise setmotorA(‘off)

if sb > 60
then setmotorB(‘on)
otherwise setmotorB(‘off)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Memory

  (no variables)

loop
set left_on_tbl to sa>60
set right_on_tbl to sb >60
set both_off to not left_on_tbl and not right_on_tbl
if both_off then

set output_A to ‘on
set output_B to ‘onreverse

otherwise
if left_on_tbl

then set output_A to ‘on
otherwise sety output_A to ‘off

if right_on_tbl
then set output_B to ‘on
otherwise set output_B to ‘off

setmotorA(output_A)
setmotorB(output_B)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Memory

left_on_tbl TRUE
output_A ON

right_on_tbl FALSE
output_B OFF

both_off FALSE

Fig. 6.Two procedural programs that compute the equivalent of the Flogo I “Table Explorer” program
(Fig. 3-1). Program (b) creates a steadier frame by following a dataflow style of coding, to an unusual

degree.

If the programmer has chosen to imitate a dataflow style of programming very
faithfully within the procedural language (as in Fig. 6b), then a memory display will
give us quite a lot of usable real-time information. However, there are still some
problems. First, it takes extra work to match up the variable’s value with the code that
set it. This is already a problem in Fig. 6 and it increases as the program gets bigger.
In a dataflow program we don’t have this problem, because data and computation are
overlaid. Second, variable values are only part of the story of this program’s
computation. The other part is control flow. To understand what this program is
doing, we need to be able to trace the pattern of flow of execution through the
program as external conditions change. Let us suppose that, in our hypothetical
programming environment, lines of code are highlighted whenever they are
executed, and furthermore the highlighting persists longer than the nanosecond it
actually took to execute, so we can see it. With practice we can learn to use this
information, but it still requires detective work, because we only see lines flickering
here and there, showing that they have been executed recently. We do not have a
stable, localized representation (in other words, a steady frame) for the actual path
that computation is following through the program.21 In Flogo I’s circuit-like form of
dataflow, this is less of an issue, because for components that are always on, there is
no control flow to worry about. Deciphering pulse pathways can be analogously
tricky, but the use of pulses in a Flogo I program is relatively compartmentalized
compared to the way control flows throughout a procedural program, so the problem
is usually smaller.

Beyond the level of program execution, Flogo I also provides a steady frame for
program development and testing, for reasons discussed earlier: the overlay of
computational results directly on the program; the immediate response to program
edits; and the localization of computational effects, reducing brittleness. A
particularly vivid demonstration of the steadiness of this frame was achieved using

                                                       
21 Whether such a representation is possible in principle—perhaps in some oscilloscope-like
fashion—is an interesting question that will not be pursued here.
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the video record of the computer screen during a 40-minute programming session in
which two boys worked on a robot behavior. Speeding up the video by a factor of 40,
one can see the program gradually take shape: a central core, then various offshoots,
some of which are deleted, others that remain. The fact that this video is intelligible at
all at high speed says something very important about the work that Flogo I’s
representation is accomplishing in holding the boys’ project steady for them while
they think about it and tinker with it.

To summarize: for real-time applications such as the Table Explorer, Flogo I’s live
rendition of circuit-style dataflow makes the dynamics of program behavior more
accessible, by providing a steady representational frame for the variation of program
data, for the relationship between program code and computational effects, and for
the development process of the program as a whole. These factors combine to make
real-time programming in Flogo I a bit less like archery and a bit more like wielding a
garden hose.

Let me be clear, however, that the foregoing is not meant as a case for dataflow
programming. Rather, it is an analysis of one specific strength of dataflow
representations, which must of course be weighed along with other considerations.
Not all real-time programming problems match up with Flogo I’s strengths so well.
As the next section will explain, when the robot is expected to manage a repertoire of
behaviors, Flogo I’s steadiness can become too much of a good thing.

REFLECTIONS ON LANGUAGE DESIGN: LIMITS OF EXPRESSIVITY IN FLOGO I

Fig. 7: A Flogo I program to control a Lego bird.

Fig. 7 shows the largest program written in Flogo I to date. Written by an
undergraduate project assistant, it controls a model Lego bird equipped with two
distance sensors in place of eyes, and motors and sensors to help it turn in place, and
lower and raise its neck in a pecking motion. In the absence of stimulation, the bird
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scans its environment lazily, turning for a while, resting for a while. When a nearby
object, such as a person, is detected, the bird now tracks the object’s movement,
endeavoring to continue facing toward it. If the object comes even closer—for
example, if one holds out one’s hand as though offering birdseed—the bird makes a
pecking motion.

Without going into the details of the code, one can see a general flow: from the
sensors at left, branching out to four boxed subdiagrams, then cross-fanning into two
large switching boxes which in turn drive the motor outputs. The four major
subdiagrams include one each for the bird’s three distinct behaviors—scanning,
tracking, and pecking—plus, at bottom, a control module with the task of deciding
which of the three behaviors to deploy. What is noteworthy in this program is that, as
a corollary of Flogo I’s “always on” computational model, the circuitry for all three
behaviors is, indeed, always on, and always generating motor outputs. The outputs
actually used are selected downstream, at which point the rest are discarded.

The general pattern of modules that remain active even as they gain and lose control
through downstream selection is a recurring and well-supported theme in the
behavioral sciences and in artificial intelligence (Fodor, 1983; Minsky, 1986; Brooks,
1991). However, a language in which downstream selection is the only way of
shifting control among different circuits can create difficulties for novice
programmers, and for programmers attempting to maintain simplicity and
understandability as their programs grow.

Distinguishing behaviors: the MOTORS-SHARE device

As this issue gradually came into focus, I came to see the Table Explorer example (see
Figs. 3-1 and 3-2) as a case in point. The second Tabletop Explorer program is best
thought of as performing two distinct behaviors: usually it (i) moves forward, using
wheel inhibition to turn away from the table’s edge; but if both sensors go off the
table, it (ii) reverses one wheel in order to turn away from the edge. The program in
Fig. 3-2 actually makes this harder to see, because the two behaviors are
superimposed on the same diagram. The clarity of Fig. 3-1 is gone, even though the
behavior it describes is still a large part of what the program does. But how could one
use Flogo I to make the organization clearer? One option is to organize it like the
Birdie program, above, but this seems like an inordinate amount of wiring for such a
simple program.

Fig. 7: (a) The Tabletop explorer program reorganized using MOTORS-SHARE output arbitration
devices. The lower MOTORS-SHARE is currently active (darker), because its priority input is higher.

(b) an imaginary program that seems to express the idea more directly.
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To create another option, we developed a new component, called a MOTORS-
SHARE. Rather than converging on a single switching point, the motor outputs of
each behavior terminate at its own MOTORS-SHARE object, along with a number
representing the behavior’s current priority. At each moment, the MOTORS-SHARE
with the highest current priority is the one that actually drives the motors.

The potential use of this device for program organization is shown in the revised
Table Explorer program in Fig. 7(a). The two behaviors are now separated, as in the
Birdie program, but some of the wiring complexity of the Birdie problem is avoided.
On the input side, sensory information is made available via named nodes. On the
output side, MOTORS-SHAREs obviate the need for wires to fan in. Still, this device
is not completely successful in clarifying the intent of the program. The priority
scheme, in particular, seems rather distant from what one would really like to say,
which is: use this circuitry when both the wheels are off the table, and that circuitry
when they aren’t. Fig 7b offers an impressionistic rendering of what one would like
the language to be able to do.

Expressing sequence: the count-and-beep problem

A similar weakness in the language was suggested by children’s struggles with a
morning warm-up challenge problem in the second workshop. It read:

Count-and-beep challenge: Write a program to count how many times the room lights
are turned off, and then beep that many times.

This puzzle stumped not only the children, but also the adults in the room,
experienced programmers though they were. Everyone was able to count dimmings
of the lights. But once people had written that part, a pronounced hesitancy took
over. The complexity of a pulse loop with a counter was surely a big part of the
problem, but I believe there was another issue as well. Once the light dimmings have
been counted, that part of the program should be over. Yet the counting circuitry is
still there. In this case it does no harm to have it there, but still, the solution (Fig. 8a) is
counterintuitive in that it requires the connection of two circuits that are active at
different times. Programmers seemed at a loss as to how to say: first use this circuit,
then that one. Once again, an imaginary program can be written that seems to get at
this more directly (Fig. 8b).

 
Fig. 8: Real and imaginary solutions to the count-beep problem.

How, then, can one make one part of a diagram active at some times, and another
part at other times, while making the overall pattern of control clear? This has been a
perennial struggle for designers of dataflow languages. LabView offers patented
“structured dataflow” constructs (Kodosky et al., 1991), which work by enclosing
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alternative subcircuits in a box with a fixed set of inputs and outputs, with
mechanisms to establish which alternative is active at any time. The drawback of this
approach is that it creates hidden code. Only one subcircuit can be seen at a time, so
that a printout of a diagram does not fully represent it, and on-screen reading
requires mouse work to page through all such constructs.

        
Fig. 9. Two approaches to diagram control. (a) LabView encloses alternative wirings in boxes. (b)
MindRover offers colored wires, active only during specific execution modes. Note mode indicator

along left edge, and mode selector device at top center of diagram.

The robot programming game MindRover (www.cognitoy.com) offers a novel
approach based on the activation and deactivation of wires. A palette of colors is
available to designate alternative “modes” of diagram execution. Gray wires are
always active, but colored wires are active only when the diagram is in the mode of
the same color. Used with care, these low-level materials can produce readable
programs. However, superimposing wirings makes any individual wiring harder to
pick out, and does not easily express the intent of the high-level control.

In comparison to the available visual methods, textual control structures, of the kind
suggested by the imaginary programs 7b and 8b, offer some appealing advantages:

- They gather their constituent parts into a coherent compound entity.
(LabView’s boxes come closest in this respect.)

- They can express top-down as well as bottom-up control. (Flogo’s motors-
share and MindRover’s mode switches are bottom up devices, embedded
within in the circuitry they govern).

- In some cases, at least, they describe the programmer’s intent clearly and
straightforwardly.

The irony with Flogo I is that text-based procedural control structures actually exist in
the language, but can only be used with text. Flogo I’s diagrams and text each
contribute important capabilities for defining process. But their segregation from each
other leaves the language with restricted expressivity.
Unification of the expressive powers of Flogo I’s text and diagrams thus became the
driving design problem. There are three options:

1. Attempt to achieve the function and clarity of textual control constructs in a
purely diagrammatic mode.
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2. In addition to embedding of statements in circuits, which is straightforward,
allow embedding of circuits within textual constructs, as in the Figs. 7b and
8b.

3. Make a textual equivalent of Flogo I’s dataflow capabilities, and integrate
these with more traditional procedural constructs.

Option #1 seemed the least attractive, being the most well trodden path. Option #2
might work, although it poses some puzzling challenges, such as how best to edit
such a chimera, and how to maintain visual integrity of textual constructs across large
expanses of diagram space. Option 3 began to seem potentially the
cleanest—provided that the liveness of Flogo I could somehow be preserved in a
textual language. This is what Flogo II sets out to do.

WHERE DID FLOGO I GET TO?

Let us briefly review the project’s status at this turning point. Recall that Flogo I
sought to advance robotics programming for learners by pursuing three design
objectives.

1. Open up the black box of the executing robotics program. Flogo I does indeed make
execution visible as the program runs, and allows user intervention and program
editing at the same time. It is thus the first robotics language of any complexity to run
fully “live.” Moreover, this liveness was observed to play a central role in children’s
processes of learning and of program development.

2. Support the development of larger projects and open toolsets. Here, status is mixed. Flogo
I’s encapsulation model succeeded in supporting the convenient construction of a
wide assortment of useful interactive components. Although encapsulation was not
tested with children (this would require a longer engagement, as well as some further
software development), Flogo I’s ability to encapsulate by gradual steps seems likely
to be helpful to learners. However, Flogo I did not immediately promote a major
advance in the complexity of student projects. In a four-day workshop, children used
Flogo I to build the same simple action patterns that one sees with other languages.
Moreover, programs built by advanced users suggest that Flogo lacks adequate
constructs for high-level control of circuitry—a barrier to the development of larger
projects. In short, objective #2 seems to be held back by objective #3.

3. Provide better means of managing the concurrent processes involved in robotics programs.
Flogo I integrates procedural text within visual dataflow structures, but not the other
way around. To meet the needs of both novices and experts, a more thorough
unification of the two paradigms seems necessary.

In addition, several new themes emerged from the piloting work:

- Children’s engagement with a live, real-time programming environment
brings action knowledge into the sphere of programming.

- Tinkerability is an important goal in language design.

- The difference between pulse and data is an important distinction that appears
to resonate with process coordination difficulties noted by other researchers.

- The notion of a steady frame helps to clarify the role of Flogo I’s language
representations in helping users cope with the dynamics of runtime execution,
and with exploratory program development.

This project has not exhausted the potential of Flogo I. Further work could have taken
it much farther, and the problems identified might have been ameliorated. Both
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children and adults who used Flogo I have told me that they miss it and would have
liked to see work on it continue. What may not have come through in the discussion
so far is the character and enjoyability of Flogo I as an environment: the appeal of
each visual component, the spacious feeling of the editing grid, the ease of exploring
the repertoire of objects. While Flogo II preserves many of the important qualities of
Flogo I, it cannot be said to supersede it entirely.
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Chapter 5. The Design and Piloting of Flogo II

Flogo II is an integrated response to two design objectives:
• how can we design building blocks for process control and coordination that

maximize, in combination, intelligibility, learnability, and the expressive
power needed for real-time applications?

• how can the liveness of a language like Flogo I be reproduced in a textual
language?

A user of Flogo II experiences its response to both questions as a coherent unity. But
for the sake of an orderly exposition, I will present one answer at a time. It is
instructive to begin by looking at Flogo II in a way that its users rarely it: as inert
words on a page.

FLOGO II’S COMPUTATIONAL PARADIGM

A procedural statement describes a computational action that, once initiated, will (at
least in principle) come to completion. Exploiting this property, the procedural
paradigm of programming works by arranging statements in sequence. The
completion of one statement leads to the initiation of the next.

A declarative statement describes a rule, relationship, or ongoing activity that pertains
or proceeds over an indefinite span of time. Any time bounds on a declarative
statement must be imposed from outside the statement itself. Declarative statements
are naturally parallel (if they weren’t, declarative programs would be one-liners!).

Although absolutely pure procedural or declarative languages are uncommon, a
language’s primary affiliation is usually clear22. Spreadsheets are declarative, though
they allow procedural macros. C and Java, though their event handling systems are
arguably declarative, are clearly procedural. So is Cricket LOGO, even though it has a
declarative WHEN clause that monitors a specific condition throughout program
execution. Prolog is declarative. So are dataflow diagrams.

Flogo II is a textual language in which declarative and procedural means of
specifying computation are integrated within a single unified paradigm. I say
“unified paradigm” because, in the literature, paradigm “integration” often refers to
programming environments in which one paradigm is structurally “on top” of the
other, and its constructs cannot be subsumed within constructs of the subordinate
paradigm (e.g. Cox & Smedley, 2000; Erwig&Meyer, 1995; Ibrahim, 1998). Thus one
does not have free access to both paradigms in building up a multi-leveled
computational structure. Flogo I itself is an example of such an integration, with
declarative diagrams on top and procedural text playing the subordinate role. As in
Flogo I, the two paradigms often occupy distinct editing spaces as well.

In Flogo II, procedural and declarative constructs reside in the same editing space,
and each kind of statement can be nested within the other kind. Indeed, one
sometimes finds multiple layers of nesting within a single line of code. Such a
                                                       
22 But not always. For example, concurrent constraint programming as embodied in ToonTalk
(Kahn, 1996) seems to define routines procedurally but invoke them declaratively. The
procedural/declarative distinction, rather like the analog/digital distinction, has a tendency to
blur as one looks more and more closely at the phenomenon.
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program implicitly entails the activity of many threads of execution, whose comings
and goings are coordinated by the language’s control constructs: I call this structured
concurrency.

In Flogo II, the procedural statements are called steps and the declarative statements
are called processes. The use of the term “process” here is based on its natural
language sense of “stuff that goes on,” and not in the computer science sense of a
single thread of execution. A Flogo II process may entail any number of execution
threads; what makes it a process is that it continues until somebody stops it.

Here is a Flogo II version of the familiar “Table Explorer” program from chapters 3
and 4. All statements in this example are declarative, or, in Flogo II’s terminology,
process statements. (The arrows and labels at right are not part of the program).

LEFT_ON: SENSOR(‘A) > 60
RIGHT_ON: SENSOR(‘B) > 60
BOTH_OFF: not RIGHT_ON and not LEFT_ON
WHEN BOTH_OFF

MOTORA(‘on,’thatway) A
OTHERWISE

WHEN LEFT_ON MOTORA(‘on)    B
WHEN RIGHT_ON MOTORB(‘on)

The first three lines show how dataflow programming can be achieved textually,
using variable names in place of wires. The variables LEFT_ON and RIGHT_ON are
constantly updated to true or false depending on their corresponding sensor
readings. The variable BOTH_OFF, in turn, is constantly updated based on their latest
values. The WHEN/OTHERWISE construct is a higher-level control construct of the
sort we were seeking in the last chapter. When both sensors are off the table, it makes
statement A active and statements B inactive; when either or both sensors are on the
table, statement A stops and statements B resume. Because this is a declarative
construct, it does not perform a one-shot decision, but rather continues to switch back
and forth as needed, as long as the program runs.

Integration of steps and processes

In Flogo II, step statements and process statements can be combined in a single
program. However, for the combination to be meaningful, certain rules must be
observed. As I mentioned earlier, a series (or “block”) of step statements has a natural
meaning, viz., that the statements should be executed one after another. A series of
process statements is also meaningful: it described processes to be performed
simultaneously. However, a mixed block containing steps and processes is not
considered meaningful in Flogo II. Steps may appear only in a collection of steps, and
processes only in a collection of processes. To include a step (or series of steps) among
processes, or vice versa, one must wrap it in a construct that enables it to fit in. To see
how this works, consider this Flogo II version of the little count-beep challenge from
the previous chapter:

let count be 0
until sensor(‘B) becomes > 50

EVERY TIME SENSOR(‘A) BECOMES < 25
set count to count + 1

repeat count
beep()
wait 1 second
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Unlike the previous program, this one is mostly made of steps. First we make a
variable count and set it to zero. Next (until…) we count dimmings until a switch is
clicked. Finally we make the beeps. Looking more closely, we see that within the until
statement is a process statement: EVERY TIME, etc. (Note the Flogo II convention of
presenting processes in uppercase and steps in lowercase). The EVERY TIME
statement describes a rule, which can be in force for any period of time. That period
of time is here established by the until construct. Thus, until converts a process into a
step by putting a time bound around it.

Conversely, the EVERY TIME statement contains a step (set count to count + 1). By
establishing the instant or instants at which a step should be initiated, EVERY
TIME… creates a process based on that step.

These examples illustrate the basic principles by which Flogo constructs integrate
steps and processes. To include a process23 among steps, establish a way for it to
terminate. These constructs all build a step from a process:

for 5 seconds …
for 1 tenth …
as long as light < threshold …
until light >= threshold … (simple converse of as long as)
until light becomes >= threshold … (this means something a little different)

(In Flogo II the keyword “becomes” is used to signify the crossing of a threshold,
much as the exclamation mark is used in Flogo I.)

To include a step among processes, specify at what point or points it should be
initiated. These constructs all build a process from a step:

EVERY 6 SECONDS …
EVERY TIME LIGHT BECOMES >= threshold …
AS SOON AS LIGHT BECOMES >= threshold

(means the same as EVERY TIME)
REPEATEDLY … (do step(s) over and over)
ON START … (do step(s) each time process starts up)
ON STOP … (do each time process stops)

In addition to these “cross-paradigm” constructs, Flogo II includes within-paradigm
control constructs such as WHEN for processes, if and repeat for steps, and a do/with
construct that forms a single step from the parallel execution of two or more blocks of
steps.

Encapsulation

To encapsulate code in Flogo II, one currently writes a definition. Procedures are
defined in a fairly conventional way, using DEFINE STEP, e.g.

define step nbeeps (n)
repeat n

beep
wait 1 second

                                                       
23 All of these principles apply equally to compound statements. A block of processes is itself a
process, and a block of steps is itself a step.
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Functions that return results are defined in the same manner. When a defined step
includes multiple simultaneous activities, returning a result also terminates those
activities. For example, this little program waits, for a limited time, for the user to
press sensor a or b, and makes a special motion while waiting:

define step wait_for_touch ()
for 10 seconds

REPEATEDLY
for 5 tenths motora(‘on,’thisway)

for 2 tenths motora(‘on,'thatway)
AS SOON AS SENSOR(‘A) BECOMES > 50

return 'a
AS SOON AS SENSOR('B) BECOMES > 50

return ‘b
return 'timeout

Processes are defined similarly. Here is a simple example

DEFINE PROCESS TURNLEFT (SPEED)
MOTOR1(‘ON,’THISWAY,’SPEED)
MOTOR2(‘ON,’THATWAY,’SPEED)

As is always the case in blocks of process statements, the order of the MOTOR1 and
MOTOR2 statements does not matter. Note that the arguments to a process call are
not simply single values but continuously updated streams of values. Thus the
TURNLEFT process, if invoked like this..

TURNLEFT( SENSORA() / 5 )

 …will cause the robot to turn at a speed that covaries with a sensor value.

Here is a more advanced example of process definition, in which an output stream is
indicated by use of the special variable OUTPUT24:

DEFINE PROCESS CUMULATIVE_MAXIMUM (SIGNAL)
ON START set OUTPUT to SIGNAL
OUTPUT: max(OUTPUT, SIGNAL)

(Incidentally, the circular dataflow in the last line causes no trouble. Each updated
value of OUTPUT will be derived from its predecessor). Invoking a defined process is
similar to class instantiation in object-oriented languages, in the sense that the
invocation will have its own persistent set of variables and other state information.

I mentioned that writing a definition is the current way to encapsulate code. A
smoother transition from working code to defined routine, as shown for Flogo I, is
feasible but has not been fully implemented. Despite this, children have used
definitions effectively in Flogo II.25

Potential expansions of the language

In the current prototype, process invocations are attached to their place of invocation
in the program. For processes to become Flogo II’s full answer to objects, what is
needed is the ability to create and store them as data—a fairly straightforward

                                                       
24 Means for producing multiple outputs have been considered but not implemented. One idea
would be for variables within the process call to be accessible by name from outside the call.
25 Flogo II does offer one helpful shortcut in working with subroutines: the ability to edit an
existing definition via an invocation, rather than going back to the definition itself. The
meaning of this will become clearer in the next section.
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extension of the current language. In their capacity for independent activity,
processes also resemble actors (Hewitt, 1979, Lieberman, 1987).

Allowing processes to be manipulated as data objects is just one of many expansions
that would be needed to complete Flogo II. To facilitate message passing between
processes, I would also add event streams, analogous to Flogo I’s pulse wires, as a
complement to the current data streams (Flogo II’s events would be more than pure
pulses, carrying information with them that could be interpreted as messages). Data
structures are missing as well. Graphics and interface construction tools are less
developed in Flogo II than in Flogo I.

Setting aside the addition of new features and facilities, Flogo II would need, in order
to progress farther, more rigorous formalization at many levels. As is appropriate in
an experimental language, data types, syntax, and execution model are all defined
provisionally, to the degree of precision necessary to realize and test the core
innovation, which is Flogo II’s unification of procedural and declarative process
description.

Related Work

Partial precedent for Flogo II’s paradigm unification can be found in two languages,
Occam (SGS-Thompson Microelectronics, 1990) and Eden (Breitinger et al., 1997).
Occam was designed to leverage the power of networks of dynamically allocated
processors—the “transputer” computer architecture that was expected to flourish in
the 1990’s, but did not. Occam programs allow two kinds of blocks, labeled SEQ and
PAR, which contain statements to be executed in sequence or in parallel, respectively.
These block structures are mutually and recursively nestable, and thus unified in the
same sense that Flogo II unifies procedural and declarative statements. In Occam,
however, all statements are procedural. Occam’s PAR blocks achieve roughly the
same computational capabilities as Flogo II’s process blocks, but in a more low-level
form.

Like Flogo II, Occam offers a straightforward method of encapsulating parallel
computation. A process is defined with a parameter list and launched through a
simple call, the way one defines and calls a procedure in other languages. As in Flogo
II, calling a process is a form of instantiation, and a program can launch multiple
instances of the same process definition, as needed, at run time26. This is more flexible
than the statically arranged processes one finds in visual dataflow languages such as
LabView and Flogo I.

Occam processes communicate through “channels,” which are somewhat unwieldy
low-level entities requiring lockstep coordination between processes. Flogo II’s
“streams” perform much the same function, but, like Flogo I’s wires, they eschew the
tracking of individual values, instead simply updating the stream as data becomes
available. By de-emphasizing low-level predictability, Flogo II provides a simpler and
more open model of data sharing in a multiprocess program.

Overall, Occam and Flogo II generate similar functionality spaces (assuming, now, a
more complete Flogo II!). Because both offer unlimited mutual subsumption of
parallel and sequential processing, proficient programmers in each language would
be likely to carve up many problems similarly. However, the computational ideas
that the two languages share are presented by Flogo II at a higher level, in a form that
is often more convenient, and likely to be more approachable by learners.

                                                       
26 A similar encapsulation model is found in the research language Eden (Breitinger et al.,
1997).
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FLOGO II AS A LIVE PROGRAMMING ENVIRONMENT

Flogo II’s unified paradigm provides the flexible expression of control that was
lacking in Flogo I. Equally important is the fact that this was achieved without
sacrificing the liveness that proved to be a strength of Flogo I. This section describes
the “live text” environment of Flogo II, together with some of the simple animation
tools that were used by children to build games, during the first phase of Flogo II
piloting. Flogo II’s liveness is characterized in terms of several “abilities” of the
environment: editability, controllability, visibility, browsability and growability.

Editability and controllability

Editability refers to the essential property that Flogo II programs can be edited as they
run. To edit a portion of the program, one simply selects it and begins editing it in
place. The part to be edited may be any syntactically coherent program segment,
ranging from a single constant or token to a long series of statements. The portion
being edited is temporarily enclosed in a box, to show that it is provisional. If the user
has chosen to leave the edited construct running while editing it, it will run on the
basis of its original text, until the editing operation is completed. When the user
presses <enter> or clicks elsewhere on the screen, the text is parsed to ensure that it
conforms to the syntactic requirements of the selected program segment. If it doesn’t,
an error message is displayed and the user must either continue editing or cancel the
operation. If the new text is acceptable, it replaces the original selection and becomes
part of the running program.

(a) (d)

(b) (e)

(c) (f)

Fig. 1. Examples of Flogo II editing. (a) Click to insert placeholder statement in program; (b)
edit placeholder; (c) Once editing is committed, edit boundary disappears and a statement
control appears; (d) statement has been turned on and a portion has been selected for further
editing; (e) during editing, statement continues to function in original form (in this case,
beeping every 3 seconds); (f) new code takes effect once committed.

New statements or other syntactic units are easily inserted as well. Chunks of code
can be moved around in drag-and-drop fashion. In each editing operation, the editor
will accept only well-formed instances of the required syntactic unit. Where a
syntactic unit has not been filled in the, system provides a “dummy” construct that
displays an appropriate prompt (e.g. <<time unit>>). In some contexts, one can select
from a menu of allowable options (expansion of this recently added feature would
probably be helpful to beginners).

DiSessa (1997b) offered the term “pokability” to describe the ability to run any
program fragment selectively, as one is reading or writing a program. Pokability of
various flavors can now be found in many educational programming environments
(e.g. Boxer, Squeak/eToys, Visual AgenTalk, Alice), as well as some professional ones
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(many LISP environments, for example). Flogo II programs are pokable, but also
include additional kinds of controls enabling the programmer to determine which
parts of the program should be “live” at any time.

Fig. 2: a procedural statement can be “poked,” despite the fact that the enclosing construct is
incomplete.

Procedural statements in Flogo II appear with a circular control next to them; clicking
the control executes the statement immediately (Fig. 2). (Shift-clicking executes the
statement followed by all remaining statements in the same block). Once accepted by
the editor, process statements appear with a square control, allowing the process
statement to be turned on or off. These controls have two different behaviors. For top-
level statements, which are free to be on or not, the controls function like switches:
clicking once turns the statement on, clicking again turns it off. Process statements
that are nested within other constructs, on the other hand, have a proper state that is
dictated by the state of the enclosing construct. For these statements, the control box
allows the user to make a temporary exception—turning on a statement that should
be off, or vice versa—but only for as long as the mouse is held down. In Fig. 3 this
feature is used to test the SAY command while the condition that normally turns it on
is not met.

Fig. 3: Temporarily activating a process statement by pressing its control square.

Visibility

Flogo II illustrates a number of ways that program state can be reflected in the body
of the program. The guiding principle is to associate each aspect of program state as
directly as possible with the unit of code with which it is associated. If one follows
this principle far enough, a qualitative change in the nature of a textual program is
achieved. Rather than a set of instructions to be read and acted on by some other
entity (a computer), the program feels and acts more like a self-contained device—a
machine made of text.

The following elements of program state can be rendered live in the Flogo II
environment:

1. Execution status. Process statements are dimmed when inactive, but shown in
high contrast when running. The execution control next to each process
statement also lights up while it runs. Step statements and their controls also
light up while they are executed. Highlighting of very fast steps is prolonged
for a moment to ensure visibility.

2. Variable values. Two kinds of statements establish variables in Flogo II:
variable declaration with colon syntax, and the less-used let statement. Each
displays the variable’s current value directly within the statement.
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3. Expression values. The current value of any expression can be displayed
beneath it in a thermometer display. (In the context of a step or an inactive
process, “current value” means the value returned when the expression was
last evaluated). In Flogo II terminology, a “thermometer” is any long, thin,
horizontal information display that appears beneath a program clause. The
actual display may be a varying-length bar of the kind usually called a
“thermometer,” or some other graphic rendition, or small text extended by a
simple bar to show what clause it applies to. What thermometers have in
common is their shape, which minimizes disruption of textual structure, and a
scalable format allowing them to line up precisely with the text above them.
Thermometers for nested expressions also stack up readably.

4. Control construct state. Control construct progress can also be monitored
using thermometers. In time-based constructs such as for 6 tenths, or every 5
seconds, a thermometer shows the passing of the specified time period (Fig.
4). The repeat statement shows its progress by filling in a series of dots, one
per iteration (for large numbers of iterations, the representation switches to a
continuous line). This can be an important visual cue when loops iterate very
quickly, because rapidly repeated execution is not discriminable in the
highlighting of steps.. When and while constructs do not require custom
thermometers: if desired one can simply monitor the condition as a normal
expression. A custom thermometer for BECOMES clauses, showing the test
value varying in relation to the threshold value, has been designed but not
implemented.

Fig. 4: Control construct monitoring. This repeat statement is in its third iteration.
The lower for statement is halfway through its 1.5-second interval.

Browsability and Growability

A live text program has a lot to show. To help the programmer find and focus on
information of interest, the program must be browsable. A simple browsability
feature in Flogo II is the control of thermometer displays. Thermometers can be
revealed or concealed with a single click on the corresponding program clause. The
other is the ability to open or close subroutine invocations (whether of the step or
process variety) at their point of invocation in the code. Because Flogo II subroutine
calls are distinct, allocated instances (and not, for example, passing phenomena on a
stack), they can be examined not only during their execution but before or after. This
can be useful with steps; for example, Flogo II’s subroutine browsing facility yields an
unusually clear trace of the activity of a recursive function (Fig. 5).

Subroutines are a good way to keep programs readable, but the usual tradeoff, when
reading code, is the extra effort it takes to look up a subroutine definition. In Flogo II
the invocation is available right where it happens. Not only that, the subroutine code
is live, and one can watch it run just like any other part of the program (Fig. 6).
Moreover, the invocation is editable: any change in the invocation is immediately
propagated back to the definition, and to all other invocations in the program.
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Fig. 5: A recursive function call opened up one level deep (above), and to its full depth (below).

Fig. 6: This program has two separate instances of the defined process obey_keys. (The
definition, at top, is collapsed). The second instance, controlling the character ‘pirate, is
shown open. As the up arrow is pressed, the pirate moves up quickly while the ‘cynthia
character moves up slowly. The line SHOW(‘cynthia,DIR) has the effect of making Cynthia
always look toward the pirate. This works because the image repertoire includes eight face
images, each named for a compass direction. The value of DIR can thus be used to specify
the appearance of the character.

The reader may wonder whether Flogo’s system of allocated instances is inherently
inefficient. Certainly it takes more memory than the standard practice of reusing stack
space—a trade-off that is not that costly in age of abundant RAM. However, from the
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point of view of time-efficiency, Flogo II does as well as, if not better than, a stack-
based language. The key is growability, that is, the fact that a Flogo II program’s
memory footprint never shrinks, but grows as needed to accommodate computation.
It is important to clarify that Flogo II allocates a distinct instance not for every time
that a subroutine is invoked, but rather for every place it is invoked. Should the
program ever re-execute that piece of code, the previously allocated instance will be
available for re-use. For example, if the recursive factorial program were embedded
in a loop, each iteration would re-use the subroutine frames left over from the
previous time around. Any time the argument exceeded the previous maximum, the
chain of instances would be extended to accommodate it. User browsing can also
trigger Instantiation, since the user is allowed to inspect any subroutine call even
before it has executed. Creating an instance does take some time (on the scale of
micro- to milliseconds), but it is a comparatively rare event.27

Sample project: BoxTower

To illustrate some of the power of Flogo II’s dual ontology of steps and processes, and
some of the possibilities of process encapsulation, a more elaborate programming
project is briefly presented here. The “boxtower” project is not a complete computer
game but provides an interesting and colorful dynamic environment on which a
number of interesting games might be built. The program is far more advanced than
anything written by the pilot group. Moreover, it uses capabilities (declarative shape
graphics) added to the language after piloting ended. The example may be of help to
the reader in gaining a qualitative sense of how processes work, and what they can
express. In particular, having seen how Flogo II handles a familiar recursive step-
based algorithm (factorial), it is instructive to ask: what would a recursive process
look like, and what might it accomplish?

Fig. 7: BOXTOWER project beginnings: a “doughnut” driven by arrow keys.

We begin with a small program in which a small gray doughnut shape can be moved
around within a bounded square area, under the control of the arrow keys (Fig. 7).
Arrow key control is expressed differently here than in previous examples. Two
processes, named “fax” (follow arrows X) and “fay” (follow arrows Y), each monitor
a pair of arrow keys and output a stream of numbers based on arrow key activity. The
code for “fax” is shown below. Note that this approach, unlike the OBEY_KEYS
process illustrated earlier, permits diagonal movement, because X and Y coordinates
are maintained separately.

                                                       
27 A full-featured descendant of Flogo II should probably allow advanced users to specify
stack-based computation in some cases, e.g. deep recursive calls that are infrequently
performed. But it may be appropriate for stack-based subroutine invocation to be a considered
a somewhat specialized efficiency measure, as tail-recursion is now.
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DEFINE PROCESS FAX(startx)
OUTPUT: on start startx
WHEN left_arrow()

EVERY 1 hundredth
set OUTPUT to OUTPUT - 2
if OUTPUT < LEFT set OUTPUT to RIGHT   ; wrap-around motion

WHEN right_arrow()
EVERY 1 hundredth

set OUTPUT to OUTPUT + 2
if OUTPUT > RIGHT set OUTPUT to LEFT   ; wrap-around motion

Having established movement within a game frame, we can now add an interesting
responsive display, generated by this recursive process:

DEFINE PROCESS BOXTOWER(BOTTOM,LEFT,SIZE)
TOP: BOTTOM + SIZE
RIGHT: LEFT + SIZE
FILL: on resume choose('red,'blue,'green,'yellow) ; random color selection
RECT(TOP,LEFT,BOTTOM,RIGHT,'gray,PCT,FILL) ; as PCT increases, color fills

in
WHEN CY > TOP and SIZE > 8

MIDDLE: (LEFT + RIGHT) div 2
WHEN CX < MIDDLE

BOXTOWER(TOP,LEFT,MIDDLE - LEFT)
OTHERWISE

BOXTOWER(TOP,MIDDLE,RIGHT - MIDDLE)
START_TIME: on resume tenths_now()
AGE: tenths_now() - START_TIME   timing code for fill-in effect
PCT: min(100,AGE % (SIZE div 7))

This process definition has three sections. The first draws a square of size and
position specified by the process arguments. Each time the process resumes, the color
of the square is randomly reset. The middle section will make a recursive call if the
user-controlled doughnut shape is positioned somewhere above the drawn square. In
that case (and if boxes have not yet become too small), a half-size box will be drawn
above either the left or the right half of the current box, depending on the position of
the doughnut. The recursive calls will themselves make recursive calls, so the effect
will be a tower of ever-small boxes, rising to the level of the doughnut. As the user
moves the doughnut about, the tower of boxes follows along, always finding a way to
rise up to the doughnut’s position.

Fig. 8. Three snapshots of BOXTOWER interaction.
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The third part of the BOXTOWER subroutine adds additional dynamism to the
display. Each time a box reappears, it begins by being empty of color. As time passes,
the variable PCT increases, and the box gradually fills in. PCT is computed in a way
that makes smaller boxes fill in faster. (The % operator is like division, but returns a
whole-numbered percentage. For example, 4 % 8 returns 50.) The filling in of a box
might be made into a significant event in a game. Penalties or rewards depending on
box color would provide incentives for the player to stay over some boxes to give
them time to fill in, while moving off others before they can fill in.

Fig. 9. Snapshot of live program execution of BOXTOWER program. Note live nested
display of recursive calls.

As usual, the Flogo II programming environment provides live access to the running
program. Recursive process calls can be opened up, monitored, and intervened in.
For example, inactive BOXTOWER calls can be poked with the mouse, temporarily
turning on an additional square. Opening up such nested invocations becomes
visually unwieldy past about three levels deep, but one can imagine improvements to
subroutine browsing (optional visual stacking of nested calls, for example) that could
alleviate this.

Liveness and paradigm

In Chapter 4 we noted that conventional procedural languages make dubious
candidates for a live programming environment. Yet half of Flogo II is procedural:
how live, then, can Flogo II be? Procedural code in Flogo II is more live than in other
environments, because of two factors: the visual integration of program state with
program text, and Flogo II’s growable memory system. During program execution,
locations in a traditional procedural stack are constantly re-used for different
purposes. Seen from outside, their contents are a chaotic jumble. Flogo II’s growable
memory architecture assigns a single meaning to each memory location. Every
variable (global or local), every expression result has its own memory location. This
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creates a steady frame for program execution, and, consequently, a meaningful
dynamic display.

And yet, procedural code remains less live than declarative code. Much procedural
code spends most of its time in an inert state, waiting to be executed. When it does
run, its execution flashes by as part of a thread of execution that may jump around in
the program. Flogo II’s steady trace of procedural code is helpful for sorting out what
the procedural code is doing or has done. But when procedural code can be re-
expressed in declarative terms, a simpler real-time display often results. As we will
see, the visual reward of converting steps to process is an important characteristic of
Flogo II as a learning environment.
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Chapter 6: Flogo II Piloting and the Step/Process Distinction

Flogo II’s two major distinguishing features are (i) its commitment to a duality
between step- and process-based descriptions of computation; and (ii) its live
interface. This chapter explores some consequences of the step/process duality. The
following chapter considers the educational implications of live programming. To
begin with, however, I present a broad overview of how Flogo II was tested with
children. Some broad-brush impressions and judgments are included here. This will
set the context for the subsequent detailed discussion of the major educational themes
of this dissertation.

PILOTING OF FLOGO II

Flogo II was piloted with children in three phases28:

1. Afterschool Sessions
(a)A series of five three-hour afterschool sessions, attended by 12 fifth and
sixth graders. Activities were focused on the construction of games and other
interactive construction, using Flogo II’s sprite animation capabilities.

(b) Contemporaneously with (a), and similarly focused on game-making, a
series of seven two-hour afterschool sessions, attended by five boys in grades
7-8.

2. A week-long workshop at MIT lasting five days, with about four hours per
day devoted to robotics programming activities. The workshop was attended
by nine children aged 10-15, seven of whom had taken part in afternoon
sessions.

3. Follow-up programming sessions at MIT in which participants alternated
between research interviews with me, individually or in pairs, and “lab time”
supervised by an undergraduate assistant. Six children came at least once. I
gradually eliminated the “lab time” and narrowed the focus to three boys, two
of whom came for five sessions, and one for nine. All had previous Flogo II
experience, having attended either the afterschool sessions or the weeklong
workshop, or both.

Subjects

In all, 19 different children, aged 10-15, worked with Flogo II for an average of about
20 hours each. All participants were confident computer users, experienced with
word processing and media tools, and having some background in Microworlds
Logo. Three had in fact participated in Flogo I workshops two years earlier. None,
however, would be considered proficient in programming (by age-appropriate
standards) at the outset of these trials.

Several limitations of this participant group should be acknowledged. First, the group
was, at each stage, self-selected: We advertised the opportunity to participate, and

                                                       
28 Cynthia Solomon collaborated with me in organizing and running the Phase 1 afterschool
sessions and Phase 2 workshop. Katie Epmeier collaborated in Phase 1 teaching. Through all
three phases, undergraduate assistants Warren Chia, Sandra Galdamez, and Robert Kwok
handled videotaping and robot construction, and provided general support.



82

interested children (or families) applied. Second, and perhaps because of this, boys
outnumbered girls 4-2 in the interview group, and 14-5 overall. Racially, 5 out of 6 in
the interview group and 17 out of 19 overall were Caucasian. Though not necessarily
from wealthy families themselves, all participants were students at a wealthy and
prestigious private school in the Boston area. Moreover, many participants were
characterized by their teacher as “bright” in comparison to their classmates.

Since Flogo is ultimately intended for a much more diverse audience, diversity of the
testing pool is clearly high on the agenda for future work. However, the current
research question is not about broad trends in learning or performance, but about
important landmarks in an emerging intellectual domain. Thus it is reasonable to
expect that the observations reported here would not be invalidated, but rather
extended, or at most reframed, by work with a wider variety of children, as well as in
different contexts.

Data Collection

Video data was collected (by undergraduate assistants) during all three phases of
piloting. In the first two phases, with many children working at the same time, a
single camera (occasionally two) yields only a sample of the activity. Video segments
include such things as whole group discussions, children’s demonstrations and
explanations of their work, and selected episodes of children programming either on
their own or with the help of an adult. For Phase 3, the video record is fairly
complete.

In working with children, my role varied somewhat along the teacher/interviewer
axis. In the first two phases I tended to contribute more teaching and advice, and in
the third phase less. But in all cases, I attempted to elicit children’s own knowledge
and problem-solving capabilities, through questions, encouragement, and careful
modulation of my assistance. Ideas and advice were contributed in small increments,
to see what use the student might make of each new piece. Where I could see the
student confronting a multifaceted problem, I would sometimes offer a solution to
one part of the problem, in order to clear away complications and sharpen the
student’s engagement with what I judged to be the more interesting part, from the
point of view of this study. For example, when students floundered with syntax, I
would wait just long enough to get a sense of the syntactic difficulty, and then help
them come quickly to a legal formulation of their intended computational
actions—allowing them to work out for themselves whether these actions achieved
the effect they desired.

The video records are supplemented by saved student files (all phases) and screen
snapshots (Phase 3), and, for Phase 3, by notes taken during each session and fleshed
out immediately afterward, averaging two pages per session, describing the overall
flow of activity and highlighting points of interest.

These records provide a compendium of student work and activity within which
certain strands of thinking, learning, and media use can be traced. Discussions in
sections to follow will draw on this compendium.

Overview of Piloting Activities

To help set the stage for later in-depth discussion of issues and themes in the piloting
data, this section provides a brief overview of the three phases: what children did,
some broad impressions of what was learned, and how the software evolved. It
should be noted that in the foregoing sections Flogo II has been presented in the form
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that it reached toward the end of the study. At the beginning of piloting the language
had only a subset of the current features, and a large superset of the current bugs.

Phase 1: Afterschool sessions

One of the discoveries of Phase 1 was the strong potential of Flogo II as a game
programming environment for children. Flogo I had been used exclusively for
robotics, and Flogo II had been designed and developed with robotics and related
behavior-construction applications foremost in mind (and with some sense of an
eventual impact on programming-in-general). I included a few graphic effects, e.g.
the ability to program a stationary face to look around, for the sake of a few warm-up
activities prior to getting into robotics. Initially out of necessity (the robotics
component was behind schedule), but then out of a sense of emerging opportunity,
these onscreen projects grew to encompass all of Phase I. As game construction
possibilities emerged, and often in response to children’s requests, I gradually added
more game-related features to the language:

- sprite movement

- sound effects

- a structured priority system for resolving contradictory animation commands
(discussed below)

- Step-based alternatives to process-based animation commands (discussed
below)

- random functions

- a “nearest sprite” primitive

- a “warp” command for moving sprites instantly to a new location

- a coordinate system, with xcor, ycor, setx and sety primitives

- an option for sprites to “wrap around” when reaching an edge of the play area

- arrow key input primitives

As these capabilities came online, children, working in twos or threes, used them first
to make game fragments, and later (for some children) more complete games. By
“game fragment” I mean some sort of interesting animated effect or response. For
example, more than one group used the repertoire of images of their teacher to
program the teacher to make a series of silly faces and comments, or to react
amusingly to the approach of a monkey or a banana. Another child programmed a
sort of dance scene, in which four sprites began at the corners of the screen and then
gracefully converged in the center. Simple following behaviors, for example one
sprite following another sprite which follows the mouse, were also common. What
helped these sorts of effects crystallize into more game-like constructions was the
notion of a score variable. Once introduced to a few groups, this idea spread quickly.
A few lines of code around a score variable can easily become the nucleus of a game.
For example:

SCORE: {10}
Set SCORE to 0 ; used manually when restarting game
EVERY TIME distance(‘hero,’target) becomes < 25

Playsound(‘applause)
Set score to score + 3

Adapting this idea, some groups also added a “lives” variable to their games; in these
games, play would end when the player ran out of lives.
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Given that the available game primitives related mostly to movable sprites and their
spatial relationships, it is not surprising that most games were about chasing or being
chased. Nonetheless there was some interesting variety. For example:

- a game in which the player must repeatedly guide a lemon to a picture of the
teacher, while avoiding two other pursuing sprites. The target picture warps
to a new random position on the screen every five seconds. (Figure X).

- a two-player “takeaway” game in which a pirate (controlled by arrow keys)
and a monkey (controlled via the mouse) vie for possession of a bunch of
bananas.

- A large number of stationary objects are scattered about the screen. Every
couple seconds, a randomly selected one begins to move. The player earns
points by noticing which one is moving, and clicking it before it stops.

- A game in which one tries to maneuver a character around a central object
while being pursued by a swarm of monkeys. Points are awarded for each
complete circumnavigation. (Considerable work in this project went into
keeping the monkeys from clustering too tightly).

Another point in this creative space was demonstrated in a program written by
undergraduate assistants Warren Chia and Robert Kwok. It is a slot machine game in
which the player sets three sprites to cycling through a set of appearances. If two
sprites end up looking the same, the game’s host character responds encouragingly. If
all three are the same, the player wins.

The relative ease of adapting a language designed for robotics into a game
construction language helped to highlight the commonality of the programming
challenges in the two domains, and to clarify that the essential category is not robotics
programming so much as real-time programming.

Mitigating Flogo II’s success in Phase 1 was the roughness of this early prototype.
Bugs, absent features, and unhelpful feedback, frequently held students back. Not all
students were equally willing or able to persist in the face of these obstacles, without
substantial expert support. The language’s creator, being the only expert in the room,
was thus kept quite busy. A common theme in many student difficulties was Flogo
II’s formal distinction between steps and processes. Students were often unclear on
what control construct would meet their needs, and what kinds of statements were
allowed in different contexts. Flogo II provided inadequate support for
experimenting in this realm. Its handling of misplaced steps and processes was not
very clear. The editor would allow steps to placed in a process context, and vice
versa. Misplaced steps would simply never execute, and misplaced processes would,
confusingly, simply stay on. Meanwhile, no menu support was available to help
children find and experiment with the set of allowable constructs in each context. (We
handed out a paper-based language summary, but paper documentation is a very
abstract resource, especially at this age). Given the excellent use that children made of
menu facilities in Flogo I, this is a clearly a feature that should be added. Learning
and design challenges of the step/process distinction are discussed further in the next
chapter.

Phase I also revealed a difference between the younger (age 10-12) and older (age 13-
15) groups of children. Broadly speaking, children in the younger group approached
programming more naïvely. When confronted with the challenge of producing some
behavior, their available options were either (i) to apply a familiar programming
pattern, with some small adaptation, (for example, to maintain a “lives” variable by
adapting code for a “score” variable) or (ii) to ask an adult for the “right way” to
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express it. An important third option, (iii) experimenting with available primitives to
see what develops (i.e. tinkering) was not fully available, due to the incompleteness of
the prototype. The older group, meanwhile, added a fourth approach: (iv)
strategically combining known techniques in order to engineer the desired behavior29.
This problem-solving orientation and ability put the older group in a much better
position to achieve interesting new effects with the language, and gave them a
different kind of ownership of their work. As a result, our sense was that the
afterschool sessions for the older kids were, in general, more successful than those for
the younger children, and that the prototype, in its current form, is a better fit for the
older group. There remain, however, ample grounds for optimism that Flogo II
programming could be brought solidly within reach of younger children through
further development of the environment, and especially of features, such as menu-
based editing, that support a tinkering approach.

Phase 2: Robotics workshop

Phase 2 brought nine children aged 10-15—seven afterschool participants and two
new recruits—to MIT for five half-days of robotics programming. To help keep the
focus on programming, we built robotic vehicles (from LEGO bricks) in advance, and
provided them to participants. In place of the cricket controllers used with Flogo I, we
now used the Media Lab’s Tower technology (Mikhak, Lyon, & Gorton, 2002), which
allows easier communications with the desktop via a direct cable link, faster data
updates, and a larger number of sensors and motors.

Following the model of the second Flogo I workshop two years earlier, I offered the
children a series of robotics programming challenges, initially very simple, intended
to introduce techniques and build skills that children could then apply to more
imaginative projects. As it turned out, however, children were highly motivated
simply to work on the robotics challenges. In a whole-group discussion I floated the
idea of working toward some kind of art exhibit, or a set of theme-based
constructions, but these attempts to suggest a humanistic elaboration of pure robotics
were rebuffed: the children simply wanted to get their robots to behave effectively.
Moreover, they liked working from challenges rather than devising behaviors of their
own. This motivation remained strong all week, and the children, girls as well as
boys, not uncommonly turned down invitations to take a break and see a
demonstration of Media Lab technology, or play outside, in favor of continuing work
on their current robotics challenge.

In response to participant demand, I wrote more challenges on the wall each day, so
the final set was quite large. Each challenge was actually a small series of
subchallenges, designed to build up an interesting behavior by steps (Fig. 7). Working
mostly in pairs, participants would select a challenge and work on it until they were
ready to move on. Only the first two challenges were required of everyone. After that,
participants were free to select the ones that interested them. However, we worked to
recruit at least one group for each challenge, with the stated goal of building up
expertise of the group as a whole. At two or three points during the day, when
groups were ready, we would stop work for a demo session, in which teams would
demonstrate and explain their working solutions to the group. There were usually
three or four adults in the room, so adult support was considerably more available
than in the afterschool sessions.

                                                       
29 For an example, see the head-shaking program in Chapter 7
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 A. Program your robot to…
• move in a square
• move in a circle
• move in a bigger circle
• move in a spiral
• spell “MIT”

 B. Program your robot so that…
• a switch makes it stop or start
• another switch controls forward/backward
• touching a light sensor on the left side makes it

veer to the left
• touching a light sensor on the right side makes

it veer right
• one switch opens and closes the grabber
• finally: Using the sensors, control your robot

manually and make it go to a ball, pick it up,
and bring it back.

 C. Program your robot to…
• drive to the edge of the table and stop before

falling off.
• drive along the edge of the table
• drive around the table without falling off.

 D. Make your robot…

• turn until it detects something near it (i.e.,
within about 8”), using a distance sensor.

• keep turning toward the near thing (e.g., your
hand) as the thing moves.

• follow your hand all around the table

 E. Program your robot to…
• follow a black line
• search for a line and then follow it
• When there is a break in the line, get your

robot to search for where the line continues.

 F. Program your robot to…
• scan for the brightest light in any direction
• find the brightest light and turn toward it

 G. Program your robot to…
• avoid crashing through walls while moving
• navigate through a maze

 H. Program your robot to…
• push a ball forward and not lose it
• Steer a ball left (or right) and not lose it.

 I. Program your robot to…
• turn until it finds a graspable object
• approach the object and grab it.

Fig. 7: Phase 2 robotics challenges. Almost all were achieved by at least one of the 4-5 groups.

The robotics challenges progressed through four levels:
1. Fixed behaviors, such as drawing a shape or spelling a word. These involved no

use of sensors, but nonetheless posed some interesting algorithmic challenges.
For example, drawing a spiral requires iteration with a constantly increasing line
length (or decreasing turn angle, but no-one did it that way). A program to spell
a word is most helpfully organized into separate procedures for each letter.

2. User-controlled behaviors. The challenges use sensors, but only as user inputs, not
as environmental clues. Several groups wrote programs so that, under manual
control, their vehicles could be steered to a target object, grasp the object with its
front “grabber” assembly, carry it away and deposit it in another place.

3. Single autonomous behaviors, such as following a line or avoiding the edge of a
table. The most dramatic success at this level was a robot that nosed its way
through a maze.

4. Integrated autonomous behavior, in which different behavioral capabilities are
deployed at different times as needs arise. For example, some line-following
robots were able to detect when they had lost track of the line, and then perform
a distinct search behavior in order to find it again. Another robot performed a
mission with several stages. First, it approached an object and grabbed it; then it
turned in a 360° circle, keeping track of where it detected the brightest light.
Then it turned back to face that light source. Finally it carried its cargo toward
the light source and dropped it after traveling a fixed distance.

About half the participants eventually accomplished or made headway with some kind
of level 4 challenge; the rest progressed as far as level 3. Complicating the challenge of
level 4 was a weakness in the Flogo II prototype: that step-based code, once initiated,
could not be interrupted. For example, if a line-following robot has lost its line, a good
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recovery behavior is to swing left and right in increasingly large arcs until the line is
found again. Such a behavior is naturally expressed through procedural iteration. Once
the line is found, no matter at what stage of a “swing,” line-seeking should stop
immediately and line-following should resume. Cases such as these made clear the
importance of interrupting step-based execution, and facilities to do this were added
immediately after the workshop.

For most of the participants, the workshop was clearly a success. The increased stability
and fuller functionality of Flogo II (offset somewhat by a new source of erratic behavior,
the controller interface), the higher adult-student ratio, and the participant age
distribution were clearly factors. Perhaps most important, the satisfaction of robot
programming for its own sake was revealed. This appeal naturally increases with the
degree of behavioral sophistication attained. Here Flogo II succeeded, where Flogo I did
not, in empowering children to construct substantially more advanced robot behaviors
than one typically sees in children’s robotics. At this stage of development, too many
factors are in flux to attempt to quantify the expressive advantage of Flogo II. The
language has already improved substantially since the workshop, with the addition of
interruptible steps as well as live monitoring of expressions and control structures.
Given that many further improvements can be envisioned, one can only say that
indications at this point are very promising.

Phase 3: Interview sessions

In the months following the robotics workshop, several of the workshop participants
returned, on a semi-regular basis, to undertake a number of robotics programming
projects in a clinical interview context. Three students in particular returned often and
undertook a series of projects:

Larry, aged 13 , had a strong interest in technology and programming. His actual
programming experience was relatively modest however, consisting of
occasional exposure to MicroWorlds LOGO at school, some Java programming at
home—and about 20 hours of Flogo I experience two years earlier.

Tor, aged 13, had some slight prior exposure to LOGO.
Nick, aged 15, with a strong intellectual bent, had programmed his programmable

calculator, but had virtually no other programming experience.

Although not as versed in programming as some children their age, these boys were all
very bright, computer-literate, technophilic, mathematically strong, and highly
interested in Flogo II and robotics. Working with these boys has the effect of deferring
some important questions about how to support and attract a wider range of
students—questions which will no doubt entail substantial further design work.
Nonetheless, by following up the earlier phases with kids who are especially ready and
eager to engage Flogo II as it currently exists, we are able to make maximum use of the
current prototype in probing some of the basic questions about the intellectual content
of real-time programming.

Among the projects these boys worked on, these figured most prominently:
1. A line-following challenge, which Nick and Tor undertook because their first

effort during the robotics workshop had not worked satisfactorily.
2. The ball-push challenge. A robot equipped with an optical distance sensor must

find every ball on a table, and push each one off the table, without falling off
itself. Larry and Tor each solved this separately. Later, Nick and Tor undertook a
variant of the problem.
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3. A Bopit game. Returning to one of the problems that launched this work several
years ago, I offered Tor the challenge of programming a version of this well-
known game. He worked on this over three sessions; Nick helped out during the
second of these.

4. The seesaw apparatus. Undergraduate assistant Robert Kwok developed this
apparatus, through several stages of refinement. We posed the very difficult
challenge of making a ball roll back and forth along the seesaw without running
off either end. Larry worked on this challenge for one session; Nick and Tor did
as well.

In taking on these challenges, the boys achieved some major successes, and worked
through some difficult problems. Under the less chaotic conditions of the clinical
interview, I was able to follow some evolving themes in the boys’ approaches to
programming—in particular, Larry’s use of “permission variables,” Nick and Tor’s
gradual integration of process-oriented code, and contrasts in the three boys’ approach
to meaning and readability. These provided some useful material for the concluding
reflections of this dissertation.

STEPS AND PROCESSES IN THE LEARNING OF PROGRAMMING

We have seen that Flogo II’s step/process duality brings expressive power to
multithreaded programming. Beginners’ relationship to this power is complex. On the
one hand, as examples in this chapter will illustrate, Flogo II behavior descriptions seem
to match up well with children’s competence in thinking about process. Once children
understand a particular piece of Flogo II code, they appear to be good at reasoning about
its effects and interactions. With help, children have succeeded in using Flogo II to
produce complex behaviors built from a combination of steps and processes. On the
other hand, children are often tripped up by Flogo II’s syntactic rules regarding steps
and processes, which they find, by and large, mystifying. To begin to sort this out, I first
examine steps and processes from a linguistic perspective, considering how it might be
that children might be differently prepared for this duality at the syntactic and the
semantic levels. Next, I look at the some of the landmarks in learning to use steps and
processes as building blocks for behavior.

Steps and Processes as Linguistic Categories

Over the course of their engagement with Flogo II, all children became aware that the
language has two kinds of statements called steps and processes, and there are rules
about where they can go. But most were not able to describe the difference confidently,
and they did not use the formal classifications of constructs as step or process to reason
about what statements were allowable in what contexts. Robust, usable structural
understanding of steps and process was, in general, not achieved in the time available.30

How, then, did children manage to compose legal, functioning programs? By four
means: semantic guidance, use of familiar patterns, trial and error, and help from others.

By “semantic guidance” I mean that there is some tendency for children’s process
descriptions to be well formed from Flogo II’s point of view, simply by virtue of
coherently describing the programmer’s intentions. Suppose that, in the program’s
response to some event, the child wants an effect involving playing a trumpet sound,
increasing the player’s score, and moving a sprite east. Then there is at least a fair chance
that she will correctly write:

                                                       
30 At least one subject, Larry, showed substantial progress toward this formal understanding. We
return to his comments later.
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Every time <some event>
playsound(‘gasp)
set score to score + 1
for 2 seconds move(‘joe,’east)

Playing a “gasp!” sound effect is normally thought of as a discrete action, as is
incrementing a score. The move command, on the other hand, describes a state of
moving, which the child has experienced by controlling move commands directly. In
thinking about what she wants, she may even have considered a long move versus a
short move. In this case she will almost certainly write as above. Conversely, almost
never will she write…

For 3 seconds set score to score + 1 ; illegal

…because it just doesn’t make sense to add 1 to a variable for 3 seconds. Similarly, since
playing the gasp sound takes whatever brief amount of time it takes, not 3 (or any other
externally imposed) number of seconds, one will almost never write

for 3 seconds playsound(‘gasp) ; illegal

The exception is the unusual case (which happened once during Flogo II piloting) that
one actually wants the sound to repeat for the given time period, and one assumes such
repetition to be the meaning of the above. This points up one of the main ways that
semantic guidance can fail: when a believable English interpretation exists for an illegal
language construct. In the case of our little example, this is most likely with the word
“move.” In English, “move” has a couple possible interpretations as a discrete action:
either (i) “make a movement” or (ii) “start moving.” These will account for the most
likely malformation:

Every time <some event>
playsound(‘gasp)
set score to score + 1
move(‘joe,’east) ; illegal

When a language is used successfully by means of semantic guidance, we call it
transparent (Hancock, 1995). However, the potential for Flogo II to be transparent in this
sense is greatly reduced by the semantic overloading of English expressions relating to
temporal process. That is, many English expressions have both a process and a step
interpretation. English verbs (like “move”) are one major example. In normal usage the
distinction between complete action vs. continuing process (called “aspect” in
linguistics—e.g. Comrie, 1976) is made not by explicit markers, but by context. For
example:

Photographer, to portrait subject: “Smile!” (i.e. once, or briefly, for a photo—step)

Dance director, to dancer: Smile!” (i.e. as you’re dancing—process)

Slavic languages, by contrast, require a different form depending on whether a
completed or continuing action is meant. For example:

Photographer, to portrait subject: “Ulibnis!” (i.e. perform a smile)
Dance director, to dancer: “Ulibaysia!” (i.e. keep smiling)

If a version of Flogo II were built in a Slavic language, a significant class of user errors
might be avoided. (This is a very researchable question.)

Talking about steps and processes in plain English can feel like trying to tie one’s shoes
while wearing mittens. We try to disambiguate, but struggle to find adequate linguistic
resources. One example of that struggle comes when there are step-oriented and
process-oriented ways to control the same facility. For example, Flogo II has two ways of
controlling the appearance and disappearance of screen sprites. First to be implemented
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were the process forms SHOW and HIDE. Hiding and showing, like a number of other
facilities in Flogo II, obey a simple priority scheme: the most recently invoked process
shadows the effects of any others. So, for example:

For 5 seconds
SHOW(‘monkey)
EVERY 5 TENTHS for 1 tenth HIDE(‘monkey)

…will allows us to see the sprite named ‘monkey for five seconds, briefly blinking off
every half second. Children grasp this priority system remarkably well, and can predict
the interaction effects of different HIDE and SHOW processes quite accurately.
However, children had some difficulty using these commands to achieve certain effects
in their games, such as the eradication of an enemy from the game. The problem is that if
you HIDE a character, it remains hidden only as long as the HIDE process is in effect.
Every invocation of SHOW or HIDE implies its own eventual undoing (with the
exception of the top level of the program, where one can put a SHOW statement, turn it
on and forget about it). In response to children’s requests, I added two step-oriented
counterparts to HIDE and SHOW, to change the sprite’s visibility in one direction only.
Casting about for some distinguishing name for these primitives, I named them
“shownow” and “hidenow.” A sprite with no further role in a game could now be
dismissed with hidenow. At the next afterschool session I introduced these new
commands to the group. The children quickly grasped the utility of these new
primitives, and were soon able to predict their interactions with the process versions as
well. I asked if the names hidenow and shownow made sense, and if they help to
explain how these commands differ from HIDE and SHOW. Heads nodded. One child
said yes, “because it hides it, like, now.”

One can perhaps take heart from the fact that the children and I were able to understand
each other, despite our inability to express clearly what it was that we understood. The
name hidenow is in my opinion a misnomer, not denoting but, at best, alluding to its
action via an instantaneous effect. The word “now” can mean “at this instant” but it can
equally well mean “during this period,” so it really does not disambiguate steps from
processes.

English does have one resource for distinguishing continuing activities from discrete
acts, namely the progressive form –ing. One could imagine using -ING for all process
names in Flogo II:

For 5 seconds
SHOWING(‘monkey)
EVERY 5 TENTHS for 1 tenth HIDING(‘monkey)

Or perhaps

For 5 seconds
BE SHOWING(‘monkey)
EVERY 5 TENTHS for 1 tenth BE HIDING(‘monkey)

Based this, one could make a standard form for step-based counterparts using “start”
and “stop”:

start hiding(‘monkey)

stop hiding(‘monkey)

It is possible that such a terminology would be consistent and unambiguous enough to
make up for its ugliness. But I doubt it. One of the difficulties is already evident in this
example. We intended “hiding” to describe a period during which an object is hidden.
However, another reasonable interpretation of “hiding” might be as a transition from
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visible to hidden, e.g. by gradually fading the icon out. That is, although the word
“hiding” clearly indicates a process and not a step, it remains semantically overloaded,
being able to describe either a state (“the clouds are hiding the sun”), or a transition
(“Igor, have you finished hiding the specimens?”).

INVISIBLE

VISIBLE

time

“Start Hiding!” “Start Hiding!”

hiding

Fig. 1: Hiding as state vs. hiding as transition, leading to different meanings of “start hiding.”

Coincidentally, around the same time that I was struggle with names like hidenow and
shownow, my one-year-old son was confronting, I believe, a variant of this problem. He
could say “up” to be picked up, and “down” to be put down. However, he often
reversed the words. There is a natural tendency for confusion because we have only two
words, “up” and “down,” for talking about four things, namely:

The transition from down to up
The state of being up
The transition from up to down
The state of being down

Which states and transitions get the same names is really just a convention. Usually we
name transitions along with the states that they go to—but not always: the west wind
comes from the west. Meanwhile, the empirical evidence can be confusing. Try singing
“the door on the bus goes open and shut” while manipulating the bus door in a pop-up
book. Thinking of “open” as a transition, you may choose to sing “open” as you begin to
open the door. But that means that at the moment you sing “open,” the door is actually
shut (and vice versa). On the other hand, you might wait and sing “open” once the door
is completely open, and “shut” once it is shut. In that case your audience may observe
that you sing “open” immediately before shutting the door. In either case, a one-year-
old, or indeed any newcomer to the English language, may be excused for drawing the
wrong conclusion.

What all of this helps to show is that one cannot resolve the ambiguities of processes and
steps by describing them as states and transitions, respectively, because transitions
themselves can sometimes be processes. In fact, steps and processes are categories that
each subsume a large variety of “eventualities,” as the linguists call them. A frequently
cited paper by Bach (1986) partitions the space of eventualities as in Fig. 2.
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Eventualities

states

dynamic (a) static (b)

non-states

processes (c) events

protracted (d) momentaneous

happenings (e) culminations (f)

Fig. 2: Kinds of eventualities (Bach, 1996). Bach’s examples are:
  (a) sit, stand, lie + LOC
  (b) be drunk, be in New York, own x, resemble x, love x
  (c) walk, push a cart, be mean
  (d) build x, walk to Boston
  (e) recognize, notice, flash once
  (f) die, reach the top

The important lesson from linguistics, however, is that despite this variety, the
distinction between discrete, self-completing steps (or “events,” as Bach calls them),
versus continuing, temporally unbounded processes (including “processes and “states”
in the diagram), has proven fundamental in linguistic analysis, helping to account for a
wide range of linguistic phenomena. Moreover, this is true whether the language in
question includes explicit aspect markers or not. For example, aspect explains why the
sentences on the left seem normal, while those on the right sound “wrong,” or require
extra work to interpret (examples Bach’s):

John slept a lot last night John found a unicorn a lot last night

John fell asleep three times during the night John slept three times during the night.

Bach’s paper develops a formal “algebra of events,” in which the key principle is that
events can be understood as time-bounded “portions” of continuous processes, very
much the way Flogo II forms steps from processes.
Bach’s discussion and formal algebra take their inspiration from an oft-noted
comparison between aspect and another linguistic distinction, that between mass nouns
(e.g. beer) and count nouns (e.g. dog). The constitution of events as time-bounded
process parallels that of count nouns from bounded masses, as in “a glass of beer.” In a
manner that parallels what we have already seen with steps and processes (in the case of
playing “gasp” for three seconds, for example), English speakers are often able to use
mass nouns as count nouns and vice versa. For example, although mass nouns such as
“beer” do not, qua mass nouns, form plurals, nonetheless, “beers” will be interpreted to
mean “servings of beer” or “kinds of beer.” Conversely, the word “dog,” ordinarily a
count noun, is interpreted, in a sentence like “there was dog all over the road,” to refer
to the material that normally constitutes dogs. These tropes do not discredit the
importance of count vs. mass as a fundamental semantic distinction. On the contrary:
the distinction is essential to understanding how their meanings operate.

Event vs. duration in English temporal conjunctions

Discussion to this point has focused on English verbs and the reasons why they do not
always help us distinguish step statements from process statements. But the semantic
overloading we find in verbs also extends to many other parts of the language, including
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conjunctions such as “if,” “when,” and “while,” typically used for naming control
constructs. This is another area where Flogo II beginners often had difficulty.
A thorny example is the word “when.” In Flogo II, when is the conditional construct for
processes:

when sensor(5) > 60
motor1(‘on)

Meaning: continue to switch motor1 on and
off in tandem with the truth of the condition.

But some illegal uses of when seem equally reasonable in English:

when sensor(5) becomes > 60
beep()

Meaning: (in a process context) monitor for
threshold crossing event, and beep whenever
it happens.

In Flogo II, the correct way to say this is with EVERY TIME. But this usage of “when” is
not uncommon in other programming languages as a way to set up a “demon” process.
Here is another one:

when sensor(5) > 60
beep()

Meaning: (in a step context) check condition
once and beep if it was found to be true.

As it happens, this is exactly what “when” means in LISP. But in Flogo II the correct
word would be “if.”

“When” is certainly one of the more slippery time-words, and should arguably have
been avoided altogether in Flogo II. Among the meanings for “when” listed in my
Encarta dictionary are these:

1. at or during the time that

2. as soon as somebody does something or something happens
3. at some point during an activity, event, or circumstance

4. each time something happens

Flogo II
Construct

Meaning Construct
Type

Inner Type English
equivalents

WHEN Turn inner process on and
off as conditions change

Process Process When,
whenever,
while, as long
as, if

AS SOON
AS

EVERY
TIME (alt.)

Launch inner steps each
time some sort of event
occurs.

Process Step When,
whenever, if, as
soon as, every
time

AS LONG
AS

Enable inner process for a
period of time ending when
condition ceases to hold.

Step Process While, as long
as

IF Check condition once and,
if true, execute inner steps

Step Step When,
whenever, if,
every time, as
long as

Table 1: Possible names for four related control constructs in Flogo II
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Other time phrases, while more specific than “when,” still have some ambiguity. Fred
Martin once told me that he considered using “whenever” for an event monitor (second
row of table), in order to contrast with “when” as a conditional (fourth row). The “ever”
seems to highlight the sense of the statement applying over an expanse of time. But
plain old “when” can mean the same thing. On reflection, one has to agree with the
dictionary, which says defines “whenever” as an intensive form of “when” and nothing
more. Much as in the case of my “hidenow,” adding intensity suggests a punctate event,
but does not clearly denote it. While these ambiguities must be confronted in any
language, Flogo’s repertoire of control constructs is larger than most, and thus stretches
the lexicon especially thin.

Design implications of the linguistic analysis

What can we learn from all this concerning programming language design? The
distinction between steps and processes is found to have strong cognates in the
linguistic category of aspect and, beyond that, in the distinction between mass and
count. Flogo’s distinction between steps and processes parallels precisely the
distinctions between discrete and continuous process, as well as discrete and continuous
matter, which underlies our language and by extension, our cognition. I take this as a
kind of corroborating evidence in favor of the primary importance that Flogo II gives to
the distinction. There are two kinds of corroboration. First, the linguistic evidence
suggests that, however hard it is to talk about, the distinction between steps and
processes is something that, at some level, we already know. If a bridge to that knowledge
can be built (a question I will come back to in a moment), then users of Flogo II will find
that their prior knowledge gives them a head start in using the language, and that their
intentions are relatively easily translated into the language. The second kind of
corroboration concerns generativity. If Flogo’s fundamental category system is
equivalent to one that has emerged from hundreds of thousands of years of speaking
and thinking about processes, then that bodes well for its effectiveness in generating a
useful range of process descriptions.

This good news comes with some important qualifications, however. First, opinions
vary concerning the accessibility of our knowledge of linguistic categories. If one holds a
Chomskyan image of human language and cognitive capabilities locked inside
specialized mental devices, beyond the reach of introspection (Jackendoff, 1994), then
modeling a computer language after grammatical aspect may not make much more
sense than modeling it after the anatomy of the gall bladder. Another Chomskyan might
reason that by better conforming to innate expectations, Flogo II might indeed come
more within the purview of innate linguistic abilities, but caution that these abilities
would be of little avail in understanding the step/process distinction at a structural
level.

On the other hand, adherents of cognitive linguistics (Janda, 2000) view grammatical
knowledge not separate from, but rather tightly interwoven with, semantic and other
cognitive capabilities. If they are right, the prospects for building on children’s linguistic
knowledge in learning about steps and processes may seem stronger. The difference is
not so clear-cut, however, since the cognitive linguistic view is less likely to see
grammatical knowledge as taking the form of abstract rules. Abstract grammatical
formulations that Chomskians see as locked up in a specialized facility, cognitive
linguists will see as post-hoc descriptions of emergent patterns of thought and action.
Either way, then, there is no free lunch. Flogo II’s formal distinction between steps and
processes will be a new idea to learners, and one that they will have to construct
gradually.
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However—and this is what I am suggesting—if the step/process is deeply, albeit
implicitly, woven into our ways of talking and thinking about situations and
happenings, then we have a large base of intuitions on which to build, gradually, a
formal understanding of steps and processes. Moreover, such understanding will be
amply rewarded by a expanded ability to describe computations in terms that make
intuitive sense.

Given that we have limited linguistic and cognitive resources for distinguishing steps
and processes explicitly, some might argue that Flogo II would rock the boat less if it
behaved like a human interlocutor, using contextual cues to infer the programmer’s
intentions regarding discrete vs. continuous computation. In the context of the broad
design agenda I laid out in Chapters 1 and 2, I do not think this would be appropriate.
Trying to spare learners the explicit distinction between discrete and continuous activity
might make sense in a tool meant for short-term use. Such a design approach would be,
in DiSessa’s (2001) terminology, more functional than structural. But over the longer
term, the ability of structure to take us beyond what we knew before, multiplying our
creative powers, gives a structure-oriented design the decided advantage.

Moreover, discussions from previous chapters strongly suggest that even if one wanted
to, it might not be possible to protect learners from the eventual need to distinguish
discrete and continuous time. Having seen variants of it surface in a variety of learner
difficulties—in C programming in undergraduate robotics, in MultiLogo programming,
in Flogo I’s pulse/data distinction, and in invented musical notations—one gains the
impression that avoidance of the issue may do more harm than good.

The question remains, however, of how to deal with the difficulty of the step/process
distinction, recognizing that it may take young programmers a long time to master it. In
particular, what might the programming medium do to help? I suggest improvements in
editing, representation, and terminology.

Editing improvements. Menus should be given a larger role in program construction in
Flogo II. In a process context, menus would offer process statements, and in a step
context, they would offer step statements. Like Flogo I’s strongly typed pulse wires, this
feature would head off illegal constructions. But its presentation of available constructs
would constitute a more positive kind of help, as well.

The editor can also help by turning illegal statements into a scaffold for legal ones. For
example, if the user types

Every time <some event>
playsound(‘gasp)
set score to score + 1
move(‘joe,’east) ; illegal

The system can automatically transform this into:

Every time <some event>
playsound(‘gasp)
set score to score + 1
<<for how long>>

move(‘joe,’east)

<<for how long>> is a dummy construct, readily transformable, with menu assistance,
into a meaningful construct such as “for 1 second” or “as long as mousedown().”
Conversely, steps placed in a process context would be automatically wrapped in an
“<at what point>” dummy construct. In addition to sometimes (not always!) helping the
programmer express her intentions, this feature provides some implicit explanation of
why a misplaced statement doesn’t belong where the programmer has put it.
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Representation. Process statements and step statements are visually distinguished by the
controls beside them—square for processes, round for steps. (They are also
distinguished by uppercase vs. lowercase, but this is less salient to learners). There is,
however, no visible difference between process and step blocks. Since Flogo’s
process/step rules concern the allowability of certain statements in certain blocks, the
goodness of fit between statement and block ought to be visible. Attempts to date have
not yielded a visual distinction that is clear, uncluttered, attractive, and meaningful;
however, I believe one is possible.

Construct Names. Given the looseness of the English language with respect to events and
durations, it seems clear that no set of names will perfectly elucidate the meanings of the
different Flogo constructs. However, it also seems likely that the current set can be
improved upon.

In combination, these changes in editing, representation, and nomenclature should go
some way toward easing learners’ engagement with steps and processes in Flogo II, but
just how far remains to be seen. How best to introduce learners to the idea of steps and
processes, and how both pedagogy and further media developments might best support
them in programming successfully as they gradually learn and master the distinction,
are important questions that this dissertation aims only to raise, not to resolve.

Steps and Processes as Computational Building Blocks

Even as Flogo II’s syntax rules regarding steps and processes continued to puzzle them,
children moved forward in their ability to use steps and processes in creating behaviors.
There being no obvious limit to the potential complexity of process coordination
strategies in advanced programming, the path of mastery of steps and processes is
clearly a very long one. However, even some of the early steps along the way can be
quite empowering, and children’s project work with Flogo II provides some glimpses of
these.

Interestingly, many of the examples involve the use of variables. Why should this be so?
A variable is a kind of common ground between steps and processes. A variable is an
enduring structure that can be accessed in both process-like and step-like ways. A
variable might be maintained by steps and used by processes; or it might be maintained
by a process and used by steps. In such cases, the variable serves as an articulation point
in the program, making it possible for the programmer to choose to use a process to
solve one part of the problem, and steps to deal with another. More generally, a variable
can be used as a “steady frame” for communication by program components, whatever
their combination of steps and processes, that are proceeding on independent schedules.

Tor and Nick and the use of Process-based Variables

Quite early in his programming experience, Tor took on this challenge: make Ms.
Solomon’s head shake faster and faster as you bring the mouse closer, and slower and
slower as you move the mouse away. A concise solution might look like this:

Dist: distance(‘mouse,’ms)
Shaketime: dist / 10
Repeatedly

For shaketime tenths show(‘ms,’noleft)
For shaketime tenths show(‘ms,’noright)

Note that this problem has an inherent requirement for coordination of steps and
processes, in that mouse distance is a continuously varying quantity, while head shaking
is a sequential activity. The sample solution uses process statements to convert distance
to an appropriate time interval (shaketime), which is then accessed by the head-shaking
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code. The variable shaketime is thus the articulation point between steps and processes
in the program. Conceiving head-shake duration as a continuous function of mouse
distance is, however, a relatively sophisticated maneuver, and it does not occur to Tor.
Instead, over about an hour’s labor, Tor developed this very large program (here edited
slightly for readability):

D: distance(‘person,’monkey)
F:{10}
set F to 20
EVERY F TENTHS

For F/2 tenths show(‘person,’noleft)
For F/2 tenths show(‘person,’noright)

EVERY TIME D BECOMES < 300 set F to F - 1
EVERY TIME D BECOMES < 280 set F to F - 1
EVERY TIME D BECOMES < 260 set F to F - 1
EVERY TIME D BECOMES < 300 set F to F - 2
EVERY TIME D BECOMES < 240 set F to F - 2
EVERY TIME D BECOMES < 220 set F to F - 2
EVERY TIME D BECOMES < 200 set F to F - 3
EVERY TIME D BECOMES < 180 set F to F - 3
EVERY TIME D BECOMES < 160 set F to F - 3
EVERY TIME D BECOMES < 140 set F to F - 4
EVERY TIME D BECOMES < 120 set F to F - 4
EVERY TIME D BECOMES < 100 set F to F - 4
EVERY TIME D BECOMES < 80 set F to F - 5
EVERY TIME D BECOMES < 60 set F to F - 6
EVERY TIME D BECOMES < 40 set F to F - 6
EVERY TIME D BECOMES > 300 set F to F + 1
EVERY TIME D BECOMES > 280 set F to F + 1
EVERY TIME D BECOMES > 260 set F to F + 1
EVERY TIME D BECOMES > 240 set F to F + 1
EVERY TIME D BECOMES > 220 set F to F + 1
EVERY TIME D BECOMES > 200 set F to F + 1
EVERY TIME D BECOMES > 180 set F to F + 1
EVERY TIME D BECOMES > 160 set F to F + 1
EVERY TIME D BECOMES > 140 set F to F + 1
EVERY TIME D BECOMES > 120 set F to F + 1
EVERY TIME D BECOMES > 100 set F to F + 1
EVERY TIME D BECOMES > 80 set F to F + 1
EVERY TIME D BECOMES > 60 set F to F + 1
EVERY TIME D BECOMES > 40 set F to F + 1

(An aside: A solution like this, horribly cumbersome though it may appear, may be
taken as a welcome sign by the teacher of programming. The good news is that Tor has
devised a way to use the language’s mechanisms to achieve his goals. The mechanism-
devising orientation is a great advance over the more naïve expectation that for every
desired behavior there is a “proper way to say it” in the programming language. Until
he distinguishes knowing the language from using it to solve problems, the beginner is
not yet fully “in the game” of programming. Tor, although not an experienced
programmer31, is clearly in the game.)

This program may be thought of as setting up a series of concentric circles around the
‘ms sprite. As the mouse moves in across each circle, a decrementing of the variable is
                                                       
31 This was Tor’s fourth Flogo II session. He had very little prior programming experience.
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triggered. Likewise, crossing circles on the way out causes the speed to increase. Because
the increments and decrements do not match up exactly, the program exhibited some
peculiarities of behavior. When treated gently, however, it was clearly capable of
generating the intended effect.

In his solution I believe Tor was adapting previous knowledge of how to use steps to
generate cumulative effects in a variable. The prototype for this may well have been a
programming technique that was in circulation in the group, allowing players of chase
games to gain or lose points when a character comes in contact with a quarry or an
enemy, respectively, e.g.:

When distance(<me>,<thing-I’m-chasing>) becomes < 50
Set score to score + 1

Or

When distance(<pursuer>,<me>) becomes < 50
Set score to score - 3

Tor’s innovation was to replicate this effect at a series of distances from the central
character. By treating distance in terms of a series of discrete segments, he created a
framework in which his knowledge of managing a variable through discrete
transactions could be applied.

Appropriating process-based variables

I suspect that in many instances learners find the step-oriented management of
variables, of the kind that Tor developed, initially simpler to construct than process-
oriented definitions of the sort found in my suggested solution (SHAKETIME: dist/20).
A process-based definition abstracts over time, defining a formula or other process that
will hold in all applicable circumstances. Tor’s solution, by contrast, associated each
EVERY TIME statement with a specific situation, making it easier to imagine the
computation that one is specifying. Even when step-based formulations are more
general, they may still be cognitively less challenging, simply by virtue of being
expressed in terms of singular moments that can be easier to imagine.

However, process-based variables can sometimes confer advantages that learners find
compelling. In the following examples we can see these advantages very gradually
winning two young programmers over to the beginnings of a process-based approach.

In piloting Phase 2, Tor and Nick began working as partners on a series of robotics
projects. Under Nick’s influence, this team initially programmed in a strongly step-
oriented style, not just in their management of variables, but in their program control
structures. For example, rather than create a robot forward procedure as many other
participants learned to do:

define process forward()
motor1(‘on,’thisway)
motor2(‘on,’thisway)

…they would instead write:

define step forward(time)
for time seconds

motor1(‘on,‘thisway)
motor2(‘on,’thisway)

Using routines such as this, their programs would proceed by repeatedly moving in tiny
increments, fd(0.1). Flogo II’s “on step” construct, which repeats a series of steps
indefinitely, was a lesser-known feature among the group at large, but for Nick and Tor
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it was a staple. So was “do/while,” which allows a series of steps to be interrupted and
stopped whenever a condition changes.

On two separate occasions, Nick and Tor worked on a line-following challenge. The first
time was in the robotics workshop involving eight children. When I checked in on them,
they were having trouble understanding why their robot was not behaving correctly.
The robot had two forward reflectance sensors positioned over the floor. Various parts
of their program involved testing to see whether these sensors readings indicated the
robot was over the tape. I showed them a helpful technique; to make two derived
variables to represent whether each sensor is above the line. I called these RON (right
sensor on the line) and LON (left sensor on the line).

RON: {TRUE} RIGHT > 20
LON: {FALSE} LEFT > 20

Nick and Tor liked this contribution their program. They appreciated that by watching
each variable’s constantly updated value, which Flogo II displays automatically, one can
see immediately whether the program “thinks” either sensor is over the line. This is
useful during normal program execution, and also when manually holding the robot in
various positions, to test the veracity of RON and LON. It also provides a single point
for editing threshold values, and guarantees that all uses of the sensors are consistent.

Nevertheless, the line follower did not work out as well as some of their other projects,
and so when they were reunited a couple months later, they decided to give it another
try. They worked on their own for a while, starting from scratch. When I joined them, I
saw that they were back to their step-oriented ways. The “main” portion of their
program read as follows:

ON STEP32

do
rt(0.1)

while L < 15 and R > 15
do

lt(0.1)
while R < 15 and L > 15
do

scan()
while R < 15 and L < 15

They were having considerable trouble with this program, due in part to unreliable
sensor readings because of uneven lighting. As they tinkered with the condition
expressions governing when to do what, they would occasionally use less than (<)
where they meant greater than (>), and vice versa. Conditions for the different actions
were not always changed in parallel ways, so the robot sometimes had too many things
to do, and sometimes not enough. As the robot jerked left and right erratically, and the
ON STEP loop flickered round and round, it was very hard to follow what the program
was doing.

To help them get control of the situation, I made two suggestions. First, a lighting
change, to improve sensor readings. Second, I reminded them of the RON and LON
variables I had shown them some weeks earlier, which they had liked at the time but
had not brought over to their new project.

LON: L > 50
RON: R > 50

                                                       
32 ON STEP means the same as REPEATEDLY. It is a process statement containing steps that are
repeated over and over as along as the process block is active.
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Once these process statements were turned on, each variable was labeled with a
constantly updated TRUE or FALSE. One could manually position the robot in different
ways to see the effect on the variables, and while the program was running, it was easier
to check what the robot was “seeing.” Moreover, the main program code became easier
to write. Nick and Tor quickly adapted their program, which came to look like this (also
adding in previously missing code to let the robot go forward):

ON STEP
do

rt(1)
while not LON and RON
do

lt(1)
while not RON and LON
do

scan()
while not RON and not LON
do

fd(1)
while RON and LON

This time, it appears, the role of RON and LON in bringing needed manageability to
their program was dramatic enough to make a more lasting impression. The following
week, in his work on a ball-pushing robot, Tor spontaneously adapted the RON&LON
approach. The challenge is to repeatedly find a ball on the table and push it off the edge,
until no balls are left. While pushing a ball, the robot needs to continue to monitor the
ball’s presence. If the ball is no longer in front of the robot, it may mean that either the
robot has lost control of the ball and must search for it again, or that the ball has fallen
off the edge of the table, and the robot will fall next unless it stops moving forward. Tor
created a process variable to continually monitor the ball’s presence:

HAVEBALL: WHITE_DISTANCE() > 40

In subsequent projects as well, the declaratively defined variable became a standard part
of both Tor and Nick’s repertoire, and we see it again in their creation of a SPEED
variable in the seesaw episode described in the Prologue.

Ben’s Bananas Game and the Construction of Game State

Ben was the creator of the bananas takeaway game mentioned earlier. In its final form,
the game allows one player to control a pirate by means of the arrow keys, while a
second player controls a monkey by means of the mouse. These contestants are well
matched: the pirate moves faster, but must always travel left, right, up, or down. The
monkey moves more slowly but in any direction. At any point one of the characters is in
possession of the bunch of the bananas, which it can retain as long as it avoids the other
player. If the other player gets close enough, the bananas will stay with him instead.

Ben worked on this project for a couple sessions, during which time he experimented
with various uses of sound and text and various patterns of movement. Initially the
pirate and monkey pursued the bananas automatically rather than under player control.
When I checked in with him, he was struggling to get a proper back-and-forth between
the two contestants. A key part of his program looked like this:
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Fig. 5: An early portion of Ben’s takeaway game, intended to allow bob (the monkey)
to take away the bananas.

The intent of these lines was to effect the “taking away” of the bananas by the monkey,
named Bob. When Bob gets close enough to the bananas, the MOVE statement is meant
to come into effect, causing the bananas to stay close to the monkey by following it at
high speed. However, the program did not work. Since EVERY TIME is a construct used
to trigger steps when an event occurs, Ben’s use of the process MOVE inside the EVERY
TIME statement was illegal. Flogo II’s response, at the time, was simply to leave the
MOVE statement running, so at this point the bananas were always following the
monkey.

Why did Ben write the program this way? Clearly there is an important relationship
between the event of the monkey getting close to the bananas, and the process of the
bananas following the monkey. By putting the two together using EVERY TIME, Ben
was perhaps envisioning EVERY TIME as meaning something along the lines of FROM
THE MOMENT THAT—that is, a construct that responds to an event by initiating a
process. This is quite a reasonable guess. Although Flogo II has no FROM THE
MOMENT THAT construct, there are ways to achieve what Ben was envisioning, e.g.

EVERY TIME DISTANCE (‘bananas,’bob) becomes < 70
forever

MOVE(‘bananas,DIROPP, 30)

This formulation, however, points up an important weakness in Ben’s plan: there is no
allowance for the possibility of the bananas ceasing to follow the monkey when taken
away by the pirate. This might be remedied as follows

EVERY TIME DISTANCE (‘bananas,’bob) becomes < 70
until distance(‘bananas,’joe) becomes < 70

MOVE(‘bananas,DIROPP, 30)

(… in combination with a corresponding clause for Joe, the pirate). Had forever and
until clauses existed at the time of this episode, it might have been appropriate to show
them to Ben. They did not exist, however, so I instead suggested a different approach: to
create a variable called OWNER (i.e. current owner of the bananas), which would at all
times hold either ‘joe or ‘bob. Then the game mechanism can work like this:

OWNER: {bob}
OWNER_DIR: DIRECTION(‘bananas,OWNER)
MOVE(‘bananas, OWNER_DIR, 30)

The variable OWNER puts the possession information in one place, where the banana
moving code can easily access it. Because the variable OWNER attaches a constant
meaning to a specific location, we can call it a steady frame representation. It
accomplishes this by moving up one level of abstraction, from asking if Bob has the
bananas or Joe has the bananas, to asking who has the bananas. Ben was not ready to
make this leap himself, but when I made it for him, he took on the task of fitting it into
his program. He knew that he needed to update the OWNER variable each time that
possession should change hands. He wrote

WHEN DISTANCE(‘bananas,’bob) BECOMES < 70
set OWNER to ‘bob
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This is almost right, except that WHEN, Flogo II’s process-oriented switching construct,
has been used as though it were an event handler. This is a prime instance of the
linguistic difficulty mentioned earler: it makes perfect sense to say “when the distance
becomes less than 70, do X.” I suggested he use EVERY TIME, which he did. He then
added the converse statement for the other character. He now had all the code necessary
to maintain the OWNER variable:

EVERY TIME DISTANCE (‘bananas,’bob) becomes < 70
set OWNER to ‘bob

EVERY TIME DISTANCE (‘bananas,’joe) becomes < 70
set OWNER to ‘joe

 Like other real-time variables, OWNER not only simplifies programming, but also helps
to make the program easier to follow during program execution. In this case, owner is
maintained not by a process expression, but by event-triggered steps. Both can be ways
of maintaining useful real-time variables.

In all of the examples described so far, we see the definition of appropriate variables as a
key task in programming. In each case, moreover, we can see that the variable-based
representation requires a small but significant step in abstraction. The variables RON,
LON, and HAVEBALL, for example, all use Boolean data to describe whether a certain
condition is true. this is, I suggest, a little more abstract than using the condition to make
an immediate decision, because the truth-or-falsity of the condition is reified as boolean
data. Liewise, in the takeaway game, it is more direct to try to say “when the pirate has
the bananas, do X, and when the monkey has the bananas, do Y.” But the OWNER
variable requires one take one step back and maintain an answer to the question “who
has the bananas?” The reward for doing this is the ability to write a generalized
statement that makes the bananas follow the owner, whoever the owner may be.

Sometimes making a program variable requires us to use or invent an abstraction that
we are unfamiliar with. This was somewhat true of Nick and Tor ‘s experience with
HAVEBALL, because neither had prior experience programming with formal Boolean
data. But more often, the needed abstraction step uses concepts that are very familiar.
The problem is not to comprehend some exotic new abstraction, but simply to think of
generalizing in the right direction. In this sense it is not surprising that Ben quickly
understood the OWNER variable once I had supplied it for him. The question is, what
additional experiences will Ben require in order to be able to make such moves for
himself? I think we see a clue to the answer in Tor’s invention of a HAVEBALL variable.
HAVEBALL is a very close parallel to the RON and LON variables that I twice provided
to Nick and Tor. Based on these examples, one can postulate two components of
development in the use of variables in programming: first, the accumulation of a wider
range of experiences with variables, increasing the range of problems that one can solve
through a very near parallel to a known class of cases; and second, the gradual loosening
of the requirement that new abstraction steps parallel prior ones so closely. How these
developmental components can grow and interact is an important question for further
research. A third component waits a little farther down the road: the ability to make
abstraction steps into previously uncharted conceptual terrain. We saw the beginnings
of this in the Prologue to this document, a Nick and Tor groped toward a definition of
instantaneous speed. The next chapter further considers the educational meaning of
these sorts of abstraction steps, and the potential role of live programming environments
in fostering them.
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Chapter 7: Live Programming and the Development of
Conceptual Systems

At first glance, a live interface seems like a simple gift from language designer to
programmer. Looking more closely, we find that liveness is most helpful when used and
managed strategically. I will briefly describe some examples of children’s active
management of program visualization, and of liveness as a factor in children’s
programming decisions. We consider programming-for-liveness as an intellectual
endeavor and connect it, via the concept of the steady frame, to much more general
processes in learning, development, and intellectual life.

In the second half of the chapter I will discuss what these considerations imply for the
educational significance of real-time programming, and conclude with a review of the
outcomes of this study as a whole.

PROGRAMMING FOR LIVENESS

The field of software visualization explores ways of revealing the execution of computer
programs at a variety of levels, ranging from the detailed rendition of every step of a
computation, to higher-level portrayal of the progress and meaning of algorithms (Price,
Baecker, & Small, 1998). In the latter category especially, the recent trend has been away
from fully automated visualization and toward the provision of toolkits that allow
programmers to decide which aspects of execution will be tracked, and what form they
will take in the visualization display (e.g. Hundhausen & Douglas, 2000). Still,
constructing a program visualization remains a separate activity from programming
itself. The up-front effort and context shift entailed in beginning a visualization project
for one’s program is a serious practical barrier to the routine use of visualization systems
by programmers.

In a live programming environment that allows incremental extension of its visual
interface, this situation is changed. Visualizations that support understanding of the
program can be added gradually, as needed, within the program itself. There is no
global up-front cost and no context shift. The tools for doing this are currently more
developed in Flogo I than in Flogo II, but one can readily imagine similar interface
construction tools in Flogo II, which could be used to intersperse graphical displays and
controls throughout a program. Another simple extension to Flogo II would be to allow
customization of “thermometer” displays for defined steps and processes.

Even without these additions, children’s use of Flogo II has begun to show what it
means for programming and program visualization to join together as a unified activity.
In a way, it is a natural extension of things that programmers have always
done—indenting, spacing, organizing, naming—to make their programs more readable
as they write them. But readability of a live program is qualitatively different, because it
concerns readability not just of the code but of its execution.

We have seen this already in Nick and Tor’s ready adoption of the RON and LON
variables in their line-following program, and their subsequent use of the same idea in
variables such as HAVE_BALL and SPEED. These variables were useful for organizing
their code, but what struck the boys most immediately, I believe, eliciting comments like
“cool,” was the capacity of these variables to provide a real-time view of an important
part of the program’s execution.
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As the use of such variables gradually increased, I noticed that children were taking
measures to ensure visibility of these variables. For example, when Tor’s ball-pushing
program grew too big to fit on the screen, TOR made a duplicate HAVE_BALL line near
the bottom of the program, just so he could keep it visible as he worked on different
parts of the program.33 In subsequent programs he often kept real-time variables
together in one section of the program, so that they could be monitored as a group. In
his Bopit project, he had a section near the bottom reserved for variables that he wanted
to monitor. When a variable’s behavior became well understood and ceased to be
problematic, he would move it up to another section of the program.

Developing a variable that is visually and computationally effective can be a struggle. In
his Bopit project, Tor had a variable called SCORE. As the name suggests, this variable
was used to track the player’s score during a game. Each time the player made a correct
response, SCORE would be incremented. However, the variable had another use as well.
If the player failed to respond in time, SCORE would be set to zero. Another chunk of
code, on detecting this, would play a “you lose” sound and set another flag variable
causing the entire game loop to stop (See Fig. 1). This dual use led to some problems. For
one thing, one could see one’s score while playing the game, but as soon as the game
ended, the score had been zeroed out. Also, Tor had a HIGH_SCORE variable that he
attempted to update after each game. He soon realized that the zeroing of SCORE was
preventing the high score from being updated.

Fig. 1: Bopit program fragment showing use of SCORE variable to flag player timeout (see
statement SET SCORE TO 0).

Tor considered two remedies for this problem. First, he made another variable called
LATEST, into which he attempted to save the latest value of SCORE prior to the end of
the game. This could have worked, but failed when he put the copying statement at a
point after SCORE had already been zeroed. His next idea was to put high score code
into each of the five separate Bopit modules (one each for “slide it,” “light it,” etc.), in
order to make sure the high score was updated before SCORE became, in his word,
“contaminated.” I take his use of this word as evidence that he perceived a problem in
the variable’s inconsistent meaning. Before he could proceed with this, I suggested an
alternative: suppose you never contaminate the score variable, but instead use other
another variable to flag the timeout condition. Tor was very positive about this idea,

                                                       
33 Such a measure might become less necessary as Flogo II adds better capabilities for keeping
different parts of a program in view—what Green & Petre (1986) call “juxtaposability.” The point
here, however, is that this a clear case of a programming action undertaken for the sake of real-
time program visualization.
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saying that it would be a lot simpler, and he implemented it correctly, following through
the various related changes that needed to be made throughout the program.

Programming for steadiness

Recall that in Chapter 4 we defined a steady frame as…
… a way of organizing and representing a system or activity, such that:

(i) relevant variables can be seen and/or manipulated at specific locations within the
scene, and

(ii) these variables are defined and presented so as to be constantly present and
constantly meaningful.

The mapping of this definition onto live real-time programs is straightforward. By
eliminating contamination of the variable SCORE, Tor made it a real-time variable with
a single consistent meaning, and thereby enhanced his program’s ability to function as
steady frame. The new steadiness immediately relaxed the demands on other activities
to coordinate with the vicissitudes of SCORE maintenance. High score updating could
happen once at the end, and players could check their score after the pressures of game
play were past. In other words, the addition of a new steady frame within the program
facilitated both program organization and program visualization.

Looking back, we can make the same interpretation of variables we have seen in other
projects: RON and LON for line following, HAVE_BALL for the ball-pushing robot,
OWNER in the banana takeaway game. All help to establish a steady frame for an
important aspect of program execution. By so doing, all simultaneously serve program
organization and program visualization. In the RON&LON case especially, we can also
see the value of these variables for action-based exploration of dynamic relationships.

How is it that the interests of program organization and visualization are aligned? Why
should a steady frame serve both at once? Cybernetically, one can think of the constantly
meaningful variables within a steady frame as devices for temporal decoupling of
processes, whether computational or human. For example, the code that updates the
OWNER of the bananas will do so at its own appropriate times. Meanwhile, the
animation code that moves the bananas about proceeds on its own schedule, trusting
that OWNER is providing usable information whenever it is accessed. It is the steadiness
of OWNER that makes this possible. As for program visualization, consider that a
programmer is herself, among other things, a process (or, if you prefer, she is engaged in
various processes). Without a steady frame, the requirements on the programmer to be
looking in the right place at the right time can be burdensome or impossible. A steady
frame allows the programmer to consult the display on her own schedule, at moments
when the information is most useful to her. This is a highly desirable property in a real-
time representation.

Consistency and steadiness in program representations is by no means a new value.
Long-established software engineering practices, such as cultivating and documenting
invariant assertions, or funneling data operations through a transaction layer, help to
maintain steady meanings for variables and other data structures. Live real-time
programming raises the stakes by exposing unsteadiness more plainly, and rewarding
steadiness more immediately and perceptibly. As they gain experience in building live
real-time programs, children have a new kind of opportunity to appreciate steady
frames and gradually learn to use or make them. Farther along this developmental
trajectory, I believe that the explicit notion of a steady frame (appropriately renamed
and repackaged) could become a powerful idea that learners could come to use in
support of both programming and learning—vocabulary to enhance what diSessa and
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colleagues have called children’s “meta-representational competence” (diSessa, 2000;
diSessa & Sherin, 2000).

The Steady Frame, Learning, and Theoretical Progress

In Chapter 4 I introduced the steady frame as an interface design concept. Now,
application of the concept has shifted to children’s programming maneuvers. What are
we to make of this shift? Are we to infer that programming, and especially live, real-time
programming, makes interface designers of all children? And if so, does this weigh for
or against the universality of the intellectual substance of programming? The answers
are, I believe, “yes” and “for.” But to understand this, we need see how essential steady
frames are, not just in our tools and notations, but also in the concepts that mediate our
activity and understanding in the world. Our conceptual apparatus can be understood
as an interface through which we act and perceive. When we look at it this way,
conceptual growth and interface design begin to seem very similar indeed.

To ground this analysis, specific examples are needed. I offer brief examples of
conceptual steady frames in athletics, mathematics learning, and science. This choice of
examples also supports a subsequent suggestion I will want to make: that the shift to
real-time makes programming more like all of these things than it was before—and,
through real-time programming, these three things all become more like each other.

The athletic steady frame

If you are familiar with racquet sports, you know that good players are distinguished by
their coverage of the court, that is, their ability to get to wherever their opponent sends
the ball. In squash, these skills ascend through many levels. My squash teacher, himself
internationally ranked, told me about watching world champion Jahangir Khan, of the
great Khan squash dynasty, play in competition, and marveling at his ability to be
wherever he needed to be in the court, without even seeming to break into a run. I don’t
know all that goes into that exalted level of court coverage, but an important early
learning target in squash is the simple but powerful idea of “position.” This idea has a
pervasive influence on everything you do in squash. As soon as you have hit a ball, your
immediate goal is to get back to a central position in the court, in preparation for the
next shot. Footwork and racquet preparation also affect your readiness. Your opponent
may be in the way of getting to the best position, so you aim your shots with the goal of
dislodging him. At every moment in the game, there is something you can be doing to
improve your position or challenge your opponent’s position. In this sense, position is a
constantly meaningful construct: “spatial and bodily factors favoring your ability to get
to future balls,” a steady frame, a stabilizing construct. Contrast this with the novice’s
experience: chase the ball, hit it, see what happens, chase the ball, hit it. Playing an
experienced opponent, the novice is mystified at why he is the only one who keeps
running desperately around the court. For the novice, each episode of getting to the next
ball is an independent experience with its own beginning, middle, and end. This
fragmented construction of events severely limits the novice’s ability to improve his
court coverage. He can see sees causal connections within an individual chasing episode
(e.g. running faster now will get me to this ball sooner), but lacks a framework to see,
and therefore to influence, all the other factors that go into the setting up of that chasing
episode.

Essential to positional understanding in squash is the spatial coordinate system in which
the player perceives himself and the game action. If a squash is a dynamic system, the
obvious variables of interest include the positions and trajectories of the two players and
the ball. Since these are all in motion, fixed localization of the garden hose variety is not
possible; however, localization of these variables may be considerably more or less
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orderly depending on the coordinate system within which they are viewed. The
experienced player monitors play and plans actions with respect to the court as a whole,
and especially with respect to the central, commanding position (the “T”) that both
players attempt to control. This spatial reference system provides a true steady frame for
squash play, decoupling the player’s strategic and tactical thinking from wherever the
player may happen to be on the way to or from a ball. By contrast, as the novice moves
about the court, his coordinate system moves with him. In this decidedly unsteady
frame, the movements of ball and opponent are harder to track and predict, and plans
can be formulated only as far ahead as one’s current perspective will last.

A variant of this idea figures in the cinematography of the Matrix films. Here the “sport”
is not squash but martial arts combat. In a celebrated scene from the first film, the
character Trinity is seen leaping up in front of a hapless policeman. At the apex of her
jump, the action suddenly freezes. With Trinity suspended in midair, poised to strike,
the camera circles around her and her victim. Just as suddenly, action resumes. Trinity
disables the policeman with one kick and then, by means of a series of moves of
extraordinary speed and precision, overwhelms his several armed colleagues and makes
good her escape.

There are at least two ways to interpret the segment in which action is frozen. To the
extent that the effect suggests a pseudo-magical ability on Trinity’s part to step outside
the flow of time—an interpretation corroborated by other scenes of bullet-dodging and
other miracles—the scene is simply a fantasy. But an alternate interpretation connects
the fantasy to an important truth. The circling camera suggests Trinity’s ability to see
herself in just the kind of decentered coordinate system that would be needed in order to
anticipate the interacting trajectories of an array of opponents. Moreover, such a steady
frame would give Trinity the ability to compute those interactions and trajectories
through a process that is decoupled from her own movements—a decoupling that can
feel almost as empowering as stopping time. I am not especially accomplished in
squash, but I have experienced the difference that a combination of concentration and
positional sense can make in the reachability of balls. The experience is quite amazing.
At times, the ball almost seems to hang in midair, waiting for you to get to it.

Before we leave the sports arena, I want to note that, in addition to coordinate systems,
athletic technique includes many rather more literal instances of a steady frame.
Swimming strokes and golf swings, for example, work better when there is a steady
rotational axis through the back and head. Watch soccer players, basketball players, and
jugglers practicing their ball-control skills, and note the steadiness (not rigidity!) of body
orientation. These postural steady frames may seem more physical than mental, but they
are cognitive nonetheless, requiring active maintenance by the body-mind. They are on a
smooth continuum with the steadiness of Flogo II variables. I suspect, though I cannot
prove it, that Tor and Nick’s pleasure in their early encounters with variables such as
RON and LON resonates with prior experiences of physical poise. Less speculative is the
assertion that, by immediately simplifying the action challenges of testing and
monitoring a running program, RON and LON themselves produce a kind of athletic
advance for the programmer.

Mathematics learning

Most of the case for the steady frame in mathematics learning has already been made, in
different theoretical terms, by others. A fundamental and seminal example comes from
Piaget: the conservation of number (Piaget, 1941/65). (Indeed, all Piagetian
conservations represent real-time variables that help to steady the cognitive frame.)
Conserving number means possessing a concept—the cardinality of a set—that is
detached from the sequential process of counting. For the conserver, even when one is
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not counting, a set’s cardinality has meaning and can be known. Steadiness of number is
facilitated by knowledge of the transformations of a set (such as rearrangement) under
which number is invariant, and further strengthened by knowledge of the incremental
effects of operations such as adding or removing elements. We can still invoke counting
to “update” our number, but the steadiness of the number frame means that such
counting can be decoupled from other activities that use the number. Thus
unencumbered, such activities become new opportunities to explore and develop more
advanced arithmetical ideas building on the base concept of cardinality.

Since I have defined a steady frame as a representation that localizes consistent
meanings, one can ask: where is the cardinality of a set localized? In a case such as this,
one must take location in a virtual sense. The number of cookies on the plate is a
memory indexed by, among other things, the phrase “how many cookies on the plate.”
This functions similarly to physical location in the sense that, until the memory fades,
we are free at any time to turn back to it via such indices, much as we can turn back to a
location on a page or screen.

Closely related to the idea of conservation is the notion of reification. In recent years a
number of writers have noted that mathematical learning often shows a progression in
which mathematical ideas first understood as actions or procedures come later to be
understood as objects (e.g. Sfard, 1991; Dubinsky, 2001; Tall et al., 2000). Sfard (1991)
proposes three steps in concept formation. Interiorization is the stage of getting
acquainted with a set of processes or actions—counting, for example, or computing
functions by evaluating algebraic formulas. Condensation is a gradual process of
developing increasing abbreviated to carry out or refer to these actions. The learner’s
understanding is increasingly holistic, but it is still “tightly connected to a certain
process.” In the final step, reification, the learner’s perspective makes a “ontological
shift” whereby the concept is now seen as an object in its own right (e.g., to continue the
previous examples, a number or a function)

The new entity is soon detached from the process which produced it and begins to draw
its meaning from the fact of its being a member of a certain category. At some point, this
category rather than any kind of concrete construction becomes the ultimate base for
claims on the new object’s existence. A person can investigate general properties of such
category and various relations between its representatives. He or she can solve problems
finding all the instances of a category which fulfill a given condition. Processes can be
performed in which the new-born object is an input. New mathematical objects may now
be constructed out of the present one.

What advantage does the reified conception confer? Sfard makes some effort to elucidate
this. She notes that procedurally conceived ideas “must be processed in a piecemeal,
cumbersome manner, which may lead to a great cognitive strain and to a disturbing
feeling of only local—thus insufficient—understanding.” By contrast, the “static object-
like representation … squeezes the operational information into a compact whole and
turns the cognitive schema into a more convenient structure.” These characterizations
suggest qualitative process distinctions of the kind that I have explained in terms of the
notion of a steady frame. For example, the reified conception of function provides a
steady frame for varying functions in order to investigate, say, the relationship between
formula and graph, or function and derivative—much as a hose nozzle’s reification of
aim aids exploration of the relationship between aim and trajectory. Sfard’s paper
doesn’t quite see this through, and ends up emphasizing the value of objects as a
“chunking” device that helps by reducing strain on short-term memory. From the
perspective of the current analysis, that is a subsidiary point. The essential function of
reification is not so much chunking as temporal decoupling of thinking processes.
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In short, there is ample precedent for the analysis of mathematical learning and
development in terms of mental representations that can establish steadier frames for
thinking. The term “steady frame” merely adds a cybernetic perspective on how these
representations help. In doing so, it also highlights the common function of mental
representations and external media.

Scientific theories as steady frames

A scientific theory—especially a theory of dynamic phenomena—can be viewed as a
kind of steady frame, in the sense that it defines variables of interest and relationships
among them. Scientific advances sometimes come in the form of the definition of new
constructs – e.g. momentum, energy – that allow us to monitor and interpret dynamic
situations in steadier ways. This aspect of scientific discovery was highlighted in an AI
project of Herbert Simon and colleagues in the 1980’s (Langley, Bradshaw, & Simon,
1981; Langley et al., 1987). Called “BACON,” it simulated the scientific process by
looking for concise expressions of relationships between data variables. Given data sets
from episodes in the history of science, BACON’s output included not just relationships
between the input variables, but specifications for new intermediate or derived variables
that either tended to remain constant throughout experimental variation, or allowed for
simplified description of relationships—that is, they helped to provide a steadier frame
for the experimental phenomena. BACON’s developers reported that these variables
tended to have useful interpretations, and in fact often reproduced constructs (e.g.
specific heat) that have since become standard scientific vocabulary. What this helps to
show is that the criteria for improvement of a steady frame—meaningful variables with
intelligible relationships—are also criteria for improvement of a scientific theory. This is
not surprising if we view a scientific theory as an aid to thinking and action, not unlike
the mathematical constructs discussed above.

CONCLUSIONS

Programming is Modeling

When Soloway (1986) famously wrote: “Programming = mechanisms + explanations,”
he was highlighting the central role of programming “plans,” or reusable patterns, in
accomplishing programming tasks. The formulation expresses a deep truth, but only a
partial one. What is missing is any sense of a connection between programming and the
wider world. The omission is perhaps not surprising given that the tasks that most
students of programming worked on at the time, especially at the college level, were
essentially data processing tasks. What programming “=” certainly depends heavily on
its cultural embedding.

Running alongside the data-processing oriented programming there has been another
educational programming culture, often using languages like LOGO, Boxer or (at more
advanced levels) LISP—that made a habit of venturing beyond the conventional
concerns of computer science, using programming to pursue creative and expressive
goals, and to undertake projects in diverse intellectual domains such as geometry,
mathematics, linguistics, physics, and music. This is a different kind of programming,
and researchers studying it have naturally seen something different. In particular, they
have seen programming as a medium for modeling, theory-making, and “situated
abstraction”:

Thus, the reason that a child interested in (say) music might well want to learn
programming is that it provides a rich musical medium allowing her to express musical
ideas to which she might otherwise never have given voice. Programming, on this view,
is not an exceptionally valuable skill in the abstract … but is rather a skill whose
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definition and importance evolves, and becomes revealed, within particular applications
and in accordance with the interests of the child. (Eisenberg, 1995)

Many years of research … have generated a fair number of cases where programming
has provided pupils with a means of expressing and exploring domain-specific ideas. …
Programming, in these case, “obliges” pupils to formalize intuitive ideas by expressing
them with the use of symbols, executing them on the computer and immediately
observing their effect… It enables them to group a set of ideas and then either use them
as a named object at a higher level of abstraction or reflect on a specific idea within that
object. In this way, they can interchangeably use an idea as a tool and reflect on it as an
object (to use Douady’s terminology, 1985). … Programming thus allows a merging of
intuitive and reflective thinking. (Kynigos, 1995)

Our central tenet, therefore, is that a computational environment can be a particularly
fruitful domain of situated abstraction, a setting where we may see the externalised face
of mathematical objects and relationships through the windows of the software and its
accompanying linguistic and notational structures. … in an autoexpressive
computational medium, the expression of the relational invariants is not a matter of
choice: it is the simplest way to get things done. In this case the action/linguistic framework
of the medium supports the creation of meaning: and it is here that computational media
differ substantially from inert environments. (Noss & Hoyles, 1996, p.125)

These statements all anticipate and corroborate what we have seen in students’ Flogo II
programming projects. In the emergence and refinement of variables such as OWNER
(bananas takeaway game), HAVEBALL (ball pushing project), SCORE (Bopit project)
and SPEED (seesaw project), we have witnessed situated abstraction at work, albeit on a
small scale. These small-scale examples may be taken as suggestive of more elaborate
and intellectually rich kinds of modeling to come with longer experience and further
evolution of the learning environment. In addition, these examples show something of
the role and quality of modeling in the context of real-time programming. Children have
constructed, or eagerly adopted, the “relational invariants” expressed in the definitions
of these variables, in part because they do indeed make it simpler to get things done. But
in live real-time programming, there is a second payoff: these conceptual advances
(situated abstractions, relational invariants, theoretical constructs, formalized ideas) also
make aspects of the problem domain easier to see and control. They make the program a
better real-time interface to the domain. The sense of empowerment accompanying each
such step is palpable.

Live real-time programming is live real-time modeling

If programming is modeling, then live, real-time programming is modeling of a special
kind, namely live, real-time modeling. A real-time model is a model in direct
engagement with the situation it is modeling. A live real-time model is, in addition, a
real-time model that one can observe in process, and in which one can intervene—at
once a mirror and a lever. By engaging with a live real-time model we experience theory
as a medium for perception and action. As we construct a real-time model, its
increasingly live mediation of the domain enhances our appreciation of the step-by-step
empowerment that effective abstraction can bring.

All the same, it is important to note that encouraging or rewarding model-making is not
the same as requiring or “obliging” it. The young programmer is free to ignore the
attractions of a meaningful interface, as Larry did in his use of permission variables. Tor,
it seems to me, had an unusually strong affinity for preserving explicit meaning in his
programs. He was constantly on the lookout for opportunities to make things less
confusing, and he had no qualms about typing long variable names such as
TWO_OR_LESS. He also had a gift for verbal play, making up names such as
THE_CHOSEN_ONE and SAVE_YOURSELVES. Having vividly described one section
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of code as an “antibody” to another, he went on to call a flag variable, used to suppress
the activity of the first section, a “de-antibody-izer.” Thus, in terms of both skills and
proclivities, Tor was an especially strong modeler. By contrast, Larry tended to be
confident in his ability to understand his own cryptic formulations, and uninterested in
making them clearer, while Nick tended to see unfathomable program behavior as
something to be amused by and to tinker with, but not necessarily to reorganize.
Nonetheless, both Larry and Nick did find themselves in situations where they
appreciated a clearer program. In a learning environment where reorganizing programs
for clarity and simplicity was exemplified and discussed, I think both would, at their
own pace, partake of the process.

Lehrer and Schauble (2000) sort mathematical and scientific models into four categories,
each developmentally more advanced than the ones before:

Physical Microcosms that refer by means of resemblance to the modeled object.
Representational systems such as maps and diagrams, that bear some resemblance to

their subjects, but are rendered in highly conventionalized forms.
Syntactic models, such as graphs or algebraic formulas, that can “summarize essential

functioning of a system,” with no surface resemblance to the system.
Hypothetical-deductive models, that permit modeling and exploration of unseen or

imagined domains, such as gases.

The basis for this developmental progression is the importance of similarity as the initial
ground for the modeling relationship. Only gradually, as they begin to gain interest in
the functional and predictive abilities of models, do students let go of the requirement of
similarity. But real-time interaction provides another way to experience a link between
model and subject, just as compelling as resemblance. As we watch our own motion
transduced into graphs and variables, for example, and, conversely, as we watch actions
in the model translated into physical effects, the modeling relationship becomes highly
salient, not through resemblance but through mediation. Whether the availability of
real-time models disrupts, accelerates, or simply facilitates the progression proposed by
Lehrer and Schauble remains to be seen. But one way or another its impact will be
strong. Lehrer and Schauble trace modeling activities back to the first grade. At that age,
tools for constructing dynamic models might look quite different from the Flogo II
programs we have seen. Nevertheless, one can imagine designing such tools, and
perhaps embedding them in an environment like Flogo II, as an open toolset.

Real-time programming bridges our bodies and our ideas

Real-time programming (live real-time programming, specifically) brings our bodies,
and the kinds of action knowledge that we have developed through bodily pursuits, in
closer contact with theory-making. It does this in two ways: first by extending the range
of programming applications into more physical and action-oriented realms. For
example, the MIT Media Laboratory recently witnessed a production of children’s
dancing called “Roballet,” in which children’s dance was enhanced by media effects
programmed by the children. Some of these effects were triggered by sensor-detected
actions of the dancers on stage. This sort of body/media hybrid art form will no doubt
continue to flower in the coming years, and be a rich domain for real-time
programming. One can also imagine similar media enhancements of sports and physical
games.
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Body-interactive games such as Bopit, as well as the dance games that are currently
among the most popular stations in most video arcades,34 bring the body slightly further
into the digital realm, in the sense that these games emphasize the person reacting to the
program, rather than the other way around. Video games represent a further step in the
same direction. While opinions vary as to how much these games involve the body,
there is no question that they are action games.

Media-enhanced
sports or dance

Body-interactive
    Games (e.g.
          Bopit, arcade
                 dance games.

Video Games

Action thinking
with live
programs

Managing
program
visualization
and control             Designing

        program elements
   for visibility and
controllability

Real-time
modeling

Fig. 2: Real-time applications and programming as a bridge from
bodies to theories

The second way that real-time programming connects bodies to theories is through the
expanded role of action and interaction in the programming process itself. In Chapter 4
we considered the importance of action thinking in children’s investigation of
programs—treating the program itself as a kind of video game. And in Chapter 6 we
have seen children taking the initiative to shape their programs in order to facilitate
perception and action. We have seen how the perception/action advantages of steady
frame variables can provide an incentive for situated abstraction in the programming
process, to the point where we can begin to see modeling as a powerful strand in real-
time programming.

The principle of the steady frame suggests a continuity between intellectual and physical
empowerment. In this continuity may be found educational opportunities that this
document can only begin to suggest. Children have a consuming interest in physical
action and the development of physical and action skills. Instead of asking them to
check these interests at the classroom door, we can build increasing connections between
action learning and intellectual learning. In the present work, the notion of a steady
frame helps to explain one important such connection: that a good theoretical idea,
when embodied in a real-time program, is often also a good interface element for real-
time interaction.

The step/process duality should be fundamental in computational literacy

The steady frame concept also helps to explain how process-oriented constructs help to
make programs more live during program execution. As the conceptual elements of a
real-time program advance, we often see a shift from steps toward processes, as

                                                       
34 While dance music plays, a screen shows a scrolling notation of dance steps to be performed to
the music. Sensors in the platform detect the player’s accuracy in performing the dance. By
dancing more precisely, the player can earn more points and play longer.
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“relational invariants” become expressed in declarative form. At the same time, we have
seen that steps are equally essential, for (i) providing part of the control framework
needed to deploy processes flexibly (a major lesson of the Flogo I experience), (ii)
offering a more concrete means of expressing ideas that the programmer is not ready to
express declaratively, and (iii) expressing some things that just make more sense as
steps.

Although steps and processes are both quite familiar from a variety of languages, a
unified paradigm of the kind found in Flogo II is rare if not unprecedented in computer
science, has never been rendered as straightforwardly as in Flogo II, and has never been
embodied in a live programming environment. Thus, prior to the current study,
beginning programmers have never been asked to distinguish and coordinate these two
ways of describing computation. On balance, the considerations presented in this
document weigh strongly in favor of the step/process duality as a central Big Idea that
can move educational programming forward.

The formal, syntactic distinction between steps and processes was not grasped quickly
by children, although older students did show progress in understanding the
distinction. Difficulty, however, is not incompatible with Big Idea status. Proportional
reasoning, for example, is a perennial sticking point in elementary and middle school
mathematics, and yet we do not doubt its importance. If the idea is important enough,
we can invest effort in smoothing children’s access to it. And indeed, as a first step in
this direction I have suggested a number of interface improvements with the potential to
make the difference more understandable, and, equally importantly, to support children
in programming effectively even before the difference is fully understood.

For the moment, the argument in favor of a central role for steps and processes rests on
these points:

Generativity. Combinations of steps and processes have been shown to express many
kinds of real-time behaviors succinctly and understandably, at both beginner and
intermediate levels. Using Flogo II, novices’ robotics projects progressed rapidly
and appear to compare very favorably with project produced using other
languages

Intelligibility. Anecdotally, children’s ability to reason about the functions and
interactions of steps and processes seemed strong, despite their difficulty with
them as syntactic categories.

Cognates in other programming contexts. The step/process duality is a variant of
distinctions seen elsewhere, including pulse vs. data in Flogo I, process
coordination issues in MultiLogo (Resnick, 1991), and edge/level confusions
encountered by college-level robotics students. That an issue recurs in so many
forms suggests that it may be fundamental, not easily avoided, and better faced
directly.

Linguistic significance. The distinction between steps and processes parallels the
fundamental distinction in linguistics known as aspect. Aspect in verbs, in turn,
maps directly onto the equally fundamental mass/count distinction in nouns.
That both processes and materials have been categorized in the same way
suggests that this distinction between bounded and unbounded forms is highly
adaptive, and deeply embedded in our cognition. This is significant in its own
right, because Big Ideas gain value through their connections across domains.
Moreover, linguistic considerations help us to understand why children’s
semantic understanding of Flogo II’s steps and processes might be far ahead of
their syntactic understanding.
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Capacity for intelligible live embodiment. While processes provide a steady frame for
live execution, programming in terms of pure processes quickly becomes arcane.
A flexible balance between steps and processes gives programmers the resources
to maximize intelligibility of the live program.

Support for situated abstraction. A live language supporting both steps and processes
allows room for incremental shifts from step-based to process-based
representations, often a hallmark of conceptual advances.

In Sum

This project has produced a connected web of designs, examples, analyses and
interpretations. In almost every instance, the claims I have made are provisional, and
would benefit from further investigation and refinement. To pick just a few highlights:

• The claim of generativity of steps and processes should be tested through fleshing
out of the Flogo II language and its application to a wide range of programming
problems, including some much larger projects.

• Proposed features to support learners in building syntactically correct
combinations of steps and processes should be built and evaluated.

• The relationship between children’s linguistic competence and their ability to
reason about steps and processes should be clarified and assessed through
empirical research.

• Longitudinal teaching and design experiments in the learning and pedagogy of
children’s real-time programming are needed to map the conceptual terrain more
reliably and in more detail, going well beyond the few landmarks that have been
noted here.

• Programming-as-theory-development needs to be further cultivated and
investigated in the context of live real-time programming.

In the meantime, tenuous though many elements of the argument may seem in isolation,
it is my hope that readers will find, in the mutual support and illumination that holds
this web of ideas together, a revealing early account of the nature and value of real-time
programming by learners, a coherent basis for optimism about its prospects, a sense of
its potential contribution to the larger cause of computational literacy, and a clear
agenda for the important and fascinating work that remains to be done.
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