BOXER MANUAL V2

BOXER

"A box is all things."
Ancient Proverb

This manual is an abridged version of the on-line Boxer Command Manual. The
latter is generally more up to date, more complete, and contains working examples.
Use these manuals in conjunction with the Boxer Structures document, which

provides an explanation of the general Boxer forms and mechanisms on which the
commands listed here operate.

Compiled & Edited by
Rafael Granados
September 1994

Revised, December, 1999

Berkeley Macintosh Boxer Legal Notification

Berkeley Boxer and related documentation are ©; Copyright 1999, Andrea A. diSessa and Edward H.
Lay (“the authors”). Prior copyright by the Regents of the University of California has been assigned to
the authors. The University of California makes no representation with respect to Berkeley Boxer and
assumes no liability whatsoever. Berkeley Boxer may contain code from the original Boxer development,
copyright of MIT. All rights reserved, except for non-exclusive license expressly set forth below.

Permission to use, copy, and distribute this software and its documentation (with the exclusion of Boxer
Structures) for educational, research and non-profit purposes, without fee, and without a written
agreement is hereby granted, providing at the above copyright notice and the following seven paragraphs
appear in all copies.

Contact Andrea A. diSessa (1053 Park Hills Rd., Berkeley, CA 94708, 510-845-6561) concerning
permission to use Boxer for commercial purposes, or to incorporate this software into existing or new
commercial products.

IN NO EVENT SHALL THE AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS,
AND THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Berkeley Boxer for the Macintosh is implemented with Digitool Macintosh Common Lisp (“MCL").

DIGITOOL, INC. (“DIGITOOL") AND ITS LICENSOR MAKE NO WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING DIGITOOL
MCL. DIGITOOL AND ITS LICENSOR DO NOT WARRANT, GUARANTEE OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RELIABILITY, CURRENTNESS OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF MCL IS
ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY
SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL DIGITOOL, ITS LICENSOR, THEIR DIRECTORS, OFFICERS, EMPLOYEES
OR AGENTS BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT
DAMAGE (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOST OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE
USE OR INABILITY TO USE MCL, EVEN IF DIGITOOL, AND/OR ITS LICENSOR HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY
FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT
APPLY TO YOU. Digitool's and its licensor’s liability to you for actual damages for any cause

whatsoever, and regardless of the form of action (whether in contract, tort (including negligence), product
liability or otherwise) will be limited to $50.

Table Of Contents

BOXER MANUAL V2.0t 1
CHAPTER 1....ooiiiieeeiiiiiii it cmmmmmmmmm e, 1
CONTROL STRUCTURE ...t iiiie e e et e ettt et et e et ettt et e e et e e e et e e e e s s s s e e e s s s s e e aanasssnnsannsesneennsenneesssmmnnnnns 1.

R] I O 1 PP PR PR 3

R et I 1 I 1 N PP PP 6

L.3 EVALUATION ...ttt ettt ettt e s st e e s et e e s s s et e e 2 s et e+ s £ 44412200 8
CHAPTER 2....00eiiiieieiiiieii it cmmmmemmmmmm e 12
DATA MANIPULATION L..uiiiititeetiitias s e e e e e eeettttta s s e e e e e eeeestea s e e e e eeesasesaa s e eeeeeeessesaa s eeaeteeeessssan s neeesesanannnnns 12

2.1 DATA COMPARISONcitiiiiiiiiiite ittt e et e st e e s s nne e e e s s s e e e e s ann e e e e s ommmnmmmmmnnne e 16

2.2 DATA INFORMATION: BOX SIZEco ittt ittt snne e e s 19

2.3 DATA INFORMATION: CONTENTS TYPE....ooiii ittt 21
2.4 DATA INFORMATION: CONTENTS LOCATIONoiiiiiiiiiiiie et e e 23
2.5 DATA INFORMATION: ACCESS BY ITEM ...ttt 25
2.6 DATA INFORMATION: ACCESS BY ROW......citiiiiiiiiiiie ittt 28
2.7 DATA INFORMATION: ACCESS BY COLUMN ...ttt e 31
2.8 DATA INFORMATION: ACCESS BY ROW & COLUMN......ciiiiiiiiiieiiiieee e 33
2.9 DATA INFORMATION: ACCESS BY NAMEottt 34
2.10 DATA CONSTRUCTION ...ceiiiiiiriiiee it ee et e e e e s e e e s s smnne e e e s annre e e e s s mmmmmnneennns 37

2.11 DATA CONVERSION.cttiiiiiitiiiee i iiieee ettt e ree e re e e s s e e e s s nnn e e e e ss s e e s smmmemmmmmne £ 40

2.12 CONVERSION BY ITEM ..ottt ettt e e s s s enmn e e e ennne s 42

2.13 CONVERSION BY ROWttt ittt e s annne e e sn e e e s snneeeeenesmnnene s 45

2.14 CONVERSION BY COLUMNcoiiiitiiiieiitieie et sssnne e e s ssnnre e s ssnnee e e s snneesnennd 48

2.15 CONVERSION BY ROW & COLUMNciiiiiiiiiieiiitiie et e s e e nnnne e snrnee e 51.....
2.16 CONVERSION BY BOX...ciiiiiutieieeiitieieesitieteesasnee e e snsreeaesannet e e s snnneeaesannee e e s snnne e e e s s om0 52

2.17 CONVERSION BY CHARACTER. ...ttt s 25

2.18 ACCESSING NAME INFORMATIONctttieiiiiiiieniiieie e sitree et e s e s snnne e s s e 56.....
CHAPTER 3. ..ttt i e 59

LT 12 59

3. L MOVES AND TURNS ...ttt sttt e s st e e e e s 65

3.2 SETTING POSITION AND HEADINGcutiiiieiitiiiie et e e 67

.3 HIDE & SHOWV ...ttt ettt e e e e s et et e e e aa et e+ o—— e 70

G N PSPPSR PRSP 72

3.5 CLEARING GRAPHICS. ...ttt ettt e e e s n e s mmmmmmmmmmen e 84

3.6 GRAPHICS SIZE & MODEooiiiiiiiiie ettt e s e s 85

3.7 SNAPPING & CHANGINGcoiiiiiiiiieiiieeee ittt e e e s s e e s snree e s s nmeeeeesmneeas 87

GRS O @] PSPPI 89

3.9 SPRITE INFORMATION & PROPERTIEScoiiii ittt n e e aaaa e 02...... 1
3.10 UPDATE PROPERTIES ... oottt e e s 109

0 700 I RO I o = |1 AN I N 110

3.12 SPRITE SIZE, SHAPE & HOMEuuitiiiisei sttt e aaaaaaaaaaaaeaaaees 112

3. 13 MOUSE INPUT & CLICKS ..ottt s e s e e e e e e e e e e e e s 114

0 T I 1V (@ 0 1S = @ 1 N N [] 116
CHAPTER 4. .uuuuiutitiiitii ettt ettt ettt ettt ettt ettt ettt e eeesee s e eeeeeeeeeeeees 119
ARITHMETIC & L OGIC ..uiuietiieieiesteiete sttt s eeses et eseste st sesteaesesse e esesaeseasesseseasessesessessenessensasessensmmmnns 119.

4.1 ARITHMETIC OPERATORS & FUNCTIONSouitiiiiiiiiiis et e e e e ee et e e e e eeeeeeeaeeaaeannennnnnnnn s 123
4.2 COMPARISON OPERATORS & FUNCTIONS. ... n e e e e e e e e e e e e e n e e e aeeees 126
A3 NUMBER TYPE ... iiiiitiiiiiiiii sttt ettt ettt ettt s s s s e e s e e e e e e e e e eaannnannnnnnnsessennnes 129

4.4 VALUE INFORMATIONoiiiiiiiiiiiiiiee ettt eeeeeeeetteeaeeeveee e aeeaaesssansssnsssssssnss s nnns 131

4.5 OTHER NUMERIC FUNCTIONSottt ettt eaeesaeaeeeesnee s e e s s 133

4.6 EXPONENTIAL & LOG FUNCTIONSottt aaenenne e 136....

4.7 TRIGONOMETRIC FUNCTIONSottt eeeees 138

4.8 NUMBER CONVERSION TO INTEGERSooittittetcisiss sttt 140
4.9 NUMBER PRINTING CONTROL......coiiiiiiiiiiiieiieiiiiitisssssss s s s s s e e e e e e aaeaaaaaaaaseeeeeeeseeeseessss 143

.10 LOGIC ... ettt e et e e et et e et e e e e e e e ee e e e e e e e e eeeeeeeeeee ettt e s ammm——————— et teeteeeeeeeeees 144

(OF AN el I = S T T O T P PP 146
I T £ P 146

DL TRIGGERS ...ttt e e e et e aaeannan a1 mmmmm————————n s 148

(OF AN el I = T T T P PP 152
MISCELLANEOUS COMMANDS......c.veutteseesesteseesesseseasesseseasessesessessesessessesessessasessessssessessssessessssessasessensasessessssens 152
6.1 MISCELLANEQOUS COMMANDSottiitiiiiiiirs s sss s s s s s s s e s s s s s s e s s s s e aaaaaaaaaaaaaaaaaaaaaaaeesss o 154..
CHAPTER 7.ttt ettt ettt ettt ettt ettt eeeeeee s e e e e eeeeeeees 155
ENVIRONMENT: INPUT & OUTPUT c.vuvitietiitesietestesesteseesesteseesesseseesessessasessasessessasessessasessessnsessessesessessasessensasens 155
200 R L N 1 U N 158

7.2 INPUT: KEYSTROKE BINDING........cccoiiiiiiiiiiiiiie ettt ettt aaeaaeesaeaeseenne e s s wmmennns 160

7.3 INPUT: MOUSE BINDING.......ctttiitiitiiiiiiiinniunnee s ssasssssss s s s s saasssasaaassaaaaaaaaaseasssmmmmmmmmnnnnes 162

7.4 INPUT: MOUSE POLLINGcooeiiiitieeieiiiieiieiiiseiieineieeeea s s s s e s s e e na e e e e s e 164

7.5 REQUEST FOR INPUT HANDLINGcoottiiiiiieeieeiieieeeiieeieeeieeiveeeeeeaenrenenennsssssssass e s 170..
CHAPTER 8....uuuuuuuuututtuuittutttte ettt ettt ettt ettt ettt et ettt et e eeeee e s e e e eeeeeeeeees 172
ENVIRONMENT: FILE COMMANDS ... veutetitestatestesessessesesseseesessessesessessasessesessessesessessasessessesessessessssessasessensasens 172
8.1 STANDARD FILE COMMANDSooiiiiiiiiiiieieeeieeeeeeeeeeeeeeveesaaeeeesraneaaeeasannsseansnnsnnn s smmmnn 175

CHAPTER Q....cveiiiiieiiiiiei it e 183

ENVIRONMENT: KEYSTROKES ANDEDITING ...uuuiieetttettttttuseeeeeeeettnsnnseesseeesssnseeasssessssnnneeeesseesmmns 183
9.1 MOVING IN BOXER ...oeii ittt ettt e e e e s s nn e e s e mmnnensmnen e e 184

9.2 MAKING BOXEScoiiiiiiiiiee ittt ettt ettt e st e s st e e s et e e s sn et e e ssne e e e e anne e e s sanne e e e nnnes 185

9.3 CUT AND PASTE ...ttt ettt e e e st et e e s e e e e s eeemne e e s eannrre e e 186

9.4 OTHER KEYSTROKESottt eemmen e e e 187

9.5 KEYS THAT PRINT ..ottt ettt et e e e e s n e e e emmmmnmennmme s s 189

9.6 CURSOR LOCATION ...ttt ettt e e e e s e e e s s nn e e e eesnn e e e e snnnes 192

S A =10) A 4 | N PP 193
CHAPTER 10...0iiiieeiiiiieii ittt s e cmemnmmcmne e 194
ENVIRONMENT : NETWORKING ...uuuiiieieiiietittitsseeeseeeettttasseeesseeasssssasaeaeaseeessssnnseeeeseestsssnnaaeeesseesmsnnnneeeeens 194
10.1 NET BOX FILE/DIRECTORY COMMANDS.......coiiiiitiitiie ettt e e 197
0207 1 | PR PPRPR 202
CHAPTER 11, .00ttt cmemnmccmnn e 205
ENVIRONMENT: MISCELLANEOUS.citttttttuuuteeesteetettuuaaseaeeeeessssaa s aaateeeesesnaaeeeteeeetssnaaeeetreestsnnnaaeeaeees 205
11.1 SYSTEM-PREFERENCES ...t 209

11.2 RESULT APPEARANCEcooi ittt st e e e e e s rmne e eennmnes 210

11. 3 EVALUATOR-SETTINGS.ottt e s e snnneenan 211

11.4 GRAPHICS SETTINGSttt n e s n e e s s 215

11.5 EDITOR SETTINGSciiiiiitiiee ittt ettt e et et e s s e e e s sn e e e e sa s s e e emmenennme e e 218

11.6 FILE SYSTEM SETTINGSooiiiiiiiiiie ettt e e e s snneees 223

11.7 NETWORK SETTINGS ..ottt ittt et s amn e e s s e e e s s nneeesannneeen e 224

11.8 COMMUNICATIONS SETTINGS ..ottt 225.

11.9 MISCELLANEOUS SYSTEM COMMANDScooi ittt e e e e e 226
L1120 EXTENSIONS ...ttt e st e e e e st e e s e r et e e s s e e e e e memnemmmen e e s nrreee s 233
11.11 SERIAL PORT: SETUP ...ttt e e nn e e 235
11.12 SERIAL PORT: READING ...ttt ettt s 237
11.13 SERIAL PORT: WRITING..... .ottt s 239
11.14 SERIAL PORT: PREFERENCES ...ttt e 240..

CHAPTER 1

Control Structure

In general, Boxer executes procedures one command at a time, left to right, top to bottom -- just
like reading text. However, for many reasons, you may want to change this behavior. The two
most frequent non-linear control patterns r@getition in which a segment of code is evaluated
several times, ansklection in which some code may be executed, or not, depending on
circumstancesf is the main contraelectioncommand, andepeatis the main repeater.

Boxer also includes other control options. You may choose to execute data in Boxer using the
run command, effectively changing a data box intm# box. You may also choose to
deliberatelystop some currently running procedure. Or you may change where execution takes
place withtell (ask)

Chapter 1

Boxer Language

1. SELECTION
if
ifs
unless
when

2. REPETITION

repeat
loop
for-each-item
for-each-row

3. EVALUATION

stop
stop-loop
tell
ask
run

@

AN

These areonditionalcommands that execute some code, or not, depending on
some condition.

These aréeratorsthat run some code over and over.

These commands all change the normal modes by which Boxer executes code.
They change place of executidell); they change where Boxer looks to find a
variable fell and™); they cause data to be executed like a procedumg;(@and

they allow you to construct command lines on the fly out of computed
information or information in data boxe@j.

Chapter 1 1.1 Selection

1.1 SELECTION

if

Syntax
if <condition> <action> <optional-alternate-action>

Description
Runs <action> or <optional-alternate-action> depending on whether <conditivae is
or false If the <optional-alternate-action> is not present, nothing happens when the
condition isfalse Always enclose actions in boxes unless they are single words. Note
thatif can be used as a function (that is, to return a value) as well as a command. This
happens if expressions are used in place of <action> and <optional-alternate-action>. The
value returned byf is the result produced by whichever expression is evaluated. It is best
to put the <action> and <optional-alternate-action> in doit boxes: for clarity, for
inspectability (some ifs might be long -- a doit box can be shrunk to hide it for easy
inspection of the rest of the command), and to avoid bugs due to Boxer readiifgiryour
a different way than you intended.

Example

if
I_: =2 I_:]:uange n 3 L:hange n 3
ait o— LY} S——

ata

Chapter 1 1.1 Selection

ifs
Syntax

ifs condition 1 <actionm 1»
<condition Z: <action 2>

elfe soptional-alternate—action:
ata

Description
A command to handle multiple conditions. It takes as input a data box, with each line

having (1) a condition and (2) an action (no alternatissgxecutes the action for tifiest

true statement onlyyou can have as many or as few condition-action pairs as you want.
Theelseclause is optional. If you include atseand none of the conditions are true, the
<optional-alternative-action> gets run. Likethe actions or alternative-action may end
with a value, which will be returned as the value of the whisléHowever, unlikef, the
<actions> need not be a single token (word or box), so you need not include multiple
command actions in a doit box if you chose not to.

Example

if=
1 ¢« 2 beep beep beep
else heep

ata

unless

Syntax
unless<condition> <action>

Description
This commanaill execute the action unless the condition is true. It is the same as saying
if not, except that you can't have an alternative action. You need not enclose <action> in a
box; unlikeif, <action> need not be a single word or box.

Example
nnless
L; =10 beep
ol

it change 1
i+ 1
oit

ait

ata

Chapter 1 1.1 Selection

when

Syntax
when <condition> <action>

Description
This command is the sameifsexcept that you can't use it to specify an alternate action.
It's just a nice, natural-language way to gapnd it allows you to type an <action> of
several words without placing them in a doit box, as witless

Examples
when done? beep beep heep

Chapter 1 1.2 Repetition

1.2 REPETITION

repeat

Syntax
repeat <number> <action>

Description
This command takes two inputs, a number and an action. The number specifies how
many times the action should be executed. The first input is rounded to the nearest
integer, in case it is not already an integer.

Example
repeat n
change 1 1 + 1
besp
redisplay
ait
| 2 || =
ata ata
loop
Syntax
loop <action>
Description

This command creates an infinite loop. It repeats over an over until you manually stop,
use astop or stop-loopcommand.

Example
loop
changs i
i+1
ait
beep
redisplay
ait
22

ata

Chapter 1 1.2 Repetition

for-each-item

Syntax
for-each-item <variable> <data box> <action>

Description
This commandirst changes the value of the specified variable to be the first item in the
input box, and then executes the action (which may involve the value of the variable).
Then it changes the value of the variable to the second item and executes the action, and
so on, once for each item.

Example

for-each-item x
[-; 2_3) change sum
ata =um + X

oit
|3 ” 0 |
ata Data

for-each-row

Syntax
for-each-row <variable> <data box> <action>
Description
This commands the same a@®r-each-item, but with rows. It sets the value of the
specified variable to the first row of the input box and executes the action. Then it sets the
value to the second row and executes the action, and so on, once for each row.

Example

for-each-romw x

redisplay

ait

1 change =sum
o sum — X
2 nit

ta redisplay
ait

55

Chapter 1 1.3 Evaluation

1.3 EVALUATION

stop

Syntax
stop <procedure-name>

Description
This command stops a procedure. It is an unusual Boxer primitive in that it has an
optional input: if you specify the name of a procedure, it stops that procedure (if it is
running!). If you don't specify the name of a procedure, it stops whatever box it is in.
Note thatstop returns a value if one is computed as the last command ls¢bpre
Because of thistopis as powerful as catch and throw in Lisp or Logo.

Example

|nulher| |nuuntup|
] input n
ata if o 5 stop
changs number n
redisplay
sleep 1
ait
counbup oo+ 1
L Do it
countup 1
stop-loop
Syntax
stop-loop
Description

This command stops the currently running loop (sep). Loops may be nested within

one another, anstop-loopwill stop the innermost loop. Note thetbp-loop will not

work with named user procedures (se#p for stopping named procedures.)
Example

|find-first—factor|

inpukt n
loop

if 0 =mod nuom
m stop-loop change m m + 1

] L Do — 1 L hinit ata
alt

L Do it

find-first-factor 1711 |

29

ata

Chapter 1 1.3 Evaluation

tell
Syntax
tell <box> <action or variable name>
Description
tell takes the <action or variable name> as a message and executes it in inside <box>.
Usually, when you execute an action or the name of a variable in Boxer, it looks for that
action or variable starting in the box you're currently in. If it doesn't find the variable, it
looks in the box that contains the one you're in, and so on outwardtelVigbu can
direct Boxer to execute the action or find the variable in a particular named beX. So
asks the box you specify to execute the action or find the variable as if you had done this
from within that boxtell <box> <message> operates as if you moved your cursor into
<box>, typed the <message> and pressed the doit key. Except it doesn't I€auesaly
(typing) in the <box>, and it returns any results back to the placeethatas executed.
askis a synonym fotell. You can think ofisk as a polite form, or a form better suited to
askingfor information tharelling a box (to execute a variable name or procedure) for
some information.
Example
tell joe
changs age |
age + 1
) ait
alt
Hary Joe
[Age] [Height| [Feight] Age| [Height| [Weight|
[Ea_) [f L)[ffﬁ 26 [E 12")&?0)
ata ata ata ata ata ata
ata ata
ask
Syntax
ask <box> <action or variable name>
Description
askis a synonym fotell.
Example
ask marvy height | -
ata
Hary Joe
[age] [Height| [Weight] Age |[HEeight| |Weight]|

e)G e)] (Le) g)l)

at ata

Chapter 1 1.3 Evaluation

run
Syntax
run <input>
Description
run takes its input (a data box) and executes it as a procedure. That is, it effectively turns
a data box into a doit box. It will return a value if running its input results in a value.

Example

run
repeat 32 beep|
ata

@

Syntax
@ <data-box>

Description
@ in front of a data box, or in front of a procedure that will provide it with a data box,
tells Boxer to strip away the box and use what's inside. You can Eatthie contents
(insides) of ..."lIt is handy in case you want some text to appear in a line of code, but that
text needs to be computed or exists in a data@owas designed to be used witthild,
but was extended to be useful'@omputing lines of code to execut@'is very special
in Boxer. It does not return a result in the usual way. Instead, Boxer replace@every
with the result of running what follows it, and then executes the resulting line of code. It
is similar tounbox, except more powerfulufbox always returns a value in a data box,
hence that value never gets executed, as it doesavjth

Example:

@Bocommand @variable 7

|rariahle| |cullanﬂ|

EDH;J D

10

Chapter 1 1.3 Evaluation

Syntax
N <a name>

Description
A is used before a name. It means "use the box with this name from the place where the
lasttell (ask) was executed." This is an important feature when you want to send along
the value of a variable, or a certain procedure, in the megsdde a box that ordinarily
wouldn't have access to the variable or procedure. Raadthis <variable, procedure>"
or as "the local <variable, procedure>". In the exampleielheauseshangeto be
executed insideom, who does not have acceshitw-much (inside deposit) unless " is

used.
Example
|depu51t| |jue| |tu-|
input how—much who
Eell Ewho change 3% $% + “how—much IE' IE'
it ug J [35 J
ata ata
ata ata
deposit 5

tom
ata

11

CHAPTER 2

Data Manipulation

This chapter discusses the manipulation of data. In BOXER, the primitive data type is the data
box (Figure 1a). A named data box is a variable (Figure 1b). Data boxes can be filled with text,
numbers, or other boxes (Figure 1c). By nesting data boxes, you can create hierarchical data
structures. The parts of a hierarchical data structure can be individually named (Figure 1d. See
also "access-by-name" in "data-access"). There also exists a mechanism for creating arbitrarily
connected networks of boxes (see Boxer Structures on Ports).

apple O [ﬁilj
10 20
(@) Q (b)@*D - (d) mn—:“

Figure 1. Examples of data boxes

Data is passed into a procedure in a data box, and returned from a procedure in a data box (see
procedure inputs and outputs). Data may be treated as a list (one-dimensional), as a sequence of
rows, as a sequence of columns, or as an array (two-dimensional). There are accessors (that fetch
part of the data) and mutators (that change part of it) for each of these modes.

Graphics boxes (see sprite graphics) have most of the behaviors of data boxes, except they have
a graphical presentation on which pictures can be shown and in which sprites can wander and
draw. Numbers are a special kind of data that do not have to be typed in a data box. But
executing a number will return the number in a data box. Not having to type numbers in boxes to
designate them as data is merely a conveni¢neeandfalse are special in exactly this way.

The following sections present examples of commands for comparing boxes, getting information
from data structures, accessing data from data structures, constructing data, and for accessing
information on commands and on things named by the user. The information gathered through
these commands can be used in several ways, such as to check if a piece of data is of the proper
type (e.qg.jf number? X ..), as arguments to selectors, as termination conditibespty? X

stop), as parameters for iteratiorepeat number-of-itemsX ..), or just to let you know what's

there.

12

Chapter 2 Boxer Language

2.1 DATA COMPARISON

= These commands compare two boxes.
equal?
alpha>
alpha<

2.2 DATA INFORMATION: BOX SIZE

number-of-items These commands give the size of a box, in different measures (rows, columns,
number-of-rows items).
number-of-columns
count
length
height
width

2.3 DATA INFORMATION: CONTENTS TYPE

empty? These commands tell you something about the contents of a box.
number?

unboxable?
word?

2.4 DATA INFORMATION: CONTENTS LOCATION

member? These commands find numerical locations of specified items in a box, or
item-numbers (member?) whether an item is in a box at all.
row-numbers
column-numbers

2.5 DATA INFORMATION: ACCESS BY ITEM

first These commands treat the box as a one-dimensional collection of sub-items.
item The ordering of the items is by item number, which starts at one for the first
last item and increases as you go from left to right and top to bottom.
butfirst
butitem
butlast
items

2.6 DATA INFORMATION: ACCESS BY ROW

first-row A box may be considered a sequence of rows, and there are corresponding
row accessors and mutators that are very similar to those for a box considered as a
last-row list (i.e., as a sequence of items). Sometimes the vertical presentation of rows
butfirst-row is better than horizontal lists, so you may want to list process on rows, using
but-row first-row andbutfirst-row in exactly the way you use
butlast-row first andbutfirst . Also, rows are more convenient when you have short lists as
rows data items.

13

Chapter 2

Boxer Language

2.7 DATA INFORMATION: ACCESS BY COLUMN

first-column
column
last-column
butfirst-column
butcolumn
butlast-column
columns

A box may be considered a sequence of columns, and there are corresponding
accessors and mutators that are very similar to those for a box considered as a
list, (i.e., as a sequence of items). Columns are generally less useful than rows,
so these commands are more for completeness than general use. Note that a
column is defined by the number of the item in each row -- spacing is
irrelevant.

2.8 DATA INFORMATION: ACCESS BY ROW & COLUMN

rc

This command views the box as a two dimensional array of elements.

2.9 DATA INFORMATION: ACCESS BY NAME

ask (tell)

self
superior

2.10 DATA CONSTRUCTION

build
join-bottom
join-right
boxify
datafy

2.11 DATA CONVERSION

change
retarget

2.12 CONVERSION BY ITEM

change-item
change-last-item
insert-item
append-item
delete-item
delete-last-item
delete-items

2.13 CONVERSION BY ROW

change-row
change-last-row
delete-row
delete-last-row
delete-rows
insert-row
append-row

Two methods are provided for getting the pieces of a box by nsske.
(synonymtell) uses message passing. "Dot notation" allows you to specify a
chain of boxes within boxes by name.

Boxer basically only has one very powerful and graphical means of
constructing complex data objects out of piebedld . With build, you may
also create newly named boxes whose names are comjitethottom and
join-right are convenient abbreviatiorBoxify anddatafy are also
conveniences.

These commands mutate or change boxes.

These commands treat the box as a list of items. This class is frequently used
to fiddle with parts of a box one at a time, as a program progresses. Contrast
accessors like item, first, which are usually used in list processing that
systematically moves through a box

These commands treat the box as a list of rows. This class of functions is
frequently used to fiddle with parts of a box one at a time, as a program
progresses. Contrast accessorsiide, first-row , which are usually used in
list processing that systematically moves through a box

14

Chapter 2 Boxer Language

2.14 CONVERSION BY COLUMN

change-column Similar to row and item mutators, except oriented to columns. These are not
change-last-column frequently used, since columns are awkward visually in many instances.
delete-column
delete-last-column
delete-columns
insert-column
append-column

2.15 CONVERSION BY ROW & COLUMN
change-rc These change part of a box, indexed by row and column (array) specification.
insert-rc

delete-rc

2.16 CONVERSION BY BOX

boxify These are functions that do some simple conversions on data, like putting it in
datafy a box, getting a port to it, or making a copy of it. Boxer gets character data by
copy taking words apart into letters, or, uses characters to build words (see directly

port-to below). This is unlike Logo.

unbox

2.17 CONVERSION BY CHARACTER

letters Characters are handled in Boxer by converting words into a series of letters,
word doing any operations on the letters (treated as individual items) and converting
back to a wordletters converts to a list of letterauord converts back to a
word. You are best off processing many words at the word level first,
converting only one word at a time to letters.

2.18 ACCESSING NAME INFORMATION

name-help These commands get information about the names of things or a
name? things that are named. These include Boxer commands as well a
local-name? boxes named by the user.
name-in-box?
names

top-level-name?
target-name

15

Chapter 2 2.1 Data Comparison

2.1 DATA COMPARISON

Syntax
<box1> = <box2>

Description
= checks if <box1> and <box2> have identical contents. It retamasor false It works
on numbers as well as boxes, and it treats decimals, integers and fractions as equivalent
types. Note that ignores portness“and just checks the contents of the target box. In the
last example (below), a port to a box contairiagplée' is considered equal to a box
containing'applée'.

Examples

t = |
apple TRIUE
ata ata

apple

Diata

= I
[apple | fruit TEIE
1% 1%

apple
S

16

Chapter 2

2.1 Data Comparison

equal?
Syntax
equal?<box1> <box2>

Description

equal? checks if <box1> and <box2> have identical contents. It retiwasr false. It

also works on numbers as well as boxes, and it treats decimals, fractions and integers as
the same if they are numerically equal. Note #tatal? ignores'portness'and just

checks the contents of the target box as is illustrated by the second example.

Examples
equal? [: t
apple TEUE
ata ata

apple

Oiata

equal?
[?pp | fruit

apple
"]

fruit

apple
Lt

alpha>

Syntax
alpha> <box1> <box2>

Description

I
| TEIE |
bt

This command checks if <box1> comes alphabetically after <box2>. It rétuensr
false Spaces, boxes and special characters might have surprising behavior. Upper case
letters come before lower case, and, generally, symbols come before upper case.

Example

LLPHA: ¥ L | [;:‘i:)
[E?nana |[:fple|
ta

17

Chapter 2 2.1 Data Comparison

alpha<

Syntax
alpha< <box1> <box2>
Description
This command checks if <box1> comes alphabetically before <box2>. It ré&tuensr
false Spaces, boxes and special characters might have surprising behavior. Upper case
letters come before lower case, and, generally, symbols come before upper case.

Example

LLPHA: ¥ L |
| FalLZE |
ta
[r] [¢]

[-E;anana | [-:pple
ta ta

18

Chapter 2 2.2 Data Information: Box Size

2.2 DATA INFORMATION: BOX SIZE

number-of-items

Syntax
number-of-items <box>
Description
Returns the number (an integer >= 0) of items in the input <box>.

Example
nmber-of-itemns |
[-E‘ne two three | | 3 |
12 ta

number-of-rows

Syntax
number-of-rows <box>
Description
Returns the number (an integer >= 1) of rows in the input <box>.

Example

number-of-rows |
(ahaT) 4
too ata

three

ata

number-of-columns

Syntax
number-of-columns <box>

Description
Returns the number (an integer >= 0) of columns in the input <box>.
Example

number-of-columns |
[-;ne two a three :En:-urj | 3 |
ta ta

count

Syntax
count <box>

Description
Abbreviation for number-of-items fdrogo compatibility. Returns an integer >=0in a
box.

Example

count |
[-;ne two three | | 3 |
ta ta

19

Chapter 2 2.2 Data Information: Box Size

length

Syntax
length <box>

Description
Abbreviation for number-of-items. Returns an integer >= 0 in a box.

Example
length j I O
[E‘ne tmo three 3
ta ta

height
Syntax
height <box>
Description
Abbreviation for number-of-rows. Returns an integer >= 1 in a box.

Example

height |
one | q |
tmo ta
threes

four
ta

width

Syntax
width <box>

Description

Abbreviation for number-of-columns. Returns an integer >= 0 in a box.

Example

width |
[-;hra cadabra cadahraj | 3 |
ta 12

20

Chapter 2 2.3 Data Informat ion: Contents Type

2.3 DATA INFORMATION: CONTENTS TYPE

empty?

Syntax
empty? <box>

Description
Asks if its input is an empty <box>. It returtnee or false A box is empty if all of its

lines are empty. The last example below shows a typical \=amtly?, i.e., to reverse a

list.
Examples
| | | TRUE|
ata
reverse |
|a b o | |c b a |
13~

empty?
|reverse|

input x

if empty? x x

build

[
L}ast x LfeverEE butlast x
Dit

— [t

number?

Syntax
number? <box>

Description
Returngrue precisely when the input is a number.

Example

number? |
TRUE
ata

21

Chapter 2 2.3 Data Informat ion: Contents Type

unboxable?

Syntax
unboxable?<box>

Description
Returngrue if and only if its input contains precisely one box, so that you may apply

unbox to it. This command is useful to find out if a box can be safely unboxed with the
commandunbox (to result in another data box).
Examples

u:ulu:i}:al'-le’f' O D
ata
ata
try |
| x | | x |
[t [t
try | D
}:
| X | Lt
1%

[t
try

input x
if wnboxable? x x

|

[Ckait:

word?

Syntax
word? <box>

Description
Returngrue or false depending on whether the input is a box containing a single word.
Numbers count as words.

Examples

word |
Summey SummeY
ta

word? 1.0 |
TEUE

(173 1

22

Chapter 2 2.4 Data Information: Contents Location

2.4 DATA INFORMATION: CONTENTS LOCATION

member?

Syntax
member?<item> <list>

Description
This returndrue or false depending on whether <item> is in <list> or not. The <item
may actually be a sequence, and member? checks whether the full sequence appears in
<list>.

Examp

le
member? |
[&eac_h) apple pear | | TEUE |
ta peach orange ta

ta

item-numbers

Syntax
item-numbers <template> <list>

Description
This returns a list of numbers that tells you at which positions <template> is found in
<list>. A typical use of this command is to give you information as to the location of
occurrences of a particular item in a list.

Example

item-numbers |
[:?ﬁj [;fe word abc has no meaningj |3 |
ta ta ta

row-numbers

Syntax
row-numbers <template> <box>

Description
This returns a list of numbers that tells you at which rows <template> is found in <box>.
A typical use of this command is to give you information as to the location of
occurrences of a particular item in different rows.

Example
row-nombers |
[;hri) | 2 |
ta abra ta
cadabra
ta

23

Chapter 2 2.4 Data Information: Contents Location

column-numbers

Syntax
column-numbers <template> <box>

Description
This returns a list of numbers that tells you at which columns <template> is found in
<box>. A typical use of this command is to give you information as to the location of
occurrences of a particular item in different columns.

Example

column-numbers |
[-;hri) [-m abra cadahra) | 1 |
ta ta ta

24

Chapter 2 2.5 Data Access By Item

2.5 DATA INFORMATION: ACCESS BY ITEM

first

Syntax
first <box>

Description
Returns the first item in <box> (and that item will be enclosed in a box). Note that all
data accessors preserve as mymrtness as possible. So if the inputfiost is a port
and the first item is a box, then the result will be a box containing a port to that box (see
second example below). If the first element of a port which is the iniusttas not a
box, Boxer cannot return a port to it, of course, and so you get a copy (see third example
below). If the first element of the box is a port, naturally Boxer returns a box containing a
duplicate port.

Examples

first |
[E?ry had a little lambj |mary |
ta ta

first port-to x |

apple
O
[hta

first port-to ¥ |
|apple |
hta

=]

pear banana apple pear
| apple | e
kta

1)
item
Syntax
item <n> <box>
Description
Returns item number <n> of <box> enclosed in a box. The valid range of item numbers is
from 1 up to the number of items in the box. Numbers outside this range return an error
box. This command preserves as migbrtness as possible. See documentation for
first.
Example

item 3 |
[Z?ry had a litte too much lamhj |a |
ta ta

25

Chapter 2 2.5 Data Access By Item

last
Syntax
last <box>
Description
Returns the last item in <box> enclosed in a box. All data accessors preserve as much
"portness as possible.
Examples
last |
mary had] |lamb|
a very little lamb ta
1a
last port-to x |
apple
e
hte
la=st port—-to ¥ | D
pear
bt
&
pear banana apple pear
| apple | bt
it
(I
butfirst
Syntax
butfirst <box>
Description
Returns a copy of the box with the first item missing. If the box contains only one item,
thenbutfirst returns an empty box. Note that all data accessors preserve as much
"portness as possible.
Examples
butfirst |
[E?ry had a little lamhj [Efd a little lamh]
ta]
butfirst port-to x |
banana
apple
[kt)
te

26

Chapter 2 2.5 Data Access By Item

butitem

Syntax
butitem <n> <box>

Description
Returns a copy of <box> with item number <n> removed. If n is <= 0 or > the number of
items in the box, then an error is signaled. Note that all data accessors preserve as much
"portness as possible.

Example
butitem 4

I
mary had mary had
a little lamb a lamb

ata ata

butlast

Syntax
butlast <box>

Description
Returns a copy of the <box> with the last item missing. If the box contains only one item,
thenbutlast returns an empty box. Used likatfirst, except in cases an inverted order is
preferred for some reason. All data accessors preserve as much "portness" as possible.

Example
butlast |
mary marr
had a had a
little lamb little
ata ata
items
Syntax
items <start> <end> <box>
Description

Returns a box containing all the items in <box> from <start> to <end>.
<start> and <end> are integers. As usual for data selectors, items returns a port to a box,
where possible, when a port is given as input.

Examples

items 3 4 |

mary a

had a little

little lamb ata

ata

I
one three one
|twn | o
[kt

Chtw _JEE_EJ
[t

ITEMS 1| 2 port-to

27

Chapter 2 2.6 Data Access By Row

2.6 DATA INFORMATION: ACCESS BY ROW

first-row

Syntax
first-row <box>

Description
Returns a box whose contents are the same as the contents of the first row of the input. If
the input's first row is empty, an empty box will be returned.fig&efor documentation
on typical usefirst-row preservesportness as much as possible.

Examples
first-row |
the first row | [ETE first r0w|
[:?E second row ta
ta
I

first-row port-to x

a =

b
LN
bt

El.[:D
h
Lt

Tt
row
Syntax
row <n> <box>
Description
Selects row number <n> of <box> and returns a box whose contents are that row. Rows
are ordered from top to bottom, and start at one and end uprairtieer-of-rows of the
box. Row numbers outside this range result in an error box being returned. If the number
is not an integer, an error is returned. Bem for more comparable documentation.
Preserve$Sportnes$ as much as possible.
Example
row 2
wind fire
fire ata

ice
ata

28

Chapter 2 2.6 Data Access By Row

last-row

Syntax
last-row <box>

Description
Returns a box whose contents are a copy of the last row of the input. If the input's last
row is empty, an empty box will be returned. 8est for more extensive documentation
on typical use. Preserv&gortness as much as possible.

Example
last—row |
wind ice
fire ta
ice
ta
butfirst-row
Syntax
butfirst-row <box>
Description
Returns a copy of its input with the first row missing. Preserves "portness" as much as
possible.
Examples
utfirst-row
wind fire
fire ice
ice ata

ata
utfirst-row port-to = |

ATl
apple pie
kta -

ht

&]
&
|P1E |
kta
an
|apple pie |
1

hta

29

Chapter 2 2.6 Data Access By Row

but-row

Syntax
but-row <n> <box>

Description
Returns a copy of <box> with row <n> missing. Presetpestness" as much as
possible.

Example

butrow 2 |

wind wind
fire

fire ice

ice ata

ata

butlast-row

Syntax
butlast-row <box>

Description
Returns a copy of its input with the last row missing. Presép@gnes$ as much as
possible.

Example
butlast—row

fire fire
ice ata
ata

rows

Syntax
rows <start> <end> <box>

Description
Returns rows numbered <start> to <end>. <start> and <end> must be in order and

between 1 and theumber-of-rows in <box>. Preserveportness as much as possible.
Example

rows 3 4
mind fire
ice
fire ata
ice
ata

30

Chapter 2 2.7 Data Access By Column

2.7 DATA INFORMATION: ACCESS BY COLUMN

first-column

Syntax
first-column <box>

Description
Returns the first column of the input. Note spaces do not shift items into other columns.
The first item on the row is in the first column, no matter where it appears due to spacing.
Preserve$Sportnes$ as much as possible.

Example

first—column |
a

e
ata ata

m o
Hh
T ly]
="

column

Syntax
column <n> <box>

Description
Returns column number <n> of <box>. In Boxer columns are counted logically; spacing
doesn't matter. Preservgsortness as much as possible.

Example

colonn 3 |
(o]

e 4
fgh g
ta

LI

ta

last-column

Syntax
last-column <box>

Description
Returns the last column of the input. Beware that "last" means the last logical item of
each row -- spacing and alignment don't count! Presépggtness as much as possible.

Example

last—-column |

abcocd d
e fgh L
ta ta

31

Chapter 2 2.7 Data Access By Column

butfirst-column

Syntax
butfirst-column <box>

Description
Returns all but the first column of the input. Preselpestness as much as possible.

Example

butfirst—-column |

m o
Hh
T ly]
="

ata ata

butcolumn

Syntax
butcolumn <n> <box>

Description
Returns a copy of the <box> without column number <n>. In Boxer columns are counted
logically; spacing doesn't matter. Preserifmsrtness as much as possible.

Example

butcolumn 2 |

oo
H, B
i o
B
oo
=
="

ata ata

butlast-column

Syntax
butlast-column <box>

Description
Returns a copy of the input box without the last column. The last column (removed) is
the last item of each row, independent of spacing. Presgrudasess as much as
possible.

Example

butlast—column |

m
M
0 0
[=="
m
H
0 o

ata ata

columns

Syntax
columns<start> <end> <box>

Description
Returns rows numbered <start> to <end>. <start> and <end> must be in order and
between 1 and theumber-of-columnsin <box>. Preserveportness as much as

possible.
Example
columns 2 3 |
abcod b =
= fgh f g

ata at

32

Chapter 2 2.8 Data Access By Row & Co lumn

2.8 DATA INFORMATION: ACCESS BY ROW & COLUMN

rc

Syntax
rc <row> <column> <box>

Description
Returns a box containing the element that is at row number <row> (starting at 1 and
moving from top to bottom) and column number <column> (also starting at 1 and
moving from left to right) of the input. If there is no element at the specified row and
column numbers, then an error is signaled. In Boxer columns are counted logically;
spacing doesn't matter. Blank rows, however, count as a row. This command preserves

"portness as much as possible.
Example
.
row 1 row 1
col 1 col 2
ata ata

re 1 2 ¢
row 2 row 2
col 1 col 2
ata ata
-

Data

33

Chapter 2 2.9 Data Information: Access by Name

2.9 DATA INFORMATION: ACCESS BY NAME

ask

Syntax
ask <box> <whatever>

Description
Returns the box named <name> from inside the box named <box>. Can be chained as in
ask <boxl1>ask <box2> <name>tell is a synonym foask. askis Boxer's standard
message passing command. The model is thsk *who> <whatever>" takes Boxer
into <who>, then types <whatever> and executes it. Any result from executing
<whatever> is returned froask. asktogether with the usual variable behavior (a name
fetching a copy of the data named) allows the general hierarchical data access method to
work. askis more general and powerful than its use as documented hetell a@dask
(message-passing) in Boxer Structures. Fine poedk™ is preferable to tell " in this
case, even though the two are synonyms, becalismunds like it wants an action, not
just some data.

Example

ask ount=side inside |
stuff
ata

. (dot)

Syntax
<name>.<name2>

Description
X.y denotes the part of x named y. May be chained asyre"xThis denotes the z part
of the y part of box x. Think of a dotted name as specifying a path down through a series
of named boxes to the part needed. It is difficult (though possible) to "compute" the
names involved. bog@name does not work. In this case it is better toasgeDot
notation is more compact and sometimes easier to read, but not as fleahe as

Example

outside . inside |
stuff

ata

Chapter 2 2.9 Data Information: Access by Name

self

Syntax
self

Description
Returns a port to the place where execution last started. Qellifos ask was executed,
it returns a port to the place told (asked). This command is useful if you what to know
where execution was started, e.g., it might be started by a graphics or mouse click. See
mouse-box-on-clickfor a similar function.

Example

ask alan self |

alan

I am alan
ata

I am alan
Diata

35

Chapter 2 2.9 Data Information: Access by Name

superior

Syntax
superior <box>

Description
Returns a port to the box that contains <box>, the inpsuiperior. superior is useful
when you want to find out about or manipulate some aspect of the environment that some
box (which you have a port to) is located in. Use (1) a data accessor (e.g., in a data search
procedure that returns a port), €If (e.g., to find out which sprite instigated a sprite-
mouse- command), or (3) one of tineuse-rccommands to get a port whose superior is
useful. The input should be a port, or the name of a box (velisérior converts to a
port). The examples below are not very interesting since you know what the superior to
the specified box is just by looking at the target of the port, or the (named) superior of a
chained name like x.z.t. However, they help illustrate the point.

Examples
superior
B place
kta

superior xX.=.t |

&

- ™
[7] [z]
[& place | C place
ks l!
B place
bt
15
"h.[ht___ s

36

Chapter 2 2.10 Data Construction

2.10 DATA CONSTRUCTION

build

Syntax
build <template box>
Description
This command takes a single data box as input. The input serves as a template. Each part
of the template that does not have a special symbol in front@far () appears in the
output exactly as in the template. Parts of the template precededdyeplaced by the
result of executing the word or doit box followihgncluding the box wrapper. @ is
used in place df, the box wrapper is remove@ may be used in the nametab of a box to
create new named variables or proceduresly works as part of the input build. @
can be used independentrifild to refer to the contents of a box.

Examples

build |
a big lanimal | a big
ata hor=e
ata
ata
build |
[E. big Bandimal | [-: big horse |
ata ata

horse
Data
join-bottom
Syntax
join-bottom <box1> <box2>
Description
The contents of <box1> are vertically concatenated with the contents of <box2>. The
resulting box appears as if <box1> had been placed on top of <box2> and the common
box border erased. Note thain-bottom X Y is (almost) the same ésiild <template>

where the template is a data box with row 1 containing @X and row two containing @Y.
However, they may treat spaces differently.

Example
join—bottom |
a]:-ri) [-:ada]:-ra abra
ata ata cadabra

ata

37

Chapter 2 2.10 Data Construction

join-right
Syntax
join-right <box1> <box2>
Description
The contents of <box2> are concatenated to the right of <box1>. The resulting box appears
as if <box2> had been placed to the right of <box1> and the common box border erased.
Note that join-right X Y is (almost) the samelasld <template>, where template is a box
containing @x and @y in the same row.
Example

join~right |
[;hrij [-E‘ada]:-ra | [-;hra cadabra |
12 ta ta

boxify

Syntax
boxify <box>

Description
Returns a copy of its (evaluated) input inside a box. That is, it adds one data box wrapper
to its input.

Examples

boxi fy [: |
a box [:
ata a box

ata
ata

boxify

a box
ata a box
ata

ata
boxifr i |
| e |
9 ata
ata ata

38

Chapter 2 2.10 Data Construction

datafy
Syntax
datafy <any-item>
Description
Returns a copy of its (unevaluated) input inside a box. That is, it adds one data box
wrapper to its input. Useful only for demonstrating data flavored inputs.

Examples
datafy |
a box
ata a box
ata
ata
datafy |
a box
ata a box
ata
ata
datafyr x |

ata

39

Chapter 2 2.11 Data Conversion

2.11 DATA CONVERSION

change

Syntax
change<box> <new-box>

Description
Replaces the contents of <box> with a copy of the contents of <new-box>. If <box> is a
literal data box, that box gets changed. If <box> is the name of a data box, that named
box gets changed. If <box> is a port or evaluates to a port, the target of the port is
changed. Seeetarget for "rewiring’ ports. Also, note that the closet of the box changed
doesnot get changed. This is deliberate so that you can have some behavior or
identification stay with a box when you change it. Note that in the last example below, if
you can arrange for the first input to change to be a port to a box, that box is changed.
This is simply a consequence of tlstickiness of ports. See ports and port-flavored
inputs in Boxer Structures.

Examples

change x
[Eut it there
ata

=]

put it there |
ata

change first-box X 37

|FIRST—BDI|

[x]
input. port-to a-box
[?T.j second box unbox first a-hox
ks
bt

kLt Dait

Ee=et:

CHAMGE FIERST-EOX X
|fir5t box |
1%

[Cwoit:

Chapter 2 2.11 Data Conversion

retarget

Syntax
retarget <port> <new-target>

Description
Changes the target of a port to some other box. Used for "rewiring" your world. This is
"the port equivalent” othange changeis more flexible thatetarget. You can change
any box-part of a complex box by using port-to and stickiness. But you cannot do this
with retarget.

Examples
retarget = ¥

retarget x b
[¢] [x]
X

;
D D

41

Chapter 2 2.12 Data Conversion By Item

2.12 CONVERSION BY ITEM

change-item

Syntax
change-item<n> <box> <new-item>

Description
Changes the item number <n> of <box> to a copy of the contents of <new-item>. To
remember input sequence read as: "Change item 1 (of) box (to) new item." Note that all
the parts of <new-itemget stuffed into the position of the nth item. Also, note that item
at position <n> is completely replaced, even if it is a box. thange if you manage to
pass a porthange-itemas its second input, that target of that port will be changed. Like
change the last input will be copied, but any ports contained in that box will remain
ports, according to the standard Boxer rules for copying boxes and porthia®geand
first. See ports and "stickiness" of ports in Boxer Structures.

Example

change—item 2 fruit
banana
ata
|fruit|

[:pple banana pearj

ata

delete-item

Syntax
delete-item<n> <box>

Description
Changes <box> by removing item number <n> from it. This command follows the same
rules of"portness aschange

Example
delete—item 2 fruvit

apple peach

Data

42

Chapter 2 2.12 Data Conversion By Item

delete-last-item

Syntax
delete-last-item<box>

Description
Changes <box> by removing the last item from it. This command follows the same rules
of "portness aschange

Example

delete-last—-item fruit

delete-items

Syntax
delete-items<start> <end> <box>

Description
Removes items from <box> starting at <start> and ending at item number <end>. This
command follows the same rules"pbrtnes$ aschange

Example
delete—items 1 2 fruit

change-last-item
Syntax
change-last-item<box> <new-item>
Description
Changes the last item of <box> to the contents of <new-item>. This command follows
the same rules dportness aschange

Example

change-last-item fruvit
peach
ata
|fruit|

[Epple banana peach)

ata

Chapter 2 2.12 Data Conversion By Item

insert-item

Syntax
insert-item <new-item> <box> <n>

Description
Puts whatever is in box <new-item> into <box> at the item position <n>. If more than
one item is in <new-item>, all of them get inserted, starting at position <n>. The order of
inputs is designed to reflect "English" usage, eigselt-item <which item> into:
<which box> at: <place>thsert-item is similar to change-item in its operation. This
command follows the same rules"pbrtnes$ aschange

Example

insert-item fruvit 1

orange
|fruit|

ata
[Erange apple banana peachj

ata

append-item
Syntax
append-item<new-item> <box>

Description
Adds the stuff in <new-item> to the end of <box>. The order of inputs is designed to
reflect English usage, e.@ppend-item<which-item> to: <box>. As a generic append,
append-row will probably be "neater" in accumulating stuff. This command follows the

same rules ofportnes$ aschange
Example

append-item fruit
grapes
ata
|fruit|

[Erange apple banana peach gr&PEE)

ata

Chapter 2 2.13 Data Conversion By Row

2.13 CONVERSION BY ROW

change-row

Syntax
change-row<n> <box> <new-row>

Description
Changes the row number <n> of <box> to a copy of the contents of <new-row>. Multiple
rows from <new-row> can replace the specified row. This command follows the same
rules of"portness aschange

Example
change-row 2 box
[:h.ere o one |
ata
box

To boldly go
where no one
has gone before

ata

change-last-row

Syntax
change-last-row<box> <new-row>

Description
Changes the last row of <box> to the contents of <new-row>. This command follows the
same rules ofportness aschange

Example
change-last—row box j

ha= been before
ata

box

To boldly go
where no one
ha=s been before
ata

45

Chapter 2 2.13 Data Conversion By Row

delete-row

Syntax
delete-row<number> <box>

Description
Deletes the specified row from its input. This command is heeded because changing a
row to be an empty row is not the same thing as deleting it. This command follows the
same rules ofportnes$ aschange

Example

delete-row 1 box

x|

where no one
ha=s gone before

ata

delete-last-row

Syntax
delete-last-row<box>

Description
Deletes the last row of its input. This command follows the same rulpshess as
change

Example

delete-last—-row box

|hu1|

To boldly go

where no one
ata

delete-rows

Syntax
delete-rows<start> <end> <box>

Description
Removes rows from <box> starting at <start> and ending at row number <end>. This
command follows the same rules"pbrtnes$ aschange

Example

delete-rows 2 3 box

box]

[ED boldly go |
ata

46

Chapter 2 2.13 Data Conversion By Row

insert-row

Syntax
insert-row <new-row> <box> <n>

Description
Puts whatever is in box <new-row> into <box> at the row number <n>. If more than one
row is in <new-row>, all of them get inserted, starting at position <n>, and the rest of the
box rows gets pushed down. The input sequence is patterned after Englishnseage
row <new row> into: <box> at: <row number>. This command follows the same rules of
"portnes’ aschange

Example

insert-row box 2
[Tmre:m mman|
ata

box]

To boldly go
where no human
ata

append-row

Syntax
append-row <new-row> <box>

Description
Adds the stuff in <new-row> to the end of <box>, starting on a hew row.
The order of inputs is designed to reflect English usageend-row <new row> to:
<box>. As a generic append, append-row will probably be "neater" in accumulating stuff
than append-item. This command follows the same rulgsastnes$ aschange

Example

append-row biox
dares to go
ata

box

To boldly go
where no human
dares to go

ata

47

Chapter 2 2.14 Data Co nversion By Column

2.14 CONVERSION BY COLUMN

change-column

Syntax
change-column<n> <box> <new-column>

Description
Changes the column number <n> of <box> to a copy of the contents of <new-column>.
Multiple columns from <new-column> can replace the specified column. This command
follows the same rules 8portness aschange

Example
change—-column 2 a

trayvel

ane

recently
ata

"

to boldly trawvel
where o one
has gone recently

ata

change-last-column

Syntax
change-last-column<box> <new-column>

Description
Changes the last column of <box> to the contents of <new-column>. This command
follows the same rules 8portness aschange

Example
change-last—column a

Chapter 2 2.14 Data Co nversion By Column

delete-column

Syntax
delete-column<number> <box>

Description
Deletes the specified column from its input. It deletes the last item from each row. This
command follows the same rules"pbrtnes$ aschange

Example

delete—column 2 box
box

To go
where one
ha=s before

ata

delete-last-column

Syntax
delete-last-column<box>

Description
Deletes the last column of its input. This command follows the same rulpsrofes$
aschange

Example

delete-last—column box

To boldly

where no

delete-columns

Syntax
delete-columns<start> <end> <box>

Description
Removes columns from <box> starting at <start> and ending at column number <end>.
This command follows the same rules'pbrtnes$ aschange

Example

delete—columns 2 2 box

49

Chapter 2 2.14 Data Co nversion By Column

insert-column

Syntax
insert-column <new-column> <box> <n>

Description
Puts <new-column> into <box> at the column number <n>. Multiple columns can be

inserted if <new-column> has more than one. This command follows the same rules of
"portness aschange

Example

insert —column

able one
baker tmo
chow three
dog four

hab RSN L1

ata

append-column

Syntax
append-column<new-column> <box>

Description
Adds the stuff in <new-column> to the right end of <box>. This command follows the

same rules ofportness aschange
Example

append-coluamn story

|5tur1|

OnCE VpOL
a time in the west

ata

50

Chapter 2 2.15 Data Conversion By Row & Column

2.15 CONVERSION BY ROW & COLUMN

change-rc
Syntax
change-rc<row> <column> <box> <new-item>
Description
Changes the item at <row> and <colunm> to the contents of <new-item>. Multiple items
can be inserted. This command follows the same rulgsoofnes$ aschange

Example

change-rc 2 2 x
four

ata

one Lo
three four

ata

insert-rc

Syntax
insert-rc <more> <box> <row> <column>

Description
Inserts the contents of <more> into <box> at position indicated by <row> and <column>
(and the rest of the box moves to the right and down). This command follows the same
rules of"portness aschange

Example

insert-rc ¥ 22
hello there
&

ata
123
a hello there b o
ata

delete-rc

Syntax
delete-rc <row> <column> <box>

Description
Deletes the element of <box> specified in by <row> and <column>. This command
follows the same rules 8portness aschange

Example
delete-rc 2 2 x

one two
three

ata

51

Chapter 2 2.16 Data Conversion By Box

2.16 CONVERSION BY BOX

boxify

Syntax
boxify <box>

Description
Returns a copy of its (evaluated) input inside a box. That is, it adds one data box wrapper
to its input.

Examples
boxify |

a box
ata a box
ata

ata

boxify |

a box
ata a box

ata

datafy
Syntax
datafy <any-item>
Description
Returns a copy of its (unevaluated) input inside a box. It adds one data box wrapper to its
input. It differs fromboxify only in that it has a data flavored input, so it works on words
as well as boxes.

Examples
datafy |
a box
ata a box
ata
ata
datafy |
a box
ata a box
ata
ata
datafyr x |

ata

52

Chapter 2 2.16 Data Conversion By Box

copy

Syntax
copy <box>

Description
This command makes a copy of its input. It is useful when you want to duplicate the data
in a port. The usual copy and execute rules apply. This means ports originally with
targets internal to box-to-be-copied will be completely new in the copy. Their targets are
new boxes. Ports to boxes outside the copied box will become ports to those old external

boxes.
Example
COpY animal |
cat
a2

port-to
Syntax
port-to <box>
Description
Gets a port to the input. That is, if the input is a box, it returns a port to the box. If the
input is a named data box, it returns a port to the boxtebagyet in data-mutation. See
also port-flavored inputs in Boxer Structures.

Example
port—to |
[jnme stutf] some stuff
ata
ata
t-to i

por o i | T

variable

rariable ata

ata

53

Chapter 2 2.16 Data Conversion By Box

unbox

Syntax
unbox <box>

Description
This command expects exactly one box inside a box as input, and it returns the inside
box. It removes the outside layer of box. Wsdoxable?to check whether the input is
suitable forunboxing. You can unbox a box containing a variable. However, this is only
useful at top level, directly on the screen. A named data box unboxed as part of a
procedure will not establish a variable. $dspecial characters) for a different kind of
unboxing

Example

uru]:u:-:{
]:u:-t stuff
t stuff
ata
ata

Chapter 2 2.17 Data Conversion By Character

2.17 CONVERSION BY CHARACTER

letters

Syntax
letters <box>

Description
This command separates all the letters in its input with spaces. It does not process

subboxes.
Examples

letters |
(atul) coow
ata ata

letters |
[é napple J
Lt

an apple
L Y

|an apple|
Ikt
word

Syntax
word <box>

Description
This command takes its input and removes all spaces. It does not process subboxes or

combine rows.
Examples

word |
cooow (atal)
ata ata

word | [__ij
fulal
coow -
|c a] w|
1%

55

Chapter 2 2.18 Accessing Name Information

2.18 ACCESSING NAME INFORMATION

name-help

Syntax
name-help<pattern>

Description
Returns a box containing very brief information on all the things Boxer knows about that
have the text in the <pattern> as part of their name. This includes all primitives and user
defined boxes that are accessible where name-help is executed. Do not put a box around
the text <pattern>name-helpis used mostly to find the name of a command when you
have some idea of what the command name might be. Many times, you can find
interesting commands by guessing what might be part of their name, like "sprite" or
"graphics” or "mouse".

Example

namse—help word |
L:DRD iz a primitive with arguments of (BOX)]

WORD? i= a primitive with argument=s of (BOX)

ata

name?

Syntax
name?<name>

Description
This command tells you if any accessible box or primitive has the name that is inside its
input box. This command does scoping as Boxer does usually, looking inside the current
box then looking inside the containing box, and scname?only looks at the first word
in its input.

Example

name? |
[;Ehicle | [ER?EJ
ata ata

56

Chapter 2 2.18 Accessing Name Information

local-name?

Syntax
local-name?<name>

Description
local-name?tells you if any box has the name that is inside its input box. It differs from

name? In not returning true for primitives and it differs from name-in-box? by returning
true for names that are defined, not in the particular box, but at some higher level of the
box hierarchy.

Example

Cata
local-name? |
|H£ria | |TRUE|
ta ta
local-name? |
|Eric | |FELSE|
ta ta
local-name? |
|Tnm | |TRUE|
ta ta
-

"Dt

name-in-box?
Syntax
name-in-box?<name> <box-to-check>

Description
Tells you if there is a box defined in the local environment (the box wizene-in-box?

is executed) with the name that is inside <name>. In contrasie?, it does not look
outside the box where it is executed, hence will never find a primitive.

Examples

name—in-hox? |
[:ehicle | [ER?E)
ata ata

ask wehicle name—in-hox? |
car TEUE
ata ata

57

Chapter 2 2.18 Accessing Name Information

names

Syntax
names

Description
Returns a list of all the names defined whaaienesis executed. It does not return the
names of Boxer primitives or of boxes named in boxes superior to where it is called.

Example

names "y |
|applel |Pear| |Peach|

real |0,)l)

Diata

ata
Data -

top-level-name?

Syntax
top-level-name?<name>

Description
Returngrue orfalsedepending on whether <name> is a Boxer primitive. If the primitive
is redifined,top-level-name?will return false

Example
top-level-name? |
boxify TETE
ata ata

target-name

Syntax
target-name <box-or-port>

Description
This command returns the name of the target of the port given astarget-nameis a
way of finding the name of boxes under program control. Use data accessors to get a port
to the box you want, and apphrget-nameto the result. Input must be a port to work
properly.

Example

target-name port l[}: :
ata

|;| |purt.|

hi x

ata

ata

58

CHAPTER 3

Graphics

Graphics in Boxer appear inside "graphics boxes." These may contain line drawings, bitmap
graphics (including typed text) and "sprites," which are mobile graphical objects that can have
their own shapes. In general, sprites are the creatures that draw the figures inside graphics boxes.
Sprites can draw lines; they can stamp their shapes or stamp a bitmap on the graphics
background; similarly, they can type text. You normally have to address spriteaslivith
(synonym,ask) as intell joe forward 100. However, you can avoiell by using Turtle boxes

(see turtle boxes bellow). In addition, if you happen to be inside a sprite, of course, you need not
usetell. Finally, Graphics boxes are the place you may also create flexible "point and click"
interfaces. It is easy to arrange any action to occur on clicking in a graphics box, or clicking on a
sprite.

Graphic Boxes

Graphics boxes, unlike most boxes, have two presentations. Ordinarily, you can see the pictures
they contain, including any sprites that that might be in them. But if you "flip" a graphics box by
clicking the mouse button on its lower left corner, you will see the computational structure of the
box. This includes the sprite boxes that correspond to sprite shapes appearing in the graphical
presentation, and any data or procedures that are defined specially for that graphics box. Some of
these procedures may define actions carried out when you click a mouse button in the graphics
box (see section on mouse clicks).

Graphics boxes are data in the ordinary sense; they may be named to become variables; they may
be passed as input to, and returned as outputs from procedures. Hence, a procedure can construct
a complex interactive'¢lickable™) graphics box, and return that box as a tool for you to use

(e.g., a calculator).

It is handy to have graphics boxes be transparent, so that any sprites inside may be directly
addressed, as tell joe forward 100. The default is that Boxer creates graphics boxes in
transparent form, which accounts for their dashed box boundary.

Sprite Boxes

Sprites are Boxer's version of Logo turtles. You can make as many of these as you like in a
graphics box. (You can have sprites outside of a graphics box too, but their shapes will not

appear anywhere.) Each sprite may have its own shape. If you put a sprite inside another sprite, it
becomes a subsprite. That means the subsprite moves with any commands sent to the supersprite,
and any commands you execute in the subsprite will cause it to move relative to the supersprite.

59

Chapter 3

Although sprites are very much like special data boxes that happen to cause their shape to appear
on the graphical presentation of graphics boxes, there is one significant difference. When you
execute a sprite or its name, you get a port to that sprite rather than a copy of it. This is because
you generally use a sprite's name to get access to it, to send messages to it (rather than to a copy
of it). If you want a copy, use tlmpy command, as inopy joe

Sprite Properties

Conceptually, each sprite contains (1) a set of its own properties (local variabbepdi&iion,
heading and so on) and (2) ways to manipulate them, sutbrasrd , setheading and so on.

This is why you must eitheell a sprite a command, or be inside the sprite when you execute it.
When you create a sprite, you will see inside it its x and y position variables, and its heading.
You may edit these directly (changes will take place when you exit the edited variable), or you
can usehange or any of the other property-changing commands sutdrnaard or

setheading

There are additional properties of a sprite, other than position and heading. The most useful of
these argen (whether the pen igp or down), show?(whether a sprite is showing or hidden),
shape pen-color, andpen-width. These normally do not appear (unlkgosition, y-position
andheading). They can be made to appear in the closet of the sprite by simply asking for their
values. E.g.askjoe pen will cause thepen property to appear as a variable in Joe's closet.
Alternatively, all of these properties can be made to appear at once in the sprite closet by
executingshow-sprite-properties That command appears in the closet of every sprite when it is
created.

You can delete any property boxes if you don't want to see them. They will still work properly.
You can save a lot of memory this way. Regular turtle commands won't cause them to reappear.

Special Note: All sprite commands must be addressed to a spriteellgag), or used in the
presence of a turtle box (transparent graphics box). Or you may type and execute directly inside
a sprite. Graphics box commands are similar.

Turtle Boxes

For compatibility with Logo, a keystroke (or menu) command is provided to create a "turtle

box," that is, a transparent graphics box containing exactly one (transparent) sprite. Once a turtle
box has been created, any turtle commandsfdikeard , right, etc., may be executed in the box
containing the turtle box withotll. In addition, because the sprite is transparent, all sprite
properties are also accessible outside both the sprite and the turtle box. E.g., you can execute
shape pen-color, and also any commands or data names that you have defined yourself for that
sprite, all without usingell. In net, after you make a turtle box, you can immediately "do Logo"

by executing turtle commands, without usted.

You can only have one turtle box present in a given box. This is because multiple turtle boxes
will create confusion about who is being addressed by any turtle command, and there will be
conflicts in terms of sprite property names. Also, you can add more sprites inside a turtle box.
However you will have to address them wtigH.

60

Chapter 3

Drawing

As a sprite moves, it will draw over the background according to the state of its pen. E.g., if the
pen is down, it will draw; if it is up, it will not. You can adjust the size of the pen and its color. A
sprite can stamp certain shapes, like circles, rectangles, and any picture that you may have in
Boxer (You might have scanned some in.). It can also stamp its own shape onto the background,
or stamp some textype). Graphics boxes may "clip" a drawing (not show the sprite or its
drawing once past the edge), or it may "wrap", bringing the sprite back on the graphics box from
the opposite side when it crosses a box boundary. You can adjust the size of a graphics box
manually or under program control. You may "snap" portions of a graphics box out of them, or
change the graphics of a box all at once. You may query a sprite for the color it is over, or ask a
graphics box what color is at a given position.

Colors

Colors in Boxer are simply graphics boxes whose background has been set to a particular color.
If you "flip" a color box, you will see the red-blue-green percentages that specify that color. If
you change those percentages either by direct editing or by program control, the color will be
changed by a "modified trigger,” just like x-position and other sprite properties. See "update-
properties” in "sprite-information" section of graphics. Boxer includes some built in color names:
black, white, gray, red, green blue, orange yellow, purple, cyan, andmagenta

Mouse clicks

Mouse clicks over a graphics box do not always do the same things mouse clicks usually do.
Instead, you can define them to do anything you want. Graphics boxes are supposed to be the
place where you can change the usual boxer interface to be any point-and-poke kind of interface
you want.

When you click on a graphics box, a set of special commands, soabuas-click-on-

graphics, are executed in the graphics box. You can think of these as "messages” that are
automatically sent to the graphics box. If there is no appropriately named box, you will get an
error message at the top of the Boxer screen. If you do have a box mawonsslclick-on-

graphics, for example, it will get executed when you click the mouse button over a graphics box.

Similarly, clicking a mouse button while the mouse is positioned over a sprite sends a message to
that sprite. Again, if there is maouse-click-on-spritebox (for example), you will get an error
message at the top of the screen. (There are sometimes default actions for mouse-clicks, if you
do not define them yourself. For example, pressing on a sprite by default will let you drag it
around.)

61

Chapter 3

Boxer Language

3.1 MOVES & TURNS

forward (fd)
back (bk)
right (rt)
left (If)

These are the standard turtle commands that cause a sprite to move
relative to its current position and heading. They are all used to address
sprites, as iell joe forward 100 or can be used “near” a turtle box
without tell.

3.2 SETTING POSITION & HEADING

home
setheading (seth)
setxy
setposition (setpos)
follow-mouse

3.3 HIDE & SHOW

hideturtle (hide, ht)

showturtle (show, st)
hide-subsprites
show-subsprites

3.4 PEN

pendown (pd)
penup (pu)
penerase (pe)
penreverse (pr)
set-pen-width
set-type-font
set-pen-color

dot
stamp
stamp-circle
stamp-hollow-circle
stamp-ellipse
stamp-hollow-ellipse
stamp-rectangle
stamp-hollow-rectangle
stamp-wedge
stamp-arc
stamp-self
type
ctype
Itype
rtype

3.5 CLEARING GRAPHICS

clearscreen (cs)
clean

These commands move a sprite to a particular position, or set its heading
to some absolute compass heading.

These commands change the visibility of a sprite. You can find out the
visibility state of the sprite witehown? Seesprite-information .

These commands all adjust the state of a sprite's pen and tell a sprite to
stamp a shape of some kind onto the background. The property variables
pen, pen-width, pen-fontandpen-color return information about the

pen's current state. See List-of-properties, usgddte-information, in
"graphics.”

These commands all cause a sprite to stamp a shape of some kind onto the
background. They are all affected by the state of the sprite's pen. That is, if
the pen is up, a stamp command will not result in anything appearing in

the graphics box. None of the stamp commands change orientation when
the sprite is tilted. E.g., you can't have slanted typing in a graphics box.

These commands clear out a graphics box.

62

Chapter 3

Boxer Language

3.6 GRAPHICS SIZE & MODE

set-graphics-size
set-graphics-mode
graphics-mode

3.7 SNAPPING & CHANGING

snap
ship
change-graphics

3.8 COLOR

make-color
color=
color-under
color-under=
color-at
color-at=
update-color-box
set-color-at
set-background
clear-background (cb)
freeze
bg-color
bg-color-at=
bg-color-at?
without-recording

These commands change basic state of the graphics box (and allow you to
inspect that state). In general they may be addressed to a graphics box or
to a sprite inside it. They may be executed directly inside a graphics box

or “near” a turtle box.

These commands either grab the graphics contents of a graphics box, a
part of it, or change it.

These commands allow you to use color with sprites and graphics boxes.
You can create colors of any specification in Boxer (e.g., to assign to a
sprite's pen for drawing, or to change the color in the background of a
graphics box). You can ask what the color of the box is under a sprite (or
at a particular x, y point). Similarly, you can ask for the color of the
background underneath any sprite drawing. Note that Pen color is
irrelevant for pictures and shapes drawn \piémreverse penreverse

simply reverses the color of whatever it draws over. Sprite graphics boxes
contain a separate background that may be assigned a color, or into which
the current sprite picture may be "frozen." The background will not be
cleared ortlearscreenor clean these clear only the foreground sprite
graphicsclear-background clears the background. You can ask what

color is at a particular place in the background, similar to the way one can
ask what color appears in the regular sprite picture. Background. Colors
are represented in Boxer with graphics boxes, the graphics side of which
shows the color, the "flip" side of which shows red, green and blue
percentages. The built in color names are blatlite, gray, red, green,

blue, orange yellow, purple, cyan, andmagenta

3.9 SPRITE INFORMATION & PROPERTIES

X-position
y-position
heading
shape
shown?
pen

*pen-width(not on online man)
*type-font(not on online man)
*pen-color (not on online man)

sprite-size
home-position

These are commands that either set properties of sprites or get information
about sprite state. Each sprite has a collection of properties that are
changed by sprite commands likeward , change shapeand so on.

63

Chapter 3

Boxer Language

3.10 UPDATE PROPERTIES

Update-
show-sprite-properties

3.11 OTHER INFORMATION

distance
enclosing rectangle

touching?

towards

These commands make Boxer's internal representation of sprite properties
correspond to what's in the property variables in a sprite. Thus, they make
the actual changes to the visible representation of the sprite corresponding
to a change ishape heading and so on. See the section on sprites
(subsection "more on sprite properties") in the overview of the graphics
section. Most people will never need to use them.

These commands get useful information from a sprite.

3.12 SPRITE SIZE, SHAPE & HOME

set-sprite-size
setshape
turtle-shape
set-home-position

3.13 MOUSE INPUT & CLICKS

-click-on-graphics
-click-on-sprite

3.14 MOUSE POSITION

mouse-position
mouse-position-on-
mouse-x-position
mouse-x-position-on-
mouse-y-postion
mouse-y-postion-on-

A sprite's size, shape and home-position (where it goes when you tell it
home or clearscreer) may be change with these commands. See also
Sprite-properties underSprite-information .

These provide methods to get input from mouse clicks and mouse
positioning over a graphics box. For other input methodsnpe-
output chapter

These commands provide mouse-positioning information for graphics.

Chapter 3 3.1 Moves & Turns

3.1 MOVES AND TURNS

forward

Syntax
forward <steps>
fd abbreviation foforward

Description
This command tells a sprite to move forward the specified number of steps.
A negative argument causes the sprite to move backward rather than forward. The
direction of movement is determined by the value in the sprite's heading, and the sprite's
X-position andy-position variables are updated appropriately.

Example

back

Syntax
back <steps>
bk abbreviation foback

Description
This command tells a sprite to move backward the specified number of steps. A negative
argument causes the sprite to move forward rather than backward. The direction of
movement is determined by the value in the sprite's heading, and the sfpa@sig8on
andy-position variables are updated appropriately.

Example

65

Chapter 3 3.1 Moves & Turns

right
Syntax
right <degrees>
rt abbreviation foright
Description
This command tells a sprite to turn right the given number of degrees. If a negative
argument is given then the sprite turns left.

Example

WV

left
Syntax
left <degrees>
It abbreviation foteft
Description
This command tells a sprite to turn left the given number of degrees. If a negative
argument is given then the sprite turns right.

Example
(- T T T —y 1t 90
: :
| |
1 .:::l |
| |
| |
| |
I"-I:lata ———————— ."‘J

66

Chapter 3 3.2 Setting Position & Heading

3.2 SETTING POSITION AND HEADING

home

Syntax
home

Description
This command tells a sprite to move to its home position. A sprite's home position is
specified inside the sprite in a property variable nahwede-position inside the sprite's
closet. Thehome-positionvariable will not generally appear inside the sprite until this
variable has been modified byhangeinstruction. See graphics overview, under sprites
(explanation of properties). The default valuédnome-positionis 0,0. See also
clearscreen

Example

A

setheading

Syntax
setheading<heading>
sethabbreviation fosetheading

Description
This command tells a sprite to set its heading so that it points in the direction specified by
the given angle. The zero of angle is straight up in the graphics box. Positive is to the
right (compass heading). Angles greater than 360 degrees and negative angles are
interpreted appropriately. Boxer always enters a value between 0 and 360 in the sprite's
heading variable.

Example
A ™y seth 45

g

67

Chapter 3

3.2 Setting Position & Heading

setxy

Syntax
setxy <x> <y>

Description

This command tells a sprite to move to the specified x and y coordinates relative to the
origin of the graphics box. On graphics boxes that are wrapped, the x and y coordinates
will wrap also, so that they will always appear as number within the size constraints of

the box. Segraphics-mode

Example

l-"_ __________ _“-.I setxy 20 20

O

setposition

Syntax
setposition<position>

setposabbreviation fosetposition

Description

This command tells a sprite to move to the position specified by its input. The form of the
input is a box containing two numbers, the x and y coordinates relative to the origin of
the graphics boxsetpositiondiffers fromsetxyonly in the form of the input.

Example

r"_ __________ _‘\| setposition

20 20

ata

68

Chapter 3 3.2 Setting Position & Heading

follow-mouse

Syntax
follow-mouse

Description
This command causes the sprite to follow the mouse cursor wherever it goes, until you let
up on the mouse buttons. It is just a shortcut for writing your own command to fetch the
coordinates of the mouse and set the sprite to them.

Example
T N
L'-Data ————————————— .r"l

|luuse—click—un—graphic5|

I_lfn:-lln:-w—m-:-uze

ait

69

Chapter 3 3.3 Hide & Show

3.3 HIDE & SHOW

hideturtl e
Syntax
hideturtle
ht or hide are abbreviations fdrideturtle
Description
This command causes a sprite to become invisible. Sesradsm?underSprite-
information. To make a sprite visible use thlgowturtle command.

Example

showturtle
Syntax
showturtle
st or showare abbreviations fahowturtle
Description
This command causes a sprite to become visible. To make a sprite invisible, use the
hideturtle command.

70

Chapter 3 3.3 Hide & Show

hide-subsprites

Syntax
hide-subsprites

Description
This command tells a sprite to hide all of its subspritessBe&-subsprites To make
the subsprites visible again ust®ow-subsprites

Example
. T T tell joe hide-subsprites

o

show-subsprites
Syntax
show-subsprites

Description
This command tells a sprite to make all of its subsprites visible. To make the subsprites

invisible usehide-subsprites

Example
(T T 7y tell joe show-subsprites

éﬂf_\ﬂé

71

Chapter 3 3.4 Pen

3.4 PEN

pendown

Syntax
pendown
pd abbreviation fopendown

Description
This command tells a sprite to put its pen down. After this command is executed any
place that the sprite draws will become black (or whatever color the pen has been set to),
regardless of its previous color. Use the(penup) command to lift the sprite's pen,
preventing drawing and stamping. Compare the effeqiemiiown (pd) with the
penreverse(pr) andpenerase(pe) commands. Segen undersprite-information .

Example

penup

Syntax
penup
pu abbreviation fopenup

Description
This command tells a sprite to pick up its pen. After this command is executed, no
movement or stamping by the sprite will cause any drawing in the graphics box. After
this command is executed, no drawing by the sprite will have any effect on the graphics
box. Use thggpendowncommand to put the sprite's pen back down. Seemsoeverse
penerase

Example
(-7 7 Typuw £4 30

72

Chapter 3 3.4 Pen

penerase

Syntax
penerase
pe abbreviation fopenerase

Description
This command tells a sprite to erase instead of drawing. After this command is executed
any place that the sprite draws will becowtate, (or whatever is the background color)
regardless of its previous color.

Example
r_ _“W cs pd
: : stamp-rect S0 50
: | rt 45
: ;| pe £4 =0
I 1| stamp-rect 20 20
| | ait
| |
| |
1 1
| |
MOata— — — — — — — — — -

penreverse

Syntax
penreverse
pr abbreviation fopenreverse

Description

After this command is executed any place that the sprite draws will reverse its color. For
example, black becomes white and white becomes black. Note: Sprites whose shapes are
drawn withpenreversewill move much faster than wigpendown Colors also change

(in fairly complex ways) when drawn penreverse.

Example
r_ HW cs pd
: : stamp-rect S0 S0
| | rE 45
: | px £4 =0
I | stamp-rect 20 20
| | ait
I I
I I
I I

73

Chapter 3 3.4 Pen

set-pen-width

Syntax
set-pen-width <width>

Description
This command sets the width of lines drawn by the particular sprite. The size
is in screen pixels. This affects any future drawing in which the result is a line, including,
for example stamp-hollow-circle. The size of dots produced by that primitive are
also affected. Sgeen-width undersprite-information.

Example
- N e
: : set-pen—width 1
| (| stamp-hollow-circle 40
: | set-pen~-width 3
I | stamp-hollow—circle 20
| | ait
I I
I I
I I
L"-I:lata ———————— _A"J

74

Chapter 3 3.4 Pen

set-type-font

Syntax
set-type-font

Description
This command sets the font that will be used for any text typed by the sprite. Fonts may
be specified by <size> <optional style> in a data box, or with a number. Setting a
font to a number higher than the number of available fonts is not illegal but will result in
repeated use of lower numbered fonts. tpe-font undersprite-information .

Example
r_ ‘W set-type-font
: : |tim95 12 |
1 I u
| _ , | &5 ht pd type _
: Times | | Times
I Geneva I ta
: (| P bk 10
qu JJ set-type-font
M- - - - - — = = [Efnﬁva 1z Bald]
ta
rd type
|EenEva |
ta
oot

set-pen-color

Syntax
set-pen-color<a-color>

Description
This command sets the color for all drawing, stamping or typing done by a sprite. This
affects any future drawing, including, for exam@®mp-rect, stamp-hollow-circle and

=
set-pen—color gray
stamp-rect S0 50
set-pen~color black
Eﬁ?mp—rect a0 320

75

Chapter 3 3.4 Pen

. (dot)
Syntax
dot
Description
This command tells a sprite to make a dot centered on the sprite’s current location. The
size of the dot is affected by the sprite's curpam-width. Orientation is not affected by
sprite heading.

Example
r_ _‘\' set—pen—width 10
pd dot pun
£4 20

ait

stamp
Syntax
stamp <graphics>
Description
Stamps the contents of a graphics box at the position of a sprite. Must be addressed to a
sprite, likeforward . Orientation is not affected by sprite heading.

Example

76

Chapter 3 3.4 Pen

stamp-circle

Syntax
stamp-circle <radius>

Description
This command tells a sprite to draw a filled circle of the specified radius centered on the

sprite's current location.

-
_‘\' £4 30
stamp-circle 10

ait

stamp-hollow-circle

Syntax
stamp-hollow-circle <radius>

Description
This command tells a sprite to draw a hollow circle of the specified radius centered on its
current location. The thickness and color of the line is determined by the sprite's current
pen-width andpen-color.

Example
I"‘_ _H" £4 30
stamp-hollow—circle 10
ait

7

Chapter 3 3.4 Pen

stamp-ellipse
Syntax
stamp-ellipse<width> <height>
Description
This command tells the sprite to draw an ellipse with the given width and height centered
on the sprite's current location. Orientation is not affected by sprite heading.

If_ _H" £4 30
stamp-ellip=se 20 10
uit

stamp-hollow-ellipse

Syntax
stamp-hollow-ellipse<width> <height>

Description
This command tells the sprite to draw a hollow ellipse with the given width and height
centered on the sprite's current location. The thickness and color of the line is determined
by the sprite's curremen-width andpen-color. Orientation is not affected by sprite
heading.

Example

r_ _‘\' £4 20
stamp-hollow-=llipse 20 10
nit

78

Chapter 3 3.4 Pen

stamp-rectangle
Syntax
stamp-rectangle<width> <height>
stamp-rectabbreviation fostamp-rectangle
Description
This command tells the sprite to draw a rectangle with the given width and height
centered on the sprite's current location. Orientation is not affected by sprite heading.

r_ _W' f4 20

: : stamp-rectangle 40 10
| | ol

I I

I I

I I

stamp-hollow-rectangle

Syntax
stamp-hollow-rectangle<width> <height>

Description
This command tells the sprite to draw a hollow rectangle with the given width and height
centered on the sprite's current location. Orientation is not affected by sprite heading.

Example

=

stamp-hollow-rectangle 40 40

79

Chapter 3 3.4 Pen

stamp-wedge

Syntax
stamp-wedge<radius> <angle>

Description
This command tells the sprite to stamp a pie wedge of radius <radius> and angular size
<angle>, starting at the sprite's position and heading. Orientation IS affected by sprite
heading.

Example

f_ _______ _‘r.l tell joe
[t
rd stamp-wedge 40 20

Stamp-arc
Syntax
stamp-arc <width> <height>
Description
This command tells the sprite to stamp an arc of radius <radius> and angular size
<angle>, centered at the sprite's position and heading. Orientation IS affected by sprite
heading. Width is affected by pen-width.

Example
Ir‘_ _______ _‘\Itell joe
: : CE
| | set-pen—width 4
| 1 rt 45
| (S;.? | pd stamp-arc 40 20
I | t
I |
I |
I |
Npgt- - - - — - - - <

80

Chapter 3 3.4 Pen

stamp-self

Syntax
stamp-self

Description
This command tells a sprite to draw its shape in the graphics box at its current location.
Unless the shape of the sprite is a bitmap, the stamp will be affected by the orientation of

the sprite.
Example
r_ _—W stamp-=s=1f
£4 20
ait

type

Syntax
type <box>

Description
This command tells a sprite to draw the text specified in the argument centered at the
sprite's current location. Orientation is not affected by sprite heading. Typing is
horizontal only. Multiple lines are acceptable. However sub-boxes will not be printed
except as data box. The font used is controlled by the current value of the typete's
font property. A more complete description of the use of fonts can be found wgatthe
type-font command.

Example
r [ype

Hello,

How are you?
ata

pu £4 10 pd

wit

Hello,
How are you?

81

Chapter 3 3.4 Pen

ctype
Syntax
ctype <box>

Description
"Center type." Same agpe.

ctype
¥F H=lla,

How are wou
ata

pu £4 10

ot

Hello,
How are you?

Itype
Syntax
ltype <box>
Description
"Left type." Typing is left justified--aligned on the left, starting from the center of the
sprite.
Example

ltype
¥F Hello,

How are you?
ata

pu £f4 10 pd

ait

Hello,
How are you?

=

82

Chapter 3 3.4 Pen

rtype
Syntax
trype <box>

Description
"Right type." Typing is right justified--aligned on the right, starting from the center of the

rtype
IE Hellno,
How are youn?
ata
pu £f4 10 pd

ait

How are ryou?

1
|
|
1
: Hello,
1
|

83

Chapter 3 3.5 Clearing Graphics

3.5 CLEARING GRAPHICS

clearscreen
cleargraphics
Syntax
clearscreen
cleargraphics
csor cg abbreviations foclearscreenor cleargraphics
Description
This command clears all sprite drawing in a graphics box and (if it is addressed to a
sprite) moves the sprite to its home position. You tedyeither a sprite or graphics box
to clearscreen Or you may execute it inside a sprite or graphics box, or in the presence
of a turtle box.

Example

clean

Description
This command tells a sprite to clear all drawing in the graphics box without moving to its
home position. Likelearscreen it may also be executed in a graphics box directly or by
telling the graphics box.

Example

Chapter 3 3.6 Graphics Size & Mode

3.6 GRAPHICS SIZE & MODE

set-graphics-size
Syntax
set-graphics-size<width> <length>
Description
Changes graphics box size to <width> pixels wide and <length> pixels high. It should be
executed inside a graphics box, in the vicinity of a transparent graphics box, aellsing
to address either a graphics box, or a box (sprite) inside the graphics box.

Example
r‘_ - _‘hl set-graphics-size 20 20

(.

graphics-size
Syntax
graphics-size
Description
Returns the width and height of a graphics box in pixels. It should be executed inside a
graphics box, in the vicinity of a transparent graphics box, or sl address either a
graphics box, or a box (sprite) inside the graphics box.

Example
—— — _ hics—=ci
:r "*.: graphics-size |@
I I ata
I ﬂ I
I I
\cata— —

85

Chapter 3 3.6 Graphics Size & Mode

set-graphics-mode

Syntax
set-graphics-mode<clip or wrap>

Description
This command sets a graphics box to clip or wrap modes. Executing this command puts
the graphics box in "clip" or "wrap" mode. If the graphics box is in "clip” mode then,
when the sprite goes off an edge of the graphics box, the sprite will become invisible and
any drawing that the sprite does will not be seen. If you expand the graphics box by
grabbing its lower-right corner, you may be able to bring the drawing on screen. If the
graphics box is in "wrap" mode then, when a sprite goes off the edge, it will reappear at
the opposite side, directly across from where it goes "out of boundstelUsethe
graphics box, or a to a sprite in it, or just in the presence of a turtle box.

Examples
r‘_ _‘\' set-graphics-mode
! ! clip
! ! ata
: : oS
repeat 5
: : rt 5
£4 50
it
L—Data —————— -'J LMot "
I’:; _‘\' set-graphics-—mode
: : wrap
: : ata
=
: /j : repeat 5
: : rt 5
£4 30
L‘-Data ______ _,J L[it oit

graphics-mode
Syntax
graphics-mode
Description
This commands returns a data box with either "clip" or "wrap" depending on the mode of
the graphics box to which it is addressed. It should be executed inside a graphics box, or
usingtell to address either a graphics box, or a box (sprite) inside the graphics box.

Example

______ bic=s-mod
l-"_ _“-.Ig'rap cs—mode | mrap

ata

=

86

Chapter 3 3.7 Snapping & Changing

3.7 SNAPPING & CHANGING

shap
Syntax
shap<graphics box>
Description
This command takes a graphics box as input and returns a graphics box containing the
picture that is currently in that graphics box, minus any sprite shapes that might also
appear there.

Example

snap picture |

snip
Syntax
snip <graphics box> <x> <y> <width> <height>

Description
This command takes <graphics box>, <x> and <y> position coordinates, and <width>

and <height> as inputs, and returns a rectangular piece of the graphics.
Example

e T smip picture 0 0 40 40 |

ata

oo z0320 |

L

87

Chapter 3 3.7 Snapping & Changing

change-graphics
Syntax
change-graphics<graphics-box> <new-graphics>
Description
This command will change the graphics that is shown in a graphics without changing the
sprites that might be there. During the execution of a program, the graphics box will not
change size without@display command.

Example

change—graphics picture
ata

88

Chapter 3 3.8 Color

3.8 COLOR

make-color

Syntax
make-color <red> <blue> <green>

Description
This command creates a color specified by the percentage of red, blue and green which
are given as inputs.

Example

make-color S0 50 S0 |[-:
ata

color=

Syntax
color= <color 1> <color 2>
Description
Returngrue if its inputs are the same screen color, sk otherwise. Similar but not
identical to =. It differs from = in that = checks only RRed-Green-Bluepercentages in
the color boxes, ancblor= checks the actual displayed color. These may differ in that
hardware limitations may force different R-G-B percentages to be displayed identically.
Example

) G

89

Chapter 3 3.8 Color

color-under

Syntax
color-under

Description
color-under returns the color in a graphics box at the position of a sprite. You must use

tell (ask) <a sprite> or be in the presence of a turtle box. If the sprite is clipped, i.e., out
of the visible portion of the boxplor-under will not be able to determine the color at
that position.

Example

[Bull - =—Eye|

cs pd

set-pen-color black stamp-circle &0
set-pen-color white stamp-circle 410
set-pen-color black stamp-circle 20
P
—[wit

Bull'=-Eve
setxy 30 20

color-under | [“‘:]
Ikt

90

Chapter 3 3.8 Color

color-under=

Syntax
color-under= <color>

Description
color-under = checks that the color at a sprite's position is the same as the color given as
an input tocolor-under=. color-under = <color> is essentially the samecagor =
color-under <color>, only much faster to execute. As wethlor-under, you must use
tell (ask) <a sprite> or a turtle box.

Example

tell jo= mander

wander |culur|

repeat 500
¥ f4 2 [!!!
if color-under= color
|rt 20
Doit———
Duit
— [t
|IE5Et|
tell jo=
o= pd change color black
set-pen—width 15
set-pen—color color stamp-hollow—circle 20
pu f£d 20 change color color-under
hame
— it
—[wit

91

Chapter 3 3.8 Color

color-at

Syntax
color-at <x> <y>

Description
Returns the color in graphics box at the specified coordinates. You must yask, or
a turtle boxcolor-at returns the actual color you see at a particular point, even if that is
due to a sprite shape. If the coordinates specified are out of the visible portion of the box,
color-at will not be able to determine the color at that position.

Example

I-‘_“‘_‘\Icnlnr—at n 24 |O
. . H
| 1 ata

Losee”

color-at=

Syntax
color-at= <x> <y> <color>

Description
Checks that the color at the specified position is the same as the color given as an input.
In other words, it asks the question “Is the color in this <x> <y> position the same as the
<color> given as an input.” Ugell, ask, or a turtle boxcolor-at = <x> <y> <color> is
same but faster thamolor = <color-at <x> <y>> <color>

Example

r"_ - = _‘“-.I color-at= 0 0 black |
FALSE

ata

92

Chapter 3 3.8 Color

set-color-at

Syntax
set-color-at<x> <y> <color>

Description
This command sets the position <x> <y> to the specified <color>tdllsask, or a

turtle box

f_ __________ q\ |cn1nr1| |cn1nr2|

()

|Eetup|

set-pen—color black stamp-circle S0
change colorZ? color-under
set-pen—color white stamp-circle 25
change colorl color-under
set-color-at 25 23 white
— [ui
setup

color-at= 25 25 colorZ |
|FELSE |
Lt

color-at= 25 25 colorl |

TETE
1%)

update-color-box

Syntax
update-color-box

Description
This command is used by Boxer to keep the color shown in a color box the same as it
red-blue-green percentages. It appears in a modified trigger in the closet of color boxes.
Most users are unlikely to use this command. See also the explanation at the beginning of
this chapter or in the Boxer Structures document of how sprite properties work.

93

Chapter 3 3.8 Color

set-background

Syntax
set-background<color>

Description
This command will set the background of a graphics box to <color>. You must address
set-backgroundto a graphics box, to a sprite in a graphics box, or execute it inside a
graphics box (or near a transparent graphics box). Turtle boxes, as usual, tedled no

Pttt _yset-background gray

e —— J

clear-background
Syntax
clear-background
cb abbreviation forclear-background
Description
This command erases an existing background color or "frozen" background (below) in a
graphics box. Compare witlet-background

Example
r"_ ______ _‘\Iclear—hackgrn:-u:nd

8

Chapter 3 3.8 Color

freeze

Syntax
freeze

Description
This command puts the current picture drawing into the background.cElaelh not
clear it, and the picture could serve as a backdrop for any draskéag-background
will erase what has been frozéreezeis cumulative; it adds any sprite drawing done on
top of an existing background to that backgrodrekzemakes a good way to produce a
background for a video game. Then you canhgseolor-at= to check the backbround to
see, for example, if you (a sprite) have run into a (black) mountain and should explode.

Example
frecze r'_ ______ _'*-I

®)

95

Chapter 3 3.8 Color

bg-color-under

Syntax
bg-color-under

Description
bg-color-under returns the color of the background in a graphics box at the position of a
sprite. It ignores any drawing done on top of the background. Youtelu&tsk) <a
sprite> or be in the presence of a turtle box. If the sprite is clipped, i.e., out of the visible
portion of the boxbg-color-under will not be able to determine the color at that
position. In the following example note that the black circle is stamped OVER the
background, hence it is not the color seedpcolor-under.

= "\ [setup]

: ask joe
I ch c=s pd

| set-pen—color black stamp-circle &0
! set-pen—color white stamp-circle 40
: set-pen—color gray stamp-circle 20
| freeze

| pu bk 30 set-pen—color black pd

| stamp-circle 15

ho
kmh __________ J) _Ei 1=

setup
ask joe =setxy 0 0

ask joe bg-color-under | [“‘:J
hta

ask joe =setxy 0 -25

ask joe bg-color-under | [“‘:J
bt

96

Chapter 3 3.8 Color

bg-color-under=

Syntax
bg-color-under= <x> <y>

Description
bg-color-under= checks that the color in the background at a sprite's position is the same
as the color given as an inputltg-color-under=. bg-color-under=ignores any colors
that have been stamped or drawn over the backgrbgrcblor-under=<color> is
essentially the same aslor = bg-color-under <color>, only much faster to execute. As
with bg-color-under, you must uséell (ask) <a sprite> or a turtle box. Note that in the
example below the invisible part of the black circle, which has been placed in the
background of this box, was merely stamped over with white. bg-color-over= still sees
the background color.

Example
wander
repeat 500
fd 2
if bg—color-under= color
|rt 17
Ooi t———
Ooit:
—[ioi't
[. ch o= pd
[t set-pern~width 13
set-pen—colory black stamp-hollow-circle 20
freeze
pu £4 20 change color color-under
home bk &0

set-pen—colory white
pd stamp-rect Z00 &0
set-pen—width 1

set-pen—color black
—[oi

setup
wrander

97

Chapter 3

3.8 Color

bg-color-under?

Syntax
bg-color-under?

Description

bg-color-under? checks that the color at a sprite's position is the same as the color of the
background at that point. Essentially, it checks whether the position of the sprite has been
drawn over with a different color. As withg-color-under, you must uséell (ask) <a

sprite> or a turtle box. Note that in the example below the sprite will stamp exactly where
the color is not the same as the background color (which has been colored over with

white).
Example
T N [setup]
1 1
I (| 21l jae
I I ch o= pd
| | set-pen—width 20
! il ! set-pen—color black
: : stamp-hollow—circle S0
| | freeze
1 1
I I set-pen—color white
L d) stamp-circle 90
bhti—m— - - - — — — — S
Dot
set-pen—color black
set-pen-width 5
—[Loit:
[t
monse—click-on—sprite
repeat 00
. =etposition mouvse-position
if not bg-color-under?
|pd dot
Do ——
if movse-buttons = 0
L?tnp monse—click-on—sprite
[it:
—[ioit:
— [t
setup

Try: press mouse middle over the sprite and drag it

around the graphics box.

98

Chapter 3 3.8 Color

bg-color-at

Syntax
bg-color-at <x> <y>

Description
Returns the background color at the specified coordinates in a graphics box. You must
usetell, ask, or a turtle box. If the sprite is clipped, i.e., out of the visible portion of the
box, bg-color-under will not be able to determine the color at that position. If the
coordinates specified are out of the visible portion of the lbgxgolor-at will not be
able to determine the color at that position. Note that the background may be a different
color than what shows, i.e., you may cover a background with sprite graphisg-and
color-at will still return the background.

Example

r"_ ______ _“-.I bg-color-at 0 0 |@
ata

bg-color-at=

Syntax
bg-color-at= <x> <y> <color>

Description
Checks the background color at the specified position and retuener falseif it
matches <color>. That is, is the color in this position the same as the color given as an
input tobg-color-at=. As with color-at, you must uséell, ask, or a turtle box. If the
coordinates specified are out of the visible portion of the Ibgygolor-at= will not be
able to determine the color at that position. Note that the background may be a different
color than what shows, i.e., you may cover a background with sprite graphieg-and
color-at= will still check the background.

(""" " bg-color-at= 0 0 black |

TEIE

ata

99

Chapter 3 3.8 Color

bg-color-at?

Syntax
bg-color-at? <x> <y>

Description
Returngrue or false depending on whether the color showing at <x> <y> is the
background color in a graphics box. You mustteieask, or a turtle box. It tells you if
the background (or "frozen" graphics) has been drawn over. If the coordinates specified
are out of the visible portion of the bdag-color-at? will not be able to determine the
color at that position.

Example
l-"_ ______ _“-.I bg-color-at? 0 0

I
TRIE

ata

100

Chapter 3 3.8 Color

without-recording

Syntax
without-recording <commands>

Description
This is an efficiency hack, not for general usghout-recording <commands> will
execute the drawing commands that follow it, but no record will remain in the graphics
box. Thus a redisplay, or shrink and expand, will cause the drawing to disappear.

Example

r_ ________________________
I
I
I
I
I
I
I
I
I
I
I""Dah
|In5tructiun5
¢ ")
1. Execute Reset: then Tryl: or Try2:.
Select BRedisplay from the Help menm
(or shrink and expand the graphics hox).
2. Hotice that all those stamps are recorded
and replawed, uwrless sithovt-recording i=
nsed. This i=s boring if you really mean
for them to cancel sach other ot
ki -~

reset
Trvl: repeat 200

pr stamp-rect 230 20

stamp-rect 20 20

pu £4 1

Dwit
Tryd: mithowt-recording repeat 200

pr stamp-rect 30 30
stamp-rect 30 30
pu fd 1

[hoi

101

Chapter 3 3.9 Sprite Information & Properties

3.9 SPRITE INFORMATION & PROPERTIES

X-position
Syntax
X-position
Description
This is the x coordinate of the sprite in its current graphics box, or, if it is a subsprite, its
x coordinate relative to its supersprifierward , back, setxy, andsetpos affectx-
position. All sprite properties work similarly.

i —y tell joe x-position |
20.10
ata

| |
| |
: — =
| |
| |

y-position
Syntax
y-position
Description
This is the y coordinate of the sprite in its current graphics box, or, if it is a subsprite, its
y coordinate relative to its supersprite.

Example

______ tell jos y-position |
I"‘_ _‘\' 20.0

ata

102

Chapter 3 3.9 Sprite Information & Properties

position
Syntax
position
Description
This returns a box containing the x and y coordinates of the sprite in its current graphics
box. If it is a subsprite, the coordinates are relative to its supersprite.

r"_ ______ _‘\I tell jos= position |
0.0 0.0

ata

8

heading
Description
Heading is the orientation of a sprite. It is compass heading (zero is up, right is positive)
for a regular sprite, and compass heading relative to its supersprite for a sutigptite.
left andsetheadingaffect heading.

Example

______ azk joe headi
r_ _‘\' ! " | 215.0

ata

v

103

Chapter 3 3.9 Sprite Information & Properties

shape

Syntax
shape

Description
A sprite’sshapeproperty controls the visual presentation of the sprite. Use
setshape&graphics box> (ochangeshape...) to change the shape of a sprite. Normally
you will want to have the shape drawrr@aversemode, as it will allow moving turtles
faster than with pen idown mode. The sprite's pen is located at the origin of its shape,
the (0,0) home position in the graphics box that defines the shape. The normal turtle
shape can be accessed by execlutinte-shape. So you can return to the turtle shape
with setshape turtle-shape

Example

r"_ ______ _“-.I ask joe shape |

ata

8

104

Chapter 3 3.9 Sprite Information & Properties

shown?

Syntax
shown?

Description
This command tells whether the sprite is seen in the graphics presentation of the
enclosing graphics box. It should tvee or false Seeshowturtle andhideturtle.

______ ask joe shown?
I"‘_ _‘\' ! | TEIE

ata

8

pen
Description
This property tells how the sprite's pen draws. It shouladdbdown reverseor erase
(reversecauses the pen to "flip" black to white, and vice-versa, when dragriage
causes the pen to draw in the background color, usually white peSap, pendown,
penreverse penerase
Example
l-"_ _‘\I ask joe pen | -

ata

AL

105

Chapter 3 3.9 Sprite Information & Properties

pen-width
syntax
pen-width
description
This property determines the width of a sprite pen's drawing in psetlpen-width
changegpen-width.

r"_ ______ _“-.I ask joe pen—width |[5 :
ata

type-font
syntax
type-font
description
This property determines the size, and bold and italics properties of the font the sprite
types in. This should be font specification (Helvetica 12 bold) or an intsggetype-font
changes the font.

example

r_ ‘\' ask joe set-type—font

: : [&alatim 1z it:ali-::I
ta

: _ : ask joe c= ht pd Lype _

: Palatine | Palatino

| I u

I |

ask joe type-font |
[ﬁ‘alatim 12 IT&LICJ]

ta

—Lroit:

106

Chapter 3 3.9 Sprite Information & Properties

pen-color

syntax
pen-color

description
This property determines the color that the sprite draws in, and the color it will stamp and

type with.color should be a color box (sesake-color). set-pen-colorchanges the
color.

r.-— —————— _‘*-.I ask joe pen—color I[.]
ata

sprite-size
Syntax
sprite-size
Description
You can change the size of a sprite simply by changing this attribute. 1.0 is the standard
size. Some parts of a sprites' shape (such as typed text or a bitmap graphic) will not
change sizetell joe set-sprite-size 2.Qvill double the size of the sprite.

r.-— —————— _‘*-.I ask joe sprite-size I[1 ':':I
a-ta

=

107

Chapter 3 3.9 Sprite Information & Properties

home-position
Syntax
home-position
Description
This command shows where the sprite goes when you exaeatscreenor home. It is
a pair of numbers, x and y coordinatietl. joe change home-positiorwill change Joe's
home position.

Example

ask joe c=s

: : ask joe home-position |

| | |III.III III.III|
I _ﬂ I ta

I I

I I

I I

+,
LY

108

Chapter 3 3.10 Update Properties

3.10 UPDATE PROPERTIES

update-

Syntax
update-heading
update-home-position
update-pen
update-pen-width
update-type-font
update-pen-color
update-shape
update-shown?
update-sprite-size
update-x-position
update-y-position

Description
All update commands are mainly for Boxer's use. They make the visual presentation
correspond to what you have changed the sprite property (e.g., X-POSITION, SHAPE)
to.

show-sprite-properties

Syntax
show-sprite-properties

Description
When this command is executed in a sprite it will cause all properties to appear (in the

closet). Normally only position and heading properties appear in a sprite.
Example

Show— SPrit-E'—Prl:IPE'rt-iE'E |5m£| |5Eu“?| |PE]|
Lﬂ | [ERT.I'E | [Enlam
ata ata
Aty
|[PEN-¥IDTH| |[TTPE-FONT| |FEN-COLOE|

G Dl Jlgee]

|SPRITE-SIZE| |HOHE-FOSITION| ([I-FOSITION|

o e Jle)

[T-POSITION| |[HEADING|

oo)l)

“Sprite

109

Chapter 3 3.11 Other Information

3.11 OTHER INFORMATION

distance

Syntax
distance<x> <y>

Description
This command computes the distance in turtle steps (pixels) between the sprite's current
position and the given (X, y) coordinates. You can use this command to find the distance
between two sprites.

r_ _‘\' CE | [El .21320343559642?)
ask joe =setxy 30 320 ata

ask joe distance 15 15
oit

enclosing-rectangle

Syntax
enclosing-rectangle

Description
This command returns the sprite's enclosing rectangle (the rectangle that encloses the
sprites shape). The result is a single box in the form <x1 y1 x2 y2> where (x1,y1) is the
upper left corner of the rectangle and (x2, y2) is the lower right corner. The enclosing
rectangle always includes the origin in the imaginary drawing space of the sprite's shape.

Example
f_ —————— _HW ack joe enclosing-rectangle |[-|:I

2.010.0 5.0 —E.Dj

ata

b

110

Chapter 3 3.11 Other Information

touching?

Syntax
touching? <other-sprite>

Description
This command tells you if the sprite you're talking to is touching another sprite. The
command works by checking if the rectangle enclosing one sprite overlaps with the
rectangle overlapping the other. Thus, sprites whose shapes are horizontal or vertical
lines seenmuchsmaller than sprites whose shapes are diagonal lines. The latter kind of
sprite may surprise you when you find it is touching another sprite whose shape doesn't
appearto overlap. Seenclosing-rectangle

|'"_ ______ _‘“'-l ask joe |
|_1;-:n.1-:]:|ing’?‘ tom [EELSE

oit ata

towards

Syntax
towards <x> <y>

Description
This command computes the heading in degrees for the sprite to point in the direction of
the given x, y coordinates. You can use this command to make one sprite point towards
another sprite.

|-"_ ______ _‘\I ask joe
I_fetheading towards 100 0

alt

I [I

111

Chapter 3 3.12 Sprite Size, Shape & Home

3.12 SPRITE SIZE, SHAPE & HOME

set-sprite-size

Syntax
set-sprite-size<size>

Description
This command adjusts the graphical size of a sprite. 1.0 is normal and 2.0, for example,
means the sprite will appear at twice the size of its assigned shasprigesizeunder
sprite-information, sprite-properties. Note that bitmap shapes or typing will not change in
size. Howeverstamp-circle, stamp-rect, etc.,will be affected. Subsprites are also
affected by changing a supersprite's size.

Example
P T "y tell tom set-sprite-size 2

S

setshape

Syntax
setshape<new shape>

Description
This command changes the shape property of a sprite. The input must be a graphics box.
It must be addressed to a sprite (wéh), executed inside a sprite, or executed in the
presence of a turtle. Alternatively you mayange shapecdata box containing turtle
commands>. SeghapeunderSprite Information and Properties

Example
r,._ —————— —'~..I ask tom zetshape

ata

112

Chapter 3 3.12 Sprite Size, Shape & Home

turtle-shape

Syntax
turtle-shape

Description
Returns the default shape of spritestshape turtle-shapeeturns a sprite to its usual
shape. The flip side of the returned graphics box contains the "code" that will draw the
shape, if you want to modify it. This is just information, however, and is not linked to the
picture in the turtle-shape graphics box. You can execute the code asmhps@dset-
shape or usechange shapecode>.

r,-— —————— _‘w.l ask joe turtle-shape |

ata

8

set-home-position

Syntax
set-home-position<new home>

Description
This command determines where a sprite goes when it is isswedeor acs
command. It must be addressed to a sprite (@lth executed inside a sprite, or
executed in the presence of a turtle box. [8eae-positionundersprite-properties in
sprite-information .

Example

set-home-position
10 10
ata
cs
ait

113

Chapter 3 3.13 Mouse Input & Clicks

3.13 MOUSE INPUT & CLICKS

-click-on-graphics

Syntax
mouse-click-on-graphics mouse-double-click-on-graphics

Description
These commands are executed automatically when you click a mouse button over a
graphics box in its graphics presentation. They are executed inside the graphics box. The
prefixescommand- andoption- may also be used. Note thambuse-click-on-graphics
is a data box, that box will be returned inside the graphics box, which you will not see
until you flip the box to see its box-contentsouse-click-on-graphicsandmouse-click-
on-sprite mouse commands only work when the graphics box is showing the graphics
presentation. Regular mouse clicks are activated when showing the regular box
presentation side. Howeveaption-mouse-click-on-graphicsis initially defined to
shrink a graphics box. If you want a mouse click command to do the same thing whether
it is over a sprite or not, definenaouse-click-on-spritecommand to do the same thing
as anymouse-click-on-graphicscommand you have defined. The obvious place to put
these commands is in the graphics box, or in its closet. However, they can be inherited by
multiple graphics boxes if they are placed in a containing box.

Examples
f_ .W inform

input message

tell jo=
o=
type “message

ait
pu £f4 10 pd
L'-Data _______ _/I Do it

|luu59—nlink—unrgraphic5|

inform
[Enuse—click!|
ata
ait

[]
E
m
|

]
=
[
1)
g

\ 114

Chapter 3 3.13 Mouse Input & Clicks

-click-on-sprite

Syntax
mouse-click-on-sprite mouse-double-click-on-sprite

Description
these commands are executed automatically when you click the appropriate mouse button
over a sprite in a graphics box, when the graphics box is in its graphics presentation.
They are executed inside the sprite you clicked on. The prefixes command- and option-
may also be used. Note thambuse-click-on-spriteis a data box, that box will be
returned inside the sprite, which you will not see until you flip the box to see its box-
contents. elick-on-sprite and-click-on-graphics mouse commands only work when the
graphics box is showing the graphics presentation. Regular mouse clicks are activated
showing the box presentation side. The obvious place to put these commands is in the
sprite you want them to work with. However, they can be inherited by multiple sprites if
they are placed in a containing box, such as the graphics box that contains all the sprites.
(As a default, mouse-click-on-graphics executes follow-mouse, so you can drag a sprite
around.)

Example
f_ 1\ inform

input message

tell jo=
fut=
type "message

uit
pun f4 10 pd
L—Data _______ _,fl L Dt

|luuse—click—un—graphic5|

inform
[Enuze—click!|
ata
it

\ 115

Chapter 3 3.14 Mouse Position

3.14 MOUSE POSITION

mouse-position

Syntax
mouse-position

Description
Returns a box containing the x and y coordinates of the mouse cursor. The coordinate
system is the same as for sprite positions; (0,0) is at the center of the graphics box. Note:
mouse-positionis a graphics command, and must be used in the presence of a turtle box,
or addressed to a sprite or graphics mause-positionreturns coordinates that may be
beyond the size of the graphics box if the mouse cursor is outside the graphics box.
Beware of setting the position of a sprite beyond the borders of its graphics box with pen
down in wrap mode. Very long lines that endanger the health of Boxer can result. Finally,
even when the graphics box is shrunken, the coordinates are relative to (0,0) at where the
center of the graphics box would be, if expanded.

Example

e Ty mouse-position |
2.0 32.0

ata

=

mouse-position-on-

Syntax
mouse-position-on-click
mouse-position-on-release

Description
These are the samem@asuse-position except they wait for either a mouse click or the
release of a mouse button before returning the location of the mouseo&&e-position
for details. Note anouse-position-on-releasavaits for the release of a mouse button. If
a button is not pressed when it is executed, you (obviously) must press first before

releasing.
Example

r-— —————— _‘»,I monse—position—on—click |
Z23.0 4.0

ata

BN

116

Chapter 3 3.14 Mouse Position

mouse-X-position

Syntax
mouse-X-position

Description
Returns a box containing the x coordinate of the mouse cursor. The coordinate system is
the same as for sprite positions; (0,0) is a the center of the graphics boxmblase:x-
position is a graphics command, and must be used in the presence of a turtle box, or
addressed to a sprite or graphics boruse-x-positionis the same agem 1 mouse-
position. Seemouse-positionfor details.

______ monse—x—-position
r‘_ _‘\I F | 20,0

ata

AR

mouse-X-position-on-

Syntax
mouse-X-position-on-click
mouse-X-position-on-release

Description
These are the samem@asuse-x-position except they wait for either a mouse click or the
release of a mouse button before returning the location of the mouse. INots e x-
position-on-releasewaits for the release of a mouse button. If a button is not pressed
when it is executed, you (obviously) must press first before releasingi@ese-
position for details.

Example
r"_ ______ _‘\Imc-uze-—:{—p-:nsitinn—n:nn—click | w10

ata

YL

117

Chapter 3 3.14 Mouse Position

mouse-y-position

Syntax
mouse-y-position

Description
Returns a box containing the Y coordinate of the mouse cursor. The coordinate system is
the same as for sprite positions; (0,0) is a the center of the graphics boxmblase:y-
position is a graphics command, and must be used in the presence of a turtle box, or
addressed to a sprite or graphics boruse-y-positionis the same agem 2 mouse-
position. Seemouse-positionfor details.

Example

______ ol b4
il Ty mouse-y-position | 23 10

ata

8

mouse-y-position-on-

Syntax
mouse-y-position-on-click
mouse-y-position-on-release

Description
These are the samem@asuse-y-position except they wait for either a mouse click or the
release of a mouse button before returning the location of the mousendlcte-y-
position-on-releasewaits for the release of a mouse button. If a button is not pressed
when it is executed, you (obviously) must press first before releasingi@ese-
position for details

I.--— _____ _‘“1| mouse—-y—position-on-release | 100

ata

b

118

CHAPTER 4

Arithmetic & Logic

Boxer has a standard set of number types and operations. There are:

1. integers (e.g., 1, 2, -37)
2. rational numbers (e.qg., 2/3, 29/21, 195/7).
3. floating point numbers (e.g., 2.65, 1.0, -73.94827).

Note that 2/3 denotes a rational number (fraction), NOT a divide; see Arithmetic. Note also that
commas are not allowed, even to make big numbers more readable.

There are predicates that tell you what type you hava\sewer-Informatioh You can
convert from one type to another (S¢@mber-conversion

Numbers are the only kind of data that can be typed outside of a data box. If you execute a
number, you get datafiednumber. And note that rational numbers are reduced to lowest terms,
whenever possible.

Automatic type conversion

Arithmetic with integers is not complete in the sense that some operations result in non-integers.
E.g., 1/ 2 is not an integer, but it is a rational number. Boxer comes set up to present calculations
that might represent rational numbers as decimals. E.g.: 1/2 executes to return 0.5.

Any calculation that involves a floating point number forces Boxer to convert from integer to
floating point numbers. 1.0 * 2 returns 2.0.

In addition, you can force Boxer to use fractions to print out the results of rational arithmetic
with "print-fractions true ". (Also Boxer preferences in the Edit menu.) When print-fractions is
true, calculations that involve only integers or rational numbers are done perfectly, with no
roundoff. (The default setting in Boxerpsint-fractions false.)

Controlling the number of decimals shown

You can change the number of decimal places used by Boxer with the corpmiming-

precision. Printing-precision 2 shows two digits after the decimal place. In Boxer, what you see

is what you have, so your calculations are in danger of losing accuracy when you change printing
precision to a small number. Boxer does, however, maintain full precision until it has to show
you values; so calculations with small precisions lose accuracy only at the end of the calculation,
when results are shown to you. To preserve accuracy, you might what to keep a high value of
high printing-precision, and theound for display separately.

119

Chapter 4 Boxer Language

Scientific Notation

Very large or very small numbers may be shown in scientific notation. Thus, 2.01E6 means
"2.01 times 10 to the sixth power", which is 2010000. (E stands for Exponent.) You can type in
numbers in this format also.

120

Chapter 4

Boxer Language

4.1 ARITHMETIC OPERATORS & FUNCTIONS

Arithmetic in Boxer is fairly straightforward. Arithmetic is one of the few

places Boxer allows infix operations, that is, placing the operator between two
inputs. Pretty much only, -, *, / and** (power) are infix. Even these have

prefix forms, if you prefer to use those. Most people write out arithmetic
expressions in full detail, using boxes to show subexpressions. Note that
parentheses are not understood by Boxer. Also, boxes are better than
parentheses because: (1) you can't have unmatched parentheses; (2) you can
shrink and expand parts of expressions, or execute them to see their value (just
place cursor in box and hit doit); (3) they provide a visually clear parsing of the
expression.

4.2 COMPARISON OPERATORS & FUNCTIONS

less?
greater?

less-or-equal?
greater-or-equal?

4.3 NUMBER TYPE

number?
float?

integer?

rational?

4.4 VALUE INFORMATION

zero?
plus?
minus?
even?
odd?

These functions compare the size of two numbers. They eteror false,
and are useful for conditionals likfle For each infix command, there is a
written out prefix version.: =, <, >, <=, >eqgual? less? greater?, less-or-
equal?, greater-or-equal?

These functions returtnue or false depending on which type of humber is
given as input.

These predicates retutmue or false depending on whether their numerical
inputs are as indicated by the name.

4.5 OTHER NUMERIC FUNCTIONS

mod

remainder

abs
signum
sqrt
random
max
min

These are various useful numeric functions. See also number-conversion for
other functions, for example, to round off numbers.

121

Chapter 4 Boxer Language

4.6 EXPONENTIAL & LOG FUNCTIONS

*x Boxer has exponential and logarithmic functions.
power
exp

log
In

4.7 TRIGONOMETRIC FUNCTIONS

sin These are trigonometric and inverse trigonometric functions. Angles are
cos degrees, not radians.

tan

asin

acos

atan

4.8 NUMBER CONVERSION TO INTEGERS

round These functions convert from various kinds of numbers to others. There are
ceiling several ways to get integers from floating point numbéusnerator and
floor denominator give you the specified parts of fractioRationalize converts
truncate floating point numbers to fractions (rational numbers).These are all ways of
numerator converting rational or decimal (floating-point) numbers to integers that are
denominator "close" to the given number.
rationalize

4.9 NUMBER PRINTING CONTROL

printing-precision You can control how many decimal places Boxer shows or whether a divide of
print-fractions integers shows up as a rational number (1/2) or as a decimal (.5). These
commands appear in the boxer preferences (Edit menu, preferences option; or
top-level closet). See also the Overview of Arithmetic and logic, under number
types @uto conversionandprecision sections

4.10 LOGIC
true These are the logical types and operators in Boxex.andfalse are the
false (Boolean) values of all predicatest, and andor are functions on Boolean
and inputs. These are useful to construct your own predicates (things that return
or true or false), and to construct inputs to flow-of-control primitives likgfs,
not unless andwhen. not, and andor signal an error if their inputs are rate or

false Note: By convention, Boxer use® at the end of any command that
returnstrue or false. These commands are questions that tranxeor false
answers (aka predicates).

122

Chapter 4 4.1 Arithmetic Operators & Functions

4.1 ARITHMETIC OPERATORS & FUNCTIONS

Note: The first two of each example set below are shown with print-fractions true. With print-
fractions false, the result would be a decimal number.

+

Synt ax
<numberl>+ <number2>

Description
Returns the sum of two numbepdus is prefix form.
Examples

252 0+ 144 |
117142

ata

2+ 24|

ata

253+ 33333 |
[3.9999966666666666}
ata

Syntax
<numberl> <number2>

Description
Returns the difference of two numbarsnus is the prefix version.

Examples

4.5 — 172 |[:
2410
ata
3 - B3 IG
73
ata

243 - 33333 |
[3.3333366666666666]
ata

Syntax
<numberl> * <number2>

Description
Returns the product of two numbetises is the prefix version.
Examples

i3 ¥ 154 |
1/6

ata

2+ B/ |
4
ata

23+ 323333 |
0. 22223

ata

123

Chapter 4 4.1 Arithmetic Operators & Functions

Syntax
<numberl> <number2>

Description
Returns the ratio of two numbedsvide is the prefix version.

Examples
943 F 144 |
=Pe:

ata

242
1
ata
253 4 033333 |
EE.DDDDEUDDDE |
ata
plus

Syntax
plus <numberl> <number2>

Description
Prefix version of +.

Examples

lus 2 2
T I[4 j
ata
plus 2/3 144 |
|11f12 |
ata
plus 2/3 .3333 |
[3.999955555?|
ata

minus

Syntax
minus <numberl> <number2>

Description
Prefix version of -.

Examples

minus 2 2 |[£_J
ata

minus 253 1/4 |[:

T B

ata
minus 273 33333 |

[3.33333666666 |

ata

124

Chapter 4

4.1 Arithmetic Operators & Functions

times

Syntax
times <numberl> <number2>

Description
Prefix version of *.

Examples

times 2 2 |[:
4
ata
times 253 174 |
| 176 |
ata

times 253 33333 |
0. 22223
ata

divide
Syntax
divide <numberl> <number2>

Description
Prefix version of /.

Examples

diwvide 2 2 |[1 :
ata
diwvide 2 2.0 |
1.0
ata

divide 243 323333 |
2.0

ata

125

Chapter 4 4.2 Comparison Operators & Functions

4.2 COMPARISON OPERATORS & FUNCTIONS

<

>

Syntax
<numberl>= <number2>

Description
Returngrue or false depending on whether inputs are numerically eaeplal?is the
prefix version. Both these commands work to compare any box structure, not just
numbers. See data manipulation.

Examples
1=1.0 |
| TEIE |
ata
1/2 = .5 |
| TEIE |
ata

Syntax
<numberl>< <number2>

Description
Returngrue or false depending on whether the first input is numerically less than the

secondless?is the prefix version. Usalpha<to compare text alphabetically.
Examples

1 ¢ 1.0 |
|FM.SE|
ata
2 ¢3 |
|TRT.I'E|
ata

Syntax
<numberl>> <number2>

Description
Returngrue or false depending on whether the first input is numerically greater than the

secondgreater?is the prefix version. Usalpha>to compare text alphabetically.
Examples

1 1.0 |
|FELSE|
ata
S 4|
|TRT.IE|
ata

126

Chapter 4 4.2 Comparison Operators & Functions

<=
Syntax
<numberl>== <number2>
Description
Returngrue or false depending on whether the first input is numerically less than or
equal to the secontess-or-equal?s the prefix version.
Examples
1 <=1.0 |
TEUE
ata
3= 4 |
TEUE
ata
>=
Syntax
<numberl>>= <number2>
Description
Returngrue or false depending on whether the first input is numerically greater than or
equal to the secondreater-or-equal?is the prefix version.
Examples
-2 = 1.0 |
| FALSE |
ata
2 »= -10 |
TEUE
ata
less?
Syntax
less?<numberl> <number2>
Description
Prefix version of <.
Examples
le=s=7 1 1.0 |
| FALSE |
ata
les=s? 2 3 |
TEUE

ata

127

Chapter 4 4.2 Comparison Operators & Functions

greater?

Syntax
greater? <numberl> <number2>

Description
Prefix version of >.

Examples

eater? 1 1.0
el | FALSE

greater? 5 4 |

less-or-equal?
Syntax
less-or-equal?<numberl> <number2>

Description
Prefix version of <=.

Examples

less—or-equal? 1 1.0 |

less—or-equal? 2 4 |

greater-or-equal?
Syntax
greater-or-equal? <numberl> <number2>

Description
Prefix version of >=.
Examples

eater—-or-equal? -2 1.0
el T ! FALSE

greater—-or-equal? 2 -10 |

128

Chapter 4 4.3 Number Type

4.3 NUMBER TYPE

number?

Syntax
number? <number>

Description
Returns true or false depending on whether its input is a number of amusaoer?
gives an error if it is not given a number as input.

Examples

numher?
FELSE
ata

number? sgqrt 2|

ata

TETE

ata

number? sin 30 |

float?

Syntax
float? <number>

Description
Returns true or false depending on whether its input is a floating point number (i.e., one
with a decimal point in it)float? gives an error if it is not given a number as input.

Examples
float? 273 |
FALSE
ata
float? =qrt 2 |
TEUE

ata

float? =in 20 |
TEIE
ata

129

Chapter 4 4.3 Number Type

integer?
Syntax
integer? <number>
Description
Returns true or false depending on whether its input is a positive or negative integer.
integer? gives an error if it is not given a number as input.

Examples
integer? -2 |
TEIE
ata
integer? sqrt 2 |
FaLSE

ata

FaLtE

ata

integer? cos 0 |

rational?

Syntax
rational? <number>

Description
Returns true or false depending on whether its input is a rational number (i.e., a fraction).

rational? gives an error if it is not given a number as input.
Examples

rational? 2/3 |
TEIE

ata
rational? =sgqrt 2 |
| FalSE |
ata
rational? cos 0 |
| FalLsE |
ata

130

Chapter 4 4.4 Value Information

4.4 VALUE INFORMATION

Zero?

Syntax
zero?<number>

Description
Returngrue or false depending on whether its input is equal to zero. As usual, finite
precision of computers can occasionally give some surprising results.

Examples

zero? (333 - 1.7 |
Fal.5E

ata
zero? —. 0001 |
FaLZE

ata

plus?
Syntax
plus? <number>
Description
Returngrue or false depending on whether its input is greater than zero. As usual, finite
precision of computers can give some surprising results.

Examples
plus? 00001 |

ata
plus? 1/3 — 333 |

ED

plu=s? 0 |
F&LSE

ata

minus?
Syntax
minus? <number>
Description
Returngrue or false depending on whether its input is less than zero. As usual, finite
precision of computers can give some surprising results.

Examples

minus? -, 00001 |[:
ata
minns? (333 - 153 |[:

minws? 0 |
FaLSE

ata

131

Chapter 4 4.4 Value Information

even?

Syntax
even?<number>

Description
Returngrue or false depending on whether its input is an even integer. That is, if it is
divisible by two evenly.

Examples

even? 4.0 |
FaLZE

ata
even? |
24 TETE
ata ata

even? 472 |

TEUE
ata
odd?
Syntax
odd? <number>
Description
Returngrue or false depending on whether its input is an odd integer.
Examples
odd? 4s8 |
FALSE
ata
odd? .5 |
| FALSE |
ata
odd? |
/3 TEUE
ata ata

132

Chapter 4 4.5 Other Numeric Functions

4.5 OTHER NUMERIC FUNCTIONS

mod

Syntax
mod <number> <base>

Description
This command does "clock arithmetic" and returns the number a clock with <base> hours
on the face (starting at 0 and running to <base> - 1) would read after <number> hours.
For negative numbers, run the clock backwards, but still read the (positive) result off the
face.mod is similar to remainder, except remainder returns negative numbers for
<numbers> grater than thod works for fractional and floating point bases too.

Examples

mod 0O 3 |
0
ata
mod 33 |
0
ata
mod 4 2.5 |
1.5
ata
mod -3 2 |
1
ata

remainder

Syntax
remainder <number> <divisor>

Description
Returns the remainder of dividing <number> by <devisor>. That is, ifdmainder of
<number> <devisor>, then <number> = m * <devisor> + R, where m is the biggest
integer that leaves R positiv@mainder is similar tomod, excepimod returns a
positive number always if the base is positneeainder works for fractional and
floating point divisors too.

Examples

remainder 0 3 l[u :
ata

remainder 2 32 l[n :
ata

remainder 4 2.5 |
1.5
ata

remainder -3 2 |[] :
ata

133

Chapter 4 4.5 Other Numeric Functions

abs

Syntax
abs<number>

Description
Returns the absolute value of its input; i.e., it returns X if X is positive, and -x if X is

negative.

Examples
abs -10.9 |

abs -9/2 |

abs -Z24 |

signum

Syntax
signum <number>

Description
Return +1 if its input is positive and -1 if its input is negative. It's a way to get the "sign"
of a number, hence the name.

Examples

signoam —3 |[] :
ata
sigoom 144 2 |
1.0
ata

signum 0 | 0
ata
sgrt
Syntax
sqgrt <number>
Description
Returns the square root of its input.
Examples
=qrt 4 |
2
ata
=qrt 2 |
[5 .4142135523?30951)
ata
=sqrt 2.3 |
[3 (21649652 uezwzej
ata
=qrt 2.22 |

[; L2954 25751 34)
ata

134

Chapter 4 4.5 Other Numeric Functions

random

Syntax
random <number>

Description
Returns a number between 0 and one less than the number specified. With floating point
numbersrandom returns a number >= 0 and < n. Random gives an error on negative
inputs.

Examples

random 2 |
4

ata
random 100 |
=
ata
maxX

Syntax
max <numberl> <number2>

Description
Returns the greater of its two arguments.

Examples
max —3 -7 | -

ata

max :I | [:I
[;..345 |[-;..345I5 13456
ata ata ata
min

Syntax
min <numberl> <number2>

Description
Returns the lesser of its two inputs.

Examples

min -3 -7 |

7

ata

mim |
[D1.4SET| &3) 1.2
ata ata ata

135

Chapter 4 4.6 Exponential & Log Functions

4.6 EXPONENTIAL & LOG FUNCTIONS

**

Syntax
<number>** <exponent>

Description
Returns number to the exponent power.

Examples

10 ++ 2 lG
100
ata
243 ¥+ 2 |[:
4 /9
ata
10 *+* |
| log 5 4 9999
ait ata

power

Syntax
power <number> <exponent>

Description
Prefix version of **.

Examples

omer 10 2
F || 100 |
ata
pomer 253 2 |[:
4 S
ata

power 10 |
log 5 4, 93399

L Dt ata

exp

Syntax
exp <number>

Description
Returnse (2.718281828459045) to the <number> pow&pis the inverse ttn (log to
the base e).

Examples
exp 1 |
[E .7182815828459 ncﬁj

ata

exp 17100 |
[5 . DlDDSDlE?UEélEEﬁ)
ata

SXp |
| 1n 5 | &.999999999999999)
ait ata

136

Chapter 4 4.6 Exponential & Log Functions

log
Syntax
log <number>
Description
Returns the logarithm to the base 10 of its input. Notelalgas the inverse gbower 10
X.
Examples

log 1 |
a.a

ata

log 4 |
[3 LE0Z DSBB‘BISZ’?E‘EES)
ata

log |
I_En:-wer 105 5.0

ait— | ata

In

Syntax
In <number>

Description
Returns the natural logarithm of its input. That is, the logarithm to the base e =

2.7182818284590456. Note thatis the inverse oéxp.
Examples

in 2 |
[3.69314?1805599453j
ata

in 10 |
[5.302595092994045]
ata

1n |
EXp 5 5.0
ait ata

137

Chapter 4 4.7 Trigonometric Functions

4.7 TRIGONOMETRIC FUNCTIONS

sin
Syntax
sin <angle>

Description
Returns the sine of its input. The inverse functioasis (arc sine).

Examples
sin 45 |
[3 _7071 06781 18:554?5)

ata

=in |
20 1.0
ata ata
sin |
|_:51n 07 [.I;I.'T-‘III'T-‘ |
oit— | ata
COS

Syntax
cos<angle>

Description
Returns the cosine of its input. The inverse functiactas(arc cosine).

Examples
cos 45 |
[E L7071 06781 18654?6)

ata
cos 20 |
0
ata
(atal=S |
|_:=;u:n:is .77 &.?059999999999999)
oit ata
tan
Syntax
tan <angle>
Description

Returns the tangent of its input. S#an entry concerning inverse.
Examples

tan 45 |
[-Iél . 9999999999999999)
ata

tan 20 |
[-i . 63245522?'?6190?2]5“6)
ata

tan |
|_:tan 301 [-;?9 . 999999999999925)

alt ata

138

Chapter 4 4.7 Trigonometric Functions

asin
Syntax
asin <number>
Description
Returns the arc sine of its input. It's the inverse function of agiereturns an angle
between -90 and 90 as its input varies from -1 to 1.

Examples

asin 1 |
S0.0
ata

asin 707 | J

44 99134533533 718201

ata

asin -1 |
|—90.D|
ata
acos

Syntax
acos<number>

Description
Returns the arc cosine of its input. It's the inverse function of c@sinsreturns an
angle between 0 and 180 as its input varies from 1 to -1.

Examples

acos 1 |
0.0
ata

acos 707 |
[35.008651662838]

ata

acos -1 |
|IBD.D|
ata
atan

Syntax
atan <y> <x>

Description
This command is the arc tangent function. Because the arctangent of an angle does not
contain enough information to determine the quadrant of the atgfetakes two inputs.
These are the separate y and x components of the tangent, rather than just the ratio, y / x .
Multiplying both inputs by a constant does not change #tair.

Example
atan 0 1 |

atan 1 1 |

atan -1 1 |
-45.0
ata

139

Chapter 4 4.8 Number Conversion To Integers

4.8 NUMBER CONVERSION TO INTEGERS

round

Syntax
round <number>

Description
This command is the traditional rounding to the nearest integer. It rounds toward zero.
That is, .5 gets rounded to 0, and so does -.5.

Examples
roond 4,49 |

ata

roond 4.5 |

ata

roond 4.51 |

ata

ceiling
Syntax
ceiling <number>
Description
This command takes as input any number and returns the smallest integer greater than or
equal to that number. If you think of a floor in a building at each integéing returns
the integer that is your ceiling if you are at <number>.

Examples
ceiling 4.49 |

ata

3

ata

ceiling -4.9 |[4 :
ata

ceiling 4.5 |

140

Chapter 4 4.8 Number Conversion To Integers

floor

Syntax
floor <number>

Description
This command takes as input any number and returns the largest integer less than or
equal to that number. If you think of a floor in a building at each intéger, returns the
integer that is your floor if you are at <number>.

Examples
floor 4.49 |

floor 4.5 |

floor -4.9 |

truncate

Syntax
truncate <number>

Description
This command takes as input any number and returns the integer portion. It simply lops
off any digits after the decimal place. Ndleor andtruncate give the same result for
positive numbers, but different results for negative numbers.

Examples

truoncate 4.6 |[‘1 :
ata

troncate 4,25 |[4 :
ata

truoncate -5.99 |[- :

ata

numerator

Syntax
numerator <number>

Description
Returns theaumerator of the fraction (rational number) given it as input. It first reduces
the fraction to lowest terms so thmtmerator x * n/ x * d is the same asimerator n /
d

Examples

numerator 2/3 |[2 :
ata
numerator 71731 |
2!
ata

numerator 5 |
=]

ata

141

Chapter 4 4.8 Number Conversion To Integers

denominator

Syntax
denominator <number>

Description
Returns the denominator of the fraction (rational number) given it as input. It first
reduces the fraction to lowest terms so tt&tominatorx * n/ x * d is the same as
denominatorn / d.

Examples

denominator 253 |[3 :
ata
denominator 7131 |
21
ata

denominator 5 | |

ata

rationalize

Syntax
rationalize <number>

Description
This command produces the rational number, in lowest terms, equal to its input. It is
mostly used to force floating point number into rational (fraction) format.

Examples

rationalize 37.5 |
750
ata

rationalize 2.72828 |
G2207 /25000

ata
ratiomalize 100 |
10n

ata

142

Chapter 4 4.9 Number Printing Control

4.9 NUMBER PRINTING CONTROL

printing-precision
Syntax
printing-precision <new-precision>
Description
This command specifies how many decimal places to show. It does not effect internal
calculations until a number is shown on the screen. However, from then on, the accuracy
of the number will be reduced. The input, naturally, must be an integer.

Examples

-
printing-precision 2
1.0 /3 |

n.32

ata

Data
-

printing-precision 10

1.0 /3 |
[3.3333333333 |
ata

Data

print-fractions

Syntax
print-fractions <true or false>

Description
This command controls whether a divide of two integers (a fraction) will be a fraction or
a floating point number. An input édlse forces printing results as decimals. As with
printing-precision, this only effects numbers when they get shown on the screen. But
once that has occurred, there's no turning back.

Examples
-
print-fractions true
173 |
1/3
ata
“Data
-

print-fractions false

1 /3 |
[3.3333333333 |
ata

Data

143

Chapter 4 4.10 Logic

4.10 LOGIC

true

Syntax
true

Description
Returns standard-form Boolean value, the ward in a data box. In this way, it is an
"automatic" data object that does not need to be placed in a data box, just like a number.
"IF <predicate> <consequent> <alternative>" will do the <consequent> if <predicate>
returnstrue and the <alternative> if the predicate retuaise

Example
if true

I
if you get me if you get me if you get me
if wmas true if mas fal=e if was true
ata ata ata

false

Syntax
false

Description
Returns standard-form Boolean value, the walsein a data box. In this way, it is an
"automatic" data object that does not need to be placed in a data box, just like a number.
"if <predicate> <consequent> <alternative>" will do the <consequent> if <predicate>
returnstrue and the <alternative> if the predicate retuaise

Example
if fal=e

I
if you get me if you get me if you get me
if was Lrue if wa=s fal=e if wa=s fal=e
ata ata ata

and

Syntax
and <predicatel> <predicate2>

Description
This command is the logical and of its inpwad returnstrue if both its inputs arérue.
It returnsfalse otherwise.

Example

between?

input x bot top

and
LE » bot LE < top
ait ait

ait

between? 7 5 10 |

TEIE

ata

144

Chapter 4 4.10 Logic

or

Syntax
or <predicatel> <predicate2>

Description
This command is the logical or of its inputs:returnstrue if either or both its inputs are
true; It returnsfalseif neither are.

Example

|nut—hetreen?|

input x bot top

or
LE » top LE < bot
uit nit

ait
not-betmeen? 7 5 10 |
FALSE

ata

not

Syntax
not <predicate>

Description
This command returns the negative of its input. It rettnes if its input is false and

falseif its input is true. Gives an error if its input is not true or false.
Examples

not true |
FALZE
ata

not false |
TEIE

ata

not |
LE ¢ 2 TR?EJ
ait ata

145

CHAPTER 5
Triggers

Boxer has a set of structures called triggers that allow you to program in an "activation-
oriented" style. This means things can be triggered to happen when particular other things
occur.

146

Chapter 5 Boxer Language

5.1 TRIGGERS
entry-trigger These commands can be set to run when a box is entered, when a box is
exit-trigger exited, and when a box is changed (either with the editor or witlarge
modified-trigger command).

147

Chapter 5 5.1 Triggers

5.1 TRIGGERS

entry-trigger

Syntax
entry-trigger

Description
The commanentry-trigger is executed when you enter the box in whicleatny-

trigger is defined. Boxes inferior to the box in which you defineiny-trigger do not
inherit the trigger. Entering a subbox of one that haandény-trigger does not count as
entering the box, but exiting a subbox (into the interior proper of the box) does count as
entering it. Entering a port to a box that containsrany-trigger will also trigger it.

Example

try
- ™)

|Entr1—trigger

change x x + 1

ait

ata

Oata !
Try: Click middle at warious places inside the above box.

Notice the trigger works only the first time you enter the box,
and only when you enter the box itself —— not a swbbox. Homever
if you click in a svbbox and then on the interior proper of a box,
that counnts.

148

Chapter 5 5.1 Triggers

exit-trigger

Syntax
exit-trigger

Description
The commanexit-trigger is executed when you leave the box in whicleabtrigger
is defined. Boxes inferior to the box in which you defineatny-trigger do not inherit
the trigger. Exiting a box directly from an inferior box (with the mouse) also triggers the
exit-trigger. Exiting a port to a box that containsemtry-trigger will also trigger it.

Example
- g

|Exit—trigger|

change x % + 1

oit

ata

Data o

Try: Click middle inside the abowe box, and then exit it
Hotice the trigger works whenever you exit the box, even
if you exit from a subbox.

149

Chapter 5 5.1 Triggers

modified-trigger

Syntax
modified-trigger

Description
The commananodified-trigger is executed when you change a box in which a
modified-trigger is defined. This happens when you change it with the editor, or when
you usechange If you change a box with the editor, timedified-trigger is triggered
when you exit the box. Boxes inferior to the box in which you defimedified-trigger
do not inherit the trigger. Changing a port to a box will also resultrirodified-trigger
being executed.

Example

info |59nsitive|

== \

[HODIFIED-TRIGGER|

change info
Cuchl
Tou changed SENSITITE.

ata
redisplay sleep 3
change info

L [t

Oata -

Try: Click middle inside the above box, make some small
change (e.g., type a space, or even just shrink or expand
a box) and then exit it.

Hotice the trigger works whenever you exit the changed box, even
if youw exit from a subbox.

150

CHAPTER 6

Miscellaneous Commands

Commands not covered in the other categories.

152

Chapter 6 Miscellaneous

6.1 MISCELLANEOUS

beep Commands not cover in other categories
click-sound
sleep
unigue-symbol

153

Chapter 6 6.1 Miscellaneous

6.1 MISCELLANEOUS COMMANDS

beep

Syntax
beep

Description
beepemits a short sound.

Example

heep

repeat 5
beep

sleep 1
t\—

click-sound

Syntax
click-sound

Description
Click-sound emits a short click..

Example
click-=zound

repeak 5
click-=sound
sleep .2

R ———————————

Chapter 6 6.1 Miscellaneous

sleep

Syntax
sleep<seconds>

Description
sleepcauses Boxer to pause for the number of <seconds> specified. It is useful to
delay or slow down Boxer processing so that things can be comfortably viewed.
The input may be a fraction or decimal less than one. Note that for the example
below, if you remove the sleep command you will not be able to read it.

Example

[x] [£14p]

change x
[ﬂ J Something.
ata

ata

redisplay
sleep 2

change x
[fumething new.|
ata

redisplay
sleep Z
change x

ata

L D it

flip

unique-symbol
Syntax
unique-symbol
Description
unique-symbolreturns a word that is guaranteed to be unique during the current
Boxer session.

Example
unigque—symbol |)

THIQUE-SYIEOL-1

ata

155

CHAPTER 7

Environment: Input & Output

This chapter explains how a program can provide output to the user, and how you can arrange for
the user of a program to supply input to the program.

Output of information to the user of a program in Boxer is done simply by making part of Boxer
visible, say, a variable or graphics box, and changing that variable or executing graphics
commands. The only complication is that, for speed of execution, Boxer does not ordinarily
attend to its own display during the running of a program (in contrast to while one is directly
editing Boxer, or after some execution has stopped). So you must sometimes tell Boxer when
you want changes to be made visible using the commehsblay.

Input comes in two classes: keystrokes and input from the mouse. Boxer can provide for the
following kinds of input from the user:

4. Essentially any keystroke in Boxer can be rebound (reconnected) to an arbitrary Boxer action
by defining a box whose name contains the sukey. E.g.,a-key, command-f-key, F1-
key.

5. As withredisplay, Boxer does not ordinarily attend to keyboard or mouse input when a
program is running, but you can request it to do so katidle-input. This can allow users
of a program the full editing capabilities of Boxer to provide input.

6. Any Boxer program canpbll" (request information about) the state of the mouse buttons,
and get information about where the mouse is pointing.

Rebinding keys is a very powerful device, and should be used cautiously. For example, generally
it is far better to redefine function keys (F1, etc.) than any keys that would be used for something
else. Next in line are the control, command, or option keys; but beware redefining those you use
for other things. Finally, it's neat and powerful to define regular letter and number keys, but
frequently you will have difficulty continuing to work in your own environment. Anybody else
using your environment will have trouble working or changing things if you change frequently
used keys, especially things like "doit" and "stop"! Actions on various kinds of mouse clicks can
similarly be redefined (see Mouse Input below). Note: Mouse input specific to graphics boxes is
described in the graphics section. $sguest-for-input-handling to make key bindings and

mouse clicks active during execution of another program.

Mouse Input
Using the mouse as an input device can be done in two ways (in addition to using it to control

editing and activation of operations, as usual in controlling Boxer).

155

Chapter 7 7.1 Output

1. You may redefine what Boxer does when you click mouse buttons in various places.

2. You may "poll" the mouse to find out various things about its state; such as where it is
pointing and which buttons are currently being pressed.

Here are some ideas for coping with input and output in Boxer.

Idea 1

Work as much as possible from Boxer top level. Many times it is unnecessary to program any
input or output at all because Boxer shows you the state of your world directly, and has access to
any changes you make. So program output might simply be changing a variable that is shown on
the screen (or executing some graphics commands). Program input might be having a user
change a variable, or chose a "menu item," which might just be a line of text typed on the screen.

Idea 2

Use simple user-defined extensions of the standard input forms. For example, it is simple to
arrange for any Boxer action to take place whenever one clicks mouse buttons on sprites or
graphics boxes (see the section on graphics). Also, any key may be used as an instant-action
function key.

Idea 3
Boxer has a few simple commands to allow you to use any of the tricks in Key Ideas 1 or 2 while
a program is running. Sémandle-input, input?, andedit-box.

156

Chapter 7

Boxer Language

7.1 OUTPUT

redisplay
status-line-message
status-line-y-or-n

The first command makes changes that happen in Boxer visible. The other two
request or present information to the user.

7.2 INPUT: KEYSTROKE BINDING

-key
command-option-v-
command-"-
command-'-

7.3 INPUT: MOUSE BINDING

-click
mouse-click-on-

7.4 INPUT: MOUSE POLLING

mouse-buttons
mouse-box
mouse-box-on-
mouse-rc-box
mouse-rc-box-on-
mouse-rc
mouse-rc-on-

This suffix is how you redefine what Boxer should do when you press a key.
SeeRequest For Input Handlinp make key bindings active during execution
of another program. Press option-hapt{on-?) and press the key to see-its
key name.

These suffixes are how you define (or redefine) what Boxer should do when
your click the mouse. Mouse click redefinition for graphics boxes and sprites,
and graphics-specific polling methods are documented in the graphics chapter.
SeeRequest For Input Handlinp make mouse clicks active during execution

of another program. Press option-halpt{on-?) and then perform any mouse
action to see the mouse- or -mouse- name for it.

These commands return information about the mouse when executed.
mouse-buttonstells you whether and which buttons on the mouse are pressed.
The other commands give you information about where the mouse

is pointed: either the box it is iAbpX), the row and column number

of the item it is pointing to-(c), or both (c-box). See EnvironmentCursor-
location, for related commands based on the cursor.

7.5 REQUEST FOR INPUT HANDLING

handle-input
input?
edit-box

These commands allow you to get input from a user while a program is
running.

157

Chapter 7 7.1 Output

7.1 OUTPUT

redisplay
Syntax
redisplay
Description
This command causes Boxer to recompute its presentation to the user so that all changes
that have been made by a running program can be seen. Note: You doredsgedy
for graphics commands since they cause automatic redisplay of the graphics box.

Examples

E] |cuunt—tu—lﬂ—prirat911| |cuunt—tu—lﬂ—puhlic11|
[jﬂ)changexi change x 1

ata repeat 9 repeat 3
sleep .3 redisplay
change % % + 1 sleep .3
o it change x = + 1

ait
LD it D it

count—to-10-privately
count—to-10-publicly

status-line-message

Syntax
status-line-message

Description
This command places some text in the Boxer status and information line. It prints only
the first line from the input box. Note: The message will disappear whenever Boxer
would ordinarily place a new message in the status line.

Examples

Hello there!

|Exalple5|

status-line-message
H=1lo there!|
kta

158

Chapter 7 7.1 Output

status-line-y-or-n
Syntax
status-line-y-or-n
Description
This command places some text in the Boxer status and information line. It tederifs
the user typeg in response, an@dlse otherwise. See status-line-message.

Examples

" File BoX: input-o1

Type ¥ for agreement, N otherwise.

|Exalp195|

STATUS-LINE-Y-0OR-H?
[T}rpe Y for agreement, H n:-therwise.)
13

159

Chapter 7 7.2 Input: Keystroke Binding

7.2 INPUT: KEYSTROKE BINDING

-key

Syntax

-key

Description

The suffix "-key"added to the name of a key in a box nametab creates a procedure or
variable that gets automatically executed when you press the named keg-keygas

the name of a procedure will cause that procedure to be run whenever you hit the "a" key.
SeeRequest For Input Handling make keybindings active during execution of another
program. Press option-helpption-?) and press any key to see-key name. Most keys
can be rebound simply by addidgy to their printed form in the name of a procedure or
variable, likea-key, 1-key, #-key. However, since Boxer doesn't distinguish upper and
lower case under most circumstances, capital letters must use the qapftal” e.g.,
capital-a-key. Control keys should be prefixed witbmmand- e.g.,command-a-key

or option-, e.g.,option-a-key. Special keys may have special names, ldgate-key

for redefining thespace-bar Delete-keyfor redefining the delete key, and so on.

In some instances you can avoid problems of redefined keys with the "quote" key. If you
presscommand-" (or command-'), the next key you press is not run through ordinary
Boxer channels, but is inserted directly. You can get keystkérol-a to print this way.

You can also get keys that have been redefined to print.

You can temporarily turn off all key redefinitions and mouse redefinitions by entering
"Top Level" input mode. UsBther pulldown, Top Level (LocalKey/Mouseviode

selections to control this. @ommand-option-v ("v" for "vanilla"--ordinary mode) will

enter Top Level mode, during which keys and mouse clicks behave as they do in a "bare"
Boxer. Pressingommand-option-vagain, orstop exits to "Local” mode.

Example

|r—ker| info

changs info [Enu pressed the ¥ keyj
[gnu pressed the vy keyj ata

ata

oit
|t1pe—here|

[EhcdefghijklmnﬂpqrEtuvwxz]

ata

160

Chapter 7 7.2 Input: Keystroke Binding

command-option-v-key

Syntax
command-option-v-key

Description
This keystroke causes key and mouse bindings to revert to "vanilla" bindings. That is, it
turns off any redefined keys or mouse clicks. It is most useful to type in a box in which
many keys have been rebound. The command is usually executed by pressing the
command-option-v key. Pressing step (command-g key orcommand-option-v
again turns off its effect. Use al&ther pulldown menuKey/Mouseselection.

Examples

|a—keg| |E—kEI| |i—ke:| |u—ker| |u~ker|
x-key x—key x—kevy x—kevy x—key
[hoit: [icit: Dt [Cwoit: Cwoit:
|T1pe herel
Lt

Note
In the example above, all vowel keystrokes have been redefined. It is virtually impossible
to type anything in the box, including any more key redefinitions. BUT, press the
command-option-v-key and you get back "vanilla" key bindings until you press STOP,
command-g or command-option-v again.

command-"-key
command-'-key
Syntax
command-"-key
command-'-key
Description
This keystroke causes key bindings to revert to "vanilla" bindings for one keystroke. It is
like command-option-v, except for only one key press. It is most useful to type in a box
in which many keys have been rebound. In the following example, all vowel keystrokes
have been redefined. It is virtually impossible to type anything in the box, including any
more key redefinitions. But, press tt@mmand-" (or command-') key and you can type
a vowel at a time.

Examples
|a—keg| |E—kEI| |i—ke:| |u—ker| |u~ker|
x-key x—key x—kevy x—kevy x—key
[hoit: [icit: Dt [Cwoit: Cwoit:

|T1pe herel

__

Chapter 7 7.3 Input: Mouse Binding

7.3 INPUT: MOUSE BINDING

-click

Syntax
mouse-click
option-mouse-click
command-mouse-click
mouse-double-click
option-mouse-double-click
command-mouse-double-click

Description
Boxer executes commands by these names when you click the mouse. Under ordinary
circumstances, these do editor operations (expand box, shrink box, etc.), but you can
change that by defining new procedures that have these names. Note: You may use
command- or option- for other possibilities. See the graphics section for graphics
specific click rebinding. Note: You can turn off mouse key bindings with the "vanilla
mode" command;ommand-option-v. In the example that follows, when you click on
any of the boxes with the letters, their value will be added to the boxes named "typed."

Example

|luuse—click|

{:ppenﬂ—item self typed

change typed word typed

ait

e O ORI CRICRICH

abode
ata

l.zlick on the boxes with the letters

162

Chapter 7 7.3 Input: Mouse Binding

mouse-click-on-

Syntax
mouse-click-on-top-right
mouse-click-on-top-left
mouse-click-on-bottom-right
mouse-click-on-bottom-left
mouse-click-on-type
mouse-click-on-name
mouse-click-on-scroll-bar
mouse-double-click-on-

Description
Boxer executes commands by these names feagise-click-on-top-right) when you
click the mouse in the "hot spots” indicated. Under ordinary circumstances, these mouse
actions do editor operations (flip thiew, open/close theloset allow you to grasp the
lower right corner of a box t@size etc.), but you can change that by defining new
procedures that have these nansésk may be replaced Ijouble-click. control- and
option- prefixesmaywork, depending on window system and implementation. Use
vanilla-mode ¢ommand-option-\) to revert temporarily to standard mouse bindings. In
the example below, once the procedure mouse-click-on-top-right has been defined, any
time you click on any top-right corner of any box the message "you clicked in the top
right corner of a box" will be displayed in the X box.

Example
[o huuse—click—unrtup—leftl

inform
you've clicked on the

"shrink box tab" of this
graphics box.

ata

you ' ve clicked on the
"shrink box tab™ of this
graphics box.

oit

input message
tell joe

cs pd

type “‘message
pu £d 20

Dot

LMot
1. €1lick on the top left corner of the graphics boix.

163

Chapter 7 7.4 Input: Mouse Polling

7.4 INPUT: MOUSE POLLING

mouse-buttons

Syntax
mouse-buttons

Description
This command tells you if any buttons are pressed and, if so, which ones. The code is
"binary digits": 0 for no buttons, 1 for option-mouse-click (Unix: left), 2 for mouse
(Unix: middle), 4 for command-mouse-click (Unix: right), and the sum of these codes for
multiple simultaneous presses.

Example

monse-tester

|huttnn5—cnde| |lnuse—tester|
[3 || repeat 100
aty change buttons-code movse-buttons
LﬁEdiEplay
oit
ait

HOTE: Once mouvse-tester is executed, the codes 0,1.,2, and 4 will be
display in buttons-code depending on which mouse button youn press.

mouse-box

Syntax
mouse-box

Description
This command returns a port to the box in which the mouse cursor is currently placed.
Placing the mouse cursor in a port and executing mouse-box gets a port to the target of
the port you pointed to.

Example
1. Put the ftyping cursor in the "Ltry" line.
2. Place the mowse arrow on one of the boxes but don't click.
3. Pres= the "doit" key.

|hnxl| |hn12| hn:3|

(e) (g

try: mouse-hox

box2

banana=s
ata

164

Chapter 7 7.4 Input: Mouse Polling

mouse-box-on-

Syntax
mouse-box-on-click
mouse-box-on-release

Description
Like mouse-box these commands return a port to the box in which the mouse cursor is
placed. mouse-box-on-clickwaits until you click a mouse button before looking where
the mouse is, anghouse-box-on-releasavaits until you release a pressed mouse button.
If a mouse button is not pressed when you exeuooigse-box-on-releasdt will wait
until you press a button, atldenwait for a release. Placing the mouse cursor in a port
and executing either of these gets a port to the target of the port you pointed to.

Examnla
1. Execute the "try" line. Then click on one of the boxes.

|hu:1| |hu:2| bu:El

[-;tpple) [-];ananaEJ [Eears ;|
ata ata ata
I

try: movse-box-on-click

box3

pears
ata

165

Chapter 7 7.4 Input: Mouse Polling

mouse-rc-box

Syntax
mouse-rc-box

Description
Returns a box containing, in sequence:
1. The row number in that box that the mouse is pointing to.
2. The column number (item number on the pointing-to row) of the nearest item in the
box.
3. A port to the box in which the mouse cursor is pointing.
Note: Name is mnemonic for the sequenage-hox meangow, column, box, in that
order.mouse-rc-boxuses the same algorithm to decide what item is closest to the mouse
that the Boxer editor does. Pointing at white space gets you the item closest to where the
cursor would be if you just clicked middle where you were pointing. Placing the mouse
cursor in a port and executing either of these commands gets a port to the target of the

port you pointed to.

Example
1. Put the typing corsor in the "try" line.

2. Place the mouse arrow on one of the words inside the
boxes but don't click.
3. Press the "enter” (SUH: doit) key.

huxl hDIE huIE

apple bananas tomatoes ordons lettuace one two three
OYanges Jrapes ata nno dos tres
ata ata

ata
try: mouvse-ro-box

|hu12|

tomatoes ondons lettuce
ata

ata

166

Chapter 7 7.4 Input: Mouse Polling

mouse-rc-box-on-

Syntax
mouse-rc-box-on-click
mouse-rc-box-on-release

Description
Like MOUSE-RC-BOX, these commands return the row and column numbers of the item
pointed to by the mouse, and a port to the box in which the mouse cursor is placed.
mouse-rc-box-on-clickwaits until you click a mouse button before looking where the
mouse is, andhouse-rc-box-on-releasevaits until you release a pressed mouse button.

Example
1. Execute the "try" line. Then click one of the words
inside the boxes.

|hu:1| |hu:2| |hu:3|

apple hanqgas [EDM&tDES onios lettuﬂe) one two three
Oranges grapes ata uno dos tres
ata ata

ata
try: monse-rc-box-on—click |

|hu:1|

apple bananas
oranges grapes

ata

ata

167

Chapter 7 7.4 Input: Mouse Polling

mouse-rc

Syntax
mouse-rc

Description
mouse-rc<box> returns a box containing the row and column numbers of the item in
<box> that you are pointing to with the mouse. In contrastdase-rc-box mouse-rc
specifies the box that you are to gethumbers with respect to. So pointing anywhere in
a subbox of <box> will get you the sameenumbers fomouse-rc<box> whilemouse-
rc-box gives you numbers with respect to the particular box you happen to point to, and
will change if you move around inside a sub box. Placing the mouse cursor in a port and
executing either of these commands gets a port to the target of the port you pointed to.
Example
1. PFPlace the mouvse typing cursor on the "Try" line below.
2. HWove the mouse arrow over one of the words in the

following box (buk don't click therel.
2. Then press "doit" to execute the "Try" line.

|t95t|

4 "y

Apple may not he HeXT
Suns are not always Sharp
ta can be very Lt

(173 1

[lore words for wom to point to.
[kt -

Try: mouse-rc best || [;‘%)
19 -

168

Chapter 7 7.4 Input: Mouse Polling

mouse-rc-on-

Syntax
mouse-rc-on-click
mouse-rc-on-release

Description
Like mouse-rc-box these commands, when executed, return the row and column
numbers of the item pointed to by the mouse, and a port to the box in which the mouse
cursor is placed. Exceptouse-rc-box-on-clickwaits until you click a mouse button
before looking where the mouse is, anduse-rc-box-on-releasavaits until you release
a pressed mouse button. If a mouse button is not pressed when you execelease
command, it will wait until you press a button, ahdnwait for a release. Placing the
mouse cursor in a port and executing either of these commands gets a port to the target of
the port you pointed to.

Example
1. Execute the "try" linse. Then, click on one of the

words inside the "test" box.

|test|

one L thres
oo d tres
ata

try: monse-rc-on~click test | | o

ata

169

Chapter 7 7.5 Request For Input Handling

7.5 REQUEST FOR INPUT HANDLING

handle-input

Syntax
handle-input

Description
This command causes Boxer to attend to mouse clicks and keystrokes. It is useful when
you want user input while a program is runningndle-input will wait for a mouse click
or keystroke if one is not already "waiting". Therefore, it is almost always usedfas in:
input? handle-input, which will not "hang" (get stuck and wait) if there is no input.
Note: if you're usindJnix then use the commamaouse-right handle-input will cause
key presses or mouse clicks to be handled, one each time it is executed, in the order in
which they came. You are not allowed to do a "doit" (or mouse-middle-twice) during a
handle-input. Any input events pending, but not useldamgdle-input, will be saved and
executed when a running procedure stops. You can use the "waits for an input if none
already there" property ¢dfandle-input to have a command that is executing wait for a
signal (any mouse-click or key-stroke) before continuing.

Example
[infol lcheck—handle|

[-ll:.\r-:uu typed "P" || repeat 100
ata |_i..f input? handle-input
ait
oit
[p—xex]| [mouse—click|

change info charuge info
you Lyped "B | [};Du pressed the m-:mzej
ata ata

ait ait

170

Chapter 7 7.5 Request For Input Handling

input?

Syntax
input?

Description
Returns true or false depending on whether or not the user has generated some input
(typed a key or pressed a mouse button) since input was last hdradidi-input will
attend to any pending input, one item each time it is executed. When all pending inputs
are taken care oiipput? will become false again.

Example
check-input

|infu| |check—input|

[EﬁLSE repeat 100
ata L:hange info input?

redisolay
ait

ait

171

Chapter 7 7.5 Request For Input Handling

edit-box

Syntax
edit-box <box>

Description
This command places the cursor in <box>, then allows the user to type, until the box is
exited. It is used during the running of a program to allow the user to input data that will
thereafter be used. You can essentially do the same thingedg-tox by simply
stopping your program, letting the user type something in the Boxer world, and have
him/her restart the program with some signal (e.g., a menu click, "continue-when-done-
with-typing", or binding a key in that box to restart the program).

- If the input box is on-screen, but closed, it will be opened.

- If the input box is off-screen, you will get an error.

- If the input box is a graphics box in graphics presentation, you won't see the typing.
(This may actually be handy if you don't want the typing to show, e.g., you have some
instant keystrokes in the box.)

Note: You can actually do a lot whigglit-box is running. You can type, execute
procedures, or whateveaxdit-box will keep running until you exit the edited box.
Example
|instructinn5| |greet|

[Eélcnme Eafael) changse instructions
ata Lzype your name and j

exit the wser-name box
ata

edit-box wser-name
change instructions build
[Eélcume @uzer—name]
ata

L Dt

greest

172

CHAPTER 8

Environment: File Commands

When you Open a file into Boxer, it appears as a box right where your typing cursor is. So you
may need to think a moment about where you want a file to appear. File boxes appear with
double-thick borders. When the typing cursor is in a file, the file box's name and on-disk file
name appear in the Boxer window title bar.

File menu Savé saves the first superior file from where your typing cursor is currently located.
The same for Save As. Any box in Boxer may be saved as @lige'Save Box Asnenu option
saves the box in which your typing cursor currently sits. You may save a plain text box as a text
file with the Save As option. Note that Boxer usually saves a backup file with a ~ suffix
(adjustable in Preferences) for safety. You may also open plain text files from other applications
into Boxer.

Boxer also provides a general set of commands that may be used to save, open and delete files;
to read in directories, and to set the current directory (folder) for opening, saving and deleting.
Beginning users rarely need these commands, but use File menu versions.

Networking Files
File boxes and network boxes (which read in from remote machines over the network) are almost
identical. For example, the commamgenworks with both. See Networking Chapter for details.

Subfiles

Subfiles will appear as black boxes (or boxtop icons) when you read the superior file back in.
They load automatically when clicked or double clicked. You may wish to use this feature to
organize all or most of your Boxer work from within Boxer. If you change the file name or
location of a subfile, save the containing file also so that the new location will be available when
the containing filebox is read in.

Box Properties

Box Properties ("Other" menu) allows you to adjust some file parameters, such as the file name,
whether the file is read only, and whether the file should be automatically read in with its
superior file. You can also unlink file boxes, hence turn them into regular boxes. If you try to
save a different box to the same filename, Boxer will warn you.

172

Chapter 8

Paths to files

In order to specify the exact location of a file wsthve-asor open Boxer commands, use a

"path." (A path is a sequence of nested directories (folders.) On the Mac, the path separator is ":"
as in "Hard Disk:Desktop Folder:Boxer Release Work:File" Unix notation uses "/" for separator.
The latter is useful for network paths (net boxes).

Links to non-Boxer files

The "File" pulldown menu, Link to Mac File selection, will allow you to create a link in Boxer to
an external file. A double-click on that link will activate the file, as if you had double clicked on
it directly. The link will appear as the normal file's icon and name.

Note

The commands in this chapter will not be needed by most users. Use the File pulldown menu
instead.

173

Chapter 8 Boxer Lan guage

8.1 STANDARD FILE COMMANDS

open Standard command files are programming alternatives to Menu commands in
save Mac Boxer.
save-as
save-box-as
delete-file
choose-file
directory
current-directory
set-current-directory
save-text-file
read-text-file

174

Chapter 8 8.1 Standard File Commands

8.1 STANDARD FILE COMMANDS

open
Syntax
open<file-name>
Description
opentakes a file name (in a box) as input and returns the Boxer box that has been saved
under that name. If the box had a name, Boxer tries to preserve the napes it
given a file name without a path, it looks in therent-directory . If it is given a
complete path + file name, the current directory is changed to that of the file opened.
openis also used to open in "net boxes" over the Internet. Seeson the
networking chapter. Note that the third example is opening a directory.

Examples

OpEL | —
|a—file] |& FILEl
kot [?HES I: iy FILEJ

[kt

OpETL
[ftp:f!sne.herkeley.edufpuhfhnxerfhuh.hnx]
bt

175

Chapter 8 8.1 Standard File Commands

OpEL |
[;tp:ffsne.herkeley.eduj
[hta

176

Chapter 8 8.1 Standard File Commands

save

Syntax
save

Description
savesaves the first superior file box to its corresponding file. Ordinarily Boxer is set up
to keep one previous file as backup. If the file saved is under the name file, the backup
will be called file~. savecan also work for net boxes, provided you can connect to the
appropriate machine and have permissions or passv&@edsalssavein the manual
networking sectionsave in a port, will save the target of the port if it is a file box, or
otherwise, the first superior file box from the target. Ports are preserved in files if their
target is within the current file. If the target is outside, the connection will be lost.

Examples
Setup: ; creates a file from STUFF
tell =tuff save-hox-a=s
|tE5t—filE |
ta
stuff
- ™

Just some junk.
Tou can edit me before doing any save, below.

Save

- ™
Try: =save

Hote: This =ave also saves its first
superior file box, STUFF. It does HOT
=ave the box it i= in wnless it i= a
file box.

Oata -
“Cata -

Hote: You can uwse TELL STUFF SATE to =awve wmithout entering STUFF.

177

Chapter 8 8.1 Standard File Commands

save-as

Syntax
save-as<file-name>

Description
save-assaves the first superior file box to a file named by its input. Save-box-as saves
the local box where the command is executed, whether or not that box is already a file
box. Ordinarily Boxer is set up to keep one previous file as backup. If the file saved is
under the name file, the backup will be called filsave-ascan also work for net boxes,
provided you can connect to the appropriate machine and have permissions or
passwordssave-asin a port, will save the target of the port if it is a file box, or
otherwise, the first superior file box from the target. Ports are preserved in files if their
target is within the current file. If the target is outside, the connection will be lost. See
alsosave-agn the networking section of this manual.

Example
stuff

i ")
Just s=ome junk. The line below =awves this box
as a file.

Save—as
new—junk
bt

“[hta

save-box-as

Syntax
save-box-as<file-name>

Description
save-box-asaves the box it is executed in (whether or not it is already a file box) to a
file named by its input. It can take a full path specification. Ordinarily Boxer is set up to
keep one previous file as backup. If the file saved is under the name file, the backup will
be called file~save-box-asan also work for net boxes, provided you can connect to
the appropriate machine and have permissions or passwords. See also networking
section of this manual. An error results from a non-existent file directory, etc. Network
saves are subject to such things as establishing a connection to the appropriate machine.

Example
stuff

" "y
Just =zome junk. The line below =saves this box
as a file.

save-hox-as
et

[kt

178

Chapter 8 8.1 Standard File Commands

delete-file

Syntax
delete-file <file-name>

Description
delete-file deletes the specified file from diskelete-file like saveandread, uses the
current directory if no path is specified in <file-name>, but it can take a full path to a file
if you wish.

Example

stuff
")
Just =some junk. The line bhelow =saves thiz= box
as a file.

Save-axs [:
jL'L'[IJ[
[t

[kt

delete-file
|JUHK|
1%

choose-file

Syntax
choose-file<path>

Description
choose-filebrings up a dialog to choose a file from disk. It returns the path to that file.
Note: You can directly open a chosen file; see the second example.

Examples
choose—-file | j

[Medali=t:Rafael :Boxerllaterial=s folder:Command MHanwal: junk™
hta

open choose—-file | Eﬁ;{;}]

3)
Just =ome junk. The line below =saves this hox
as a file.

save-box-as [:
j urk
bt

Lt

179

Chapter 8 8.1 Standard File Commands

directory

Syntax
directory <path>

Description
directory takes a directory (or file-specification) as input and returns a list of files in

that directory. May be used with URL for network access. Path separator is “:” for
MAC.

Example
directory |
[E?cintnsh HD:APPE:J Macintosh HD:dpps:Beadme]
ta

Macinktosh HO:dpps: SimpleText
ta

current-directory

Syntax
current-directory

Description
current-directory returns your current directory in the form of a path. Path separator is
“” for MAC.

Example

current—directory |
[:?cintnsh HD: Boxer : Command Hanual:j

ta

set-current-directory

Syntax
set-current-directory <path>

Description
set-current-directory changes the current directory for file reading and saving to the
one specified in the path. Note that this directory may not exist in your machine. But if
you can specify the path to one, you may try it out.

Example

set-current-directory
[E?cintnsh HD: Boxer : Command Hanual:}

ta

180

Chapter 8 8.1 Standard File Commands

save-text-file

Syntax
save-text-file<box> <file-name>

Description
save-text-filesaves a Boxer file as plain text, instead of using the Boxer file format.
This might be useful if you want to transfer a Boxer file to a text processing program.
You can specified a path if you need to in <file-nansawe-text-filehas a different
format. It must be given a box to save as input (rather than saving a superior file box),
and it doesn't turn that box into a file box.

Example

-text-£fil :I
save-tex e Some plain text [Ee:{t—.file
to =ave. ata

ata

read-text-file

Syntax
read-text-file <box> <file-name>

Description
read-text-file reads in a plain text file (rather than one in Boxer format) and places the
result in a box. This way, you can import plain text from a text processing program. You
can specified a path if you need to in <file-name>.

Example
read-text-£file [-D
a

ata to zave.
ata

—file—name j ! Some plain te:{tj

181

CHAPTER 9

Environment: Keystrokes and Editing

This section deals with the Boxer editor. It explains the basic key bindings, Boxer's special
characters and how to locate the cursor under program control. Note that keyboards differ, so
that some options explained here may not be available with your keyboard.

183

Chapter 9 9.1 Moving in Boxer

9.1 MOVING IN BOXER

Most motion is okeys. Of course, there are mouse equivalents to many of these.

Characters

left-arrow
right-arrow

Words

command-right-arrow
command-left-arrow

Lines

up-arrow
down-arrow

option-right-arrow (command-e)
option left-arrow (command-a)

Box-scroll

PgUp
PgDn

Global-box

home (option-up-arrow)
end (option-down-arrow)

Among-Box

command-option-right-arrow
command-option-left-arrow
tab

Exit-box

]
)

command-tab
option-tab

left one character
right one character

right one word
left one word

up one line
down one line
end of line
beginning of line

scroll up one box
scroll down one box

to top of box
to bottom of box

enter next box
enter previous box
hop to next box

exit box

exit box and shrink

exit, hop into next box
exit, hop into previous box

184

Chapter 9

9.2 Making Boxes

9.2 MAKING BOXES

Regular Boxes

[
{

Graphics
option-t
option-s
option-g

Ports

option-p
command-option-p

doit box
data box

turtle box
sprite box
graphics box

port box
set port target (then option-p ports to target)

185

Chapter 9 9.3 Other Keystrokes

9.3 CUT AND PASTE

Command-X, command-C and command-V are standard shortcuts for cut, copy and paste. There
are mouse equivalents to these actions.

Boxer saves up prior cuts or deletes you make (usually up to 8 of them). "Paste" ordinarily
retrieves a copy of the last one. You may paste any number of copies with multiple pastes.

"Yank" (command-y) does not fetch a copy of the last delete, but places the original at the point
of the cursor. (In Boxer you can tell the difference between a copy and the original if there are
ports to any part of the original. Those ports will not target a copy.)

Pressing Yank several times in succession cycles through saved cuts/copies or deletes. It leaves
the items highlighted so you can press "Copy" if you see something you want a copy of, you can
press "Delete" if you don't see what you want, or just click the mouse to leave the currently
yanked stuff. Yanked stuff, of course, no longer is saved.

Boxer tries to combine several presses of the delete key, and similar actions, into a single cut,
which is saved.

Cut & Paste Keys

command-x cut region (also Delete key)

command-c copy region

command-v paste last cut or copy

command-y yank last item cut, copied or deleted; or if pressed

more than once, yank cycles through prior cuts.

Other Cut & Paste Actions

Delete (Backspace) delete previous character
Ins delete one character forward
option-delete (option-backspace) delete one word backward
command-delete (command-backspace) delete one word forward
command-k delete complete line

command-option-delete (command-option-backspace) delete to end of line

186

Chapter 9 9.4 Other Keystrokes

9.4 OTHER KEYSTROKES

General Keystrokes
enter doit (execute current line)
(command-Return on keyboards without Enter.)

command-LineFeed (command-Enter) step execution

command-. (command-g) stop execution

command-f find (search)

option-f reverse find

up-arrow name this box (only from top line of box)

| name this box

command-@ (may be control-@) unbox this box (remove box boundary)

command-r refresh display

command-t toggle transparency (see Boxer Structures)

command-z zoom to target port the cursor is in

PrSc (command-p) print screen

command-' (command-") guote next character (to print non-printing keys)
Places

command-space mark this place

option-space jump to last place (may be used in succession)

command-/ name this place

option-/ jump to named place

option-x jump to last place and mark the current one
HELP

Help (command-h) Help

command-Help (command-?) Prompt inputs (show input names for command near

cursor)
option-Help (option-?) Provides help on key bindings or mouse presses.

Capitalization

option-c capitalize next word
option-u upper case next word
option-I lower case next word

Miscellaneous

option-return open a line (insert carriage return, but leave cursor here)

command-<number> numeric repeat for editor keys (Hold the command key
and press a number to repeat the editor command that
follows)

command-option-v "vanilla" mode for keybindings and mouse actions (turn

off key and mouse redefinitions). Also available in the
Other pulldown menu, Top Level (Local) Mouse/Key
Mode. (See Input-Output on re-defining keys.)

187

Chapter 9

9.5 Special Characters: Keys-that-print

9.5 SPECIAL-CHARACTERSKEYS-THAT-PRINT

@

!
. (dot)

9.6 CURSOR LOCATION

cursor-column-number
cursor-row-number
move-cursor

9.7 BOX-SIZING

expand-box
shrink-box
fullscreen-box
supershrink-box

These are characters that Boxer uses for special purposes, i.e., they have special
meanings. Most are also documented elsewhere.

These commands tell you where the cursor is placed in a box, and allow you to
reposition it. These may be useful with edit-box or other programs that monitor
asking a user to edit. See Input-output, Mouse-polling, for related commands.

These commands control the display size of boxes (fullscreen, expanded,
shrunk, or supershrunk). They may be used to replace "by hand" (mouse)
expanding and shrinking operations. They may be used with triggers to make
boxes that "know" what size they want to be displayed at. You cannot control
the sizes of ports this way, only their targets.

188

Chapter 9 9.5 Special Characters: Keys-that-print

9.5 KEYS THAT PRINT

Q@

Syntax
@

Description
@ is used inside lauild template to mean "evaluate and unbox." See Data-manipulation

Sectionbuild. @ also may be used outsidbald template. In this case it means
"evaluate this part of a command line first, then unbox in place, and finish by executing
the line as modified." See Boxer Structures and Control-structure, Evaluation.

Example

=[]
Hi J [there. 27
193 193 kta
build |
||3}:El1r| |I-L'i.there.|
bta kta
plus @Faddends |
|12 |
1%

Syntax
I

Description
l'is used in duild template to mean "evaluate" (and leave boxed) this expression. See
build in Data-manipulation.

Example
| [rl
Hi j [there.
Lt Lt

build |
| T 1y |
Lk Hi j there.
bt
15

bt

189

Chapter 9 9.5 Special Characters: Keys-that-print

Syntax

AN

Description
N is used withell (ask) to cause a hame refer to a box accessible from the tglace

executed. Ordinarily, any name in the messagéefbwill refer to the boxes accessible
in the object told. See Evaluation in Control-structure, and also Boxer Structures.

Example

|actur|

|;| |;| Out=side.
&

[kt
Outside. | [Inzide
=1 i

(15

tell actor change = ¥

. (dot)
Syntax
<namel><name2>

Description
dot is used to "chain" box names into a path. x.y.z refers to the z box inside y, inside x.

See Data-manipulation, Data-access by name.
Example

Stuff.

bt
kta

Xy |
Stuff.
[kt

190

Chapter 9 9.5 Special Characters: Keys-that-print

Syntax

Description
; IS @ comment character. Boxer ignores anything following it on a line when executing

Example

info

[I will be E-:{ecu.ted.j
1%

change info
[I will be E'}EE'GU.tE'Ii.J
[t
; change info
[; 7vill not be executed.j
[t

—[oit:

Syntax

Description
Words that end with : are not executed They are "in-line comments".

Example

try: Plu=s 34 29 |
| 123 |
(173 1

191

Chapter 9 9.6 Cursor Location

9.6 CURSOR LOCATION

cursor-column-number

Syntax
cursor-column-number

Description
Returns the character number at which the cursor is located in a box (i.e., which character
in its current row it is placed before.) It works in name tabs, too.

Example
CUFS0r—col UmMI-Tmber |
r |10]
5

cursor-row-number

Syntax
cursor-row-number

Description
Returns the row number at which the cursor is located in a box.

Example
FBow 1
Eow 2

CUYSor-Yow—number |
3
Lt

FBow 4

move-cursor

Syntax
move-cursor <box> <row> <character>

Description
Moves the cursor, and animates its motion, to the box, row, and character number
specified. Note: You can only move to boxes, not ports. Move-cursor moves you to the
target of any port passed as first input.

Example

one| [owo]

line one line Ene
line two line Two
[t 1%

move-cursor two 1 &

192

Chapter 9 9.7 Box- siizing

9.7 BOX-SIZING

expand-box

Syntax
expand-box<box>

Description
This command is used to set a box to normal expanded size under program control,
instead of having to do it "by hand" using the mouse. It will actually shrink a fullscreen
box to merely expanded sizxpand-boxwill expand the target of a port passed to it as
input.

Example

Surprise!!!
ks

expand-box variable

shrink-box

Syntax
shrink-box <box>

Description
This commands used to set a box to normal shrunk size under program control, instead
of having to do it "by hand" using the moushkrink-box will actually "expand" a
supershrunk box to merely "shrunk” size. Expand-box, shrink-box, etc., will operate on
the target of a port passed to it as input.

Example

shrink-box variable

193

Chapter 9 9.7 Box- siizing

fullscreen-box

Syntax
fullscreen-box<box>

Description
This command is used to set a box to fullscreen size under program control, instead of
having to do it "by hand" using the mougdlscreen-boxwill expand the target of a port
passed to it as input.

Example
full=screen-box wariable

|rariahlel

-

F am going to be expanded to fullscreen.

Shrink me afterward to continue.

supershrink-box

Syntax
supershrink-box <box>

Description
This is used to set a box to supershrunk size under program control, instead of having to
do it "by hand" using the mouse. Expand-box, shrink-box, etc., will operate on the target
of a port passed to it as input.

Example
[o]

supershrink-box variable

194

CHAPTER 10

Environment: Networking

In order to access remote boxes on the Internet, you need to have a direct or modem (SLIP, PPP)
connection to it. (Technically, you need TCP/IP services.) In order to host others by making

some of your local boxes available, you need to configure your machine to be an FTP server. If
you do not have or use such services, we suggest you consult your local network guru.

Boxer has a special kind of box, a "net box", to maintain connection to resources over the
network, or to browse the known Boxer network universe. Net boxes appear like file boxes, but
instead of remembering the file associated with them, they remember the network location
(URL) of the information in that box. Like file boxes, net boxes start shrunk and empty when
you read them in within a file, but they fetch their internals whenever you click on them or in any
other way try to use them. Once read in, they behave like ordinary data boxes.

Net boxes can link to Boxer or text files, or to directories. The contents of directories (which
consists of files or more directories) appear as named net boxes.

You can convert net boxes to regular boxes, change them to file boxes, inspect or change their
associated URL using the LINKS selection from the Box Properties panel (Box Properties is in
the Other menu--or use the box type hotspot popup menu). You can also change a regular box to
a net box and assign a URL to save it to in the same way. File/Save will then save it. The OPEN
menu command (see documentation below) can also read in and thus create a new net box. We
recommend that you attach the suffix .box to Boxer files made available over the network.

To get to the "hub of the Boxer universe" the following command takes you there -- the box on
the right is the actual hub box.

OpeTL
[;tp:EEEDE.herkeley.edufpuhfhnxerfhuh.hnx]
bt

Remember that the address of the net box must be saved with its superior file (or superior net
box) in order to be available from that file (net box) when it is read in later. Hence, if you change
a URL, always save the superior file (net box).

See also general information on file/net boxes in the Files section of the manual.

194

Boxer

Boxer Site Suggestions
Setting up your own Boxer site:

After you have arranged to have a site FTP accessible, here are some hints: Use the suffix .box
on Boxer files you make network accessible. It will help force the proper type of file transfer.
Transfer files from your Mac to the server using "raw" protocol,n@.MacBinary or other

special codings. FTP won't recognize these. (Or you can use Box Properties (Other menu) to link
a local box to its server URL, then useve)

In making boxes for others to link to, make sure you have a “browsable layer”: that is, a set of
small boxes that do not take long to read in but give a person browsing enough information --
like file size and a brief description -- so that s/he can make an intelligent decision about whether
it is worth waiting for the net box to read in. Leave information on what kind of feedback, if any,
you are interested in and appropriate e-mail addresses. Keep binary and other non-Boxer useful
files out of any directories that you make accessible.

Linking to the Hub of the (Boxer) Universe

As long as it is feasible, we will try to coordinate interesting boxes to browse from our hub. Send
URLs and information on how you imagine your box should be categorized to: boxer-
inquiry@soe.berkeley.edu. We solicit especially: (1) descriptions of Boxer projects around the
world, (2) solicitations for Boxer subcommunities and network projects, (3) general tools and
utilities you feel people may like to have, (4) ideas on excellent things to do with Boxer,
including “great hacks,” (5) materials for learning various subject matter with Boxer, (6)
examples of especially interesting student work.

195

Chapter 10 Boxer Language

10.1 NETBOX FILE/DIRECTORY COMMANDS

open These are programming commands to be use with net boxes. They work
save essentially identically with their use with files.
save-as
save-box-as
delete-file

10.2 MAIL COMMANDS

mail These are commands that allow a Boxer user to send and receive mail over the
getmail network. Before using mail, you must initialize the user-mail-address and the
mail-relay-host in your Boxer Preferences (Other pulldown menu). We
recommend getting a Boxer mailer (e.g., in the Boxer release demo files) to ease
mail use.

196

Chapter 10 10.1 Net Box File/Directory Commands

10.1 NET BOX FILE/DIRECTORY COMMANDS

open

Syntax
open<URL>

Description
Open, in addition to reading in ordinary files, will also read in files and directories over
the network, creating "net boxes". See the overview, above, and Boxer Structures
document for an explanation of net box@pen may actually be more convenient in
most cases compared to using the File menu. The format for the input (Universal
Resource Locator--URL) is as follows: (Place the URL in a data box.)
<protocol>://<login-name>:<password>@<internet-machine-address>/<file path>/<file>

* <protocol> currently is "ftp", probably the most general protocol

(using TCP/IP resources). Other protocols may be added.

* <login-name>:<password>@ is optional. The default is "anonymous". This makes
connecting to an anonymous FTP site simple.

* /<file-path> optional.

* [<file> is optional. Without it, a directory will be read.

FTP standards specifgxtas the default type of files read. If you save a Boxerdjpen
will recognize that it is NOT text if you put a .box suffix on the file name. Files should be
in raw binary (not Mac binary, or other format) on Unix machines.

Examples

OpETL
[;tp:fflngin—name:passwnrd@machine—name.site.edu!directnryfpathffile]
(15

OpeTL
[;tp:EEEDE.herkeley.edufpuhfhnxerfhuh.hnx]
bt

197

Chapter 10 10.1 Net Box File/Directory Commands

OPETL |
[;tp:ffsne.herkeley.eduj
hta

198

Chapter 10 10.1 Net Box File/Directory Commands

save

Syntax
save

Description
savesaves the first superior net or file box to its corresponding file. It may be handy to
use it withtell, as intell <box>save save in addition to reading in ordinary files, will
save files over the network. It may be handy to use it with TELL
as intell <box>save.

Examples

These examples are not guaranteed to work because
of changing machine and directory access privileges.

george

Cata

tell george save

199

Chapter 10 10.1 Net Box File/Directory Commands

save-as

Syntax
save-ax<URL>

Description
Save-as<URL>, in addition to saving ordinary files, will save files over the network. It
saves the first superior net (file) box from where it is executed. The format for the input
(Universal Resource Locator--URL) is as follows: (Place the URL in a data box.)
<protocol>://<login-name>:<password>@<internet-machine-address>/<file path>/<file>

* <protocol> currently is "ftp", probably the most general protocol

(using TCP/IP resources). Other protocols may be added at a later date.

* <login-name>:<password>@ is optional. The default is "anonymous". This makes
connecting to an anonymous FTP site simple.

* /<file-path> optional.

Examples
Savre—as
[;tp:ffmachine.site.edu!a—file.hnxj
hta

ftp:ffmachine.site.edufa—file.beJ

tell <a-box: 5&?9—&5[;
[kt

Save—as
[ftp:fflngin—name:HyPaSsWan@machinE—name.site.edufa—file.hnx]
15

Savre—as
[;tp:fflngin—name:passwnrd@machine—name.site.eduﬁdirectnryﬁpathﬁfile}
hta

200

Chapter 10 10.1 Net Box File/Directory Commands

save-box-as

Syntax
save-box-a<kURL>

Description
Save-box-askURL>, in addition to saving ordinary files, will save files over the
network. It saves the box where it is executed.

The format for the input (Universal Resource Locator--URL) is as
follows: (Place the URL in a data box.)

<protocol>://<login-name>:<password>@<internet-machine-address>/<file path>/<file>

» <protocol> currently is "ftp", probably the most general protocol (using TCP/IP
resources). Other protocols may be added at a later date.

* <login-name>:<password>@ is optional. The default is "anonymous". This makes
connecting to an anonymous FTP site simple.

* /<file-path> optional.
Example

save-box-as
[;tp:ffmachine.site.edu!a—file.hnxj

[hta

tell <a-box: save-bhox-as
[;tp:ffmachine.5ite.edufa—file.hnx]

13

save-hox-as
[ftp:fflngin—name:HyPaSsWan@machinE—name.site.edufa—file.beJ

15

ftp: A login—name : password@machine—name . site edusdirectory /paths/fil

save-box-a=s [
hta

201

Chapter 10 10.2 Mail

10.2 MAIL

mail
Syntax

mail <address> <text>

Description
mail takes an <address> and a <text> and sends the <text> as a message to <address>. If
<text> contains subboxes or links to non-Boxer files, these will be encoded in MIME
compatible format. Any Boxer structure can be transparently mailed and received by
another Boxer user in this way. (Non-Boxer users will get subboxes as files.) Boxer users
will get enclosed non-Boxer files (sent from Boxer or from other MIME-compatible mail
programs) as links to files (which will be placed in a "mail” folder in the same folder as
your Boxer application). Before using mail, you must initialize the user-mail-address
and the mail-relay-host in your Boxer Preferences.

Examples
mail
[E?g—mac—hnxer@sne.herkeley.eduj [E}eage fix receiving facilitieg.]
ta ta

mail . ~y
[ﬁfienﬂ@machine.place.cnmj I have a box at the end of this message
ta that vou showld look at.

[ﬂ?ppy Birthﬂay!}
ta

Here i= an enclosed file, which I put
in thi=s message vwsing the File menmn,
"Link to tlac File" option:

A& Hicrosoft Yord File
“Data -

Hote: The Happy Birthday box and the enclosed non-Boxer file
will be encoded as MIME (standard mail protocol for inclwding
non—text segqments.

202

Chapter 10 10.2 Mail

get-mail

Syntax
get-mail <mailbox> <delete-messages?>

Description
get-mail <mailbox> <deleted?> fetches mail from your mail host machine. It returns a
box containing a series of messages, each in a box. The second input is true or false and
specifies whether the messages should also be deleted from host machine mailbox. For
safety, consider using FALSE as second input. Enclosed files will appear as "links to
Mac
files", which you can double-click to open. The closet of each message contains several
variables that can be used in sorting or other processing of messages: To, From, Subject
(optional), Date, Headelget-mail uses the stadard POP protocol, like such mail readers
as Eudora. Currently (9-99et-mail recognizes base64 and binhex mime protocols.
Check the boxer hub or newer demos for a full-featured mail reader that uses get-mail.

Examples

get-mail
[;fer@machine.site.edu) [§?ISE|
ta ta

Hote: You will probably be prompted for a password.
False specifies messages will HOT be deleted from
host mailer.

get-mail
[zfer:passwurd@machine.site.eduj [:f?ij
ta ta

Hote: "True" specifies messages will he deleted
from host after receipt.

get-mail | ¢ “y
[E?ZD@DIDWEDIIEQE.Edu) [Ef%i) -
ta 3 From: nosefdclownocollege.edn

To: bozofclowncollege. edn
Date: Sun, 7 Dec 27 123726

=)
"Dt
3 ™
Date: Sun, 7 Dec 237

From: bigfeest (Blue nose)
Ta: bozo

Subject: testing, testing

I got the joke

——EBigfeest
Dt -
Data -

203

Chapter 10 10.2 Mail

send

Syntax
send<address> <text>

Description
Sends a box to networked colleagues for communication or real-time interaetolis
not currently (9-99) configured to work on non-Unix machine.

Examples
No examples YET

204

CHAPTER 11

Environment: Miscellaneous

The commands in this chapter have to do with various aspects of the Boxer environment, such as
setting preferences and handling errors when they cannot be returned to the screen for various
reasons. Other facilities are for help, defining icons, saving a user's interaction ("dribble"), Boxer
extensions and serial port connections. Use Edit menu, Preferences selection as a "by-hand"
alternative.

205

Chapter 11 System Commands

11.1 SYSTEM-PREFERENCES

system-preferences You may change settings by editing and executing the lines in the system
preference box that have preferences commands in them. This command
appears in the closet of the top level box of your world. A Mac interface to
preferences is available in the Edit menu, Preferences... option.

11.2 RESULT APPEARANCE

printing-precision These commands affect how various sorts of returned values appear: i.e., the
print-fractions number of decimal places that are printed in a number, whether rational
preserve-empty-lines-in-build numbers should appear as decimals or not, and whailtdrshould preserve
or delete empty linesSee Arithmetic-and-logic, under Printing-control.

11. 3 EVALUATOR SETTINGS

step-wait-for-key-press These control settings on various forms of help Boxer can supply, or
step-time adjustments to the way Boxer runs.
evaluator-help
primitive-shadow-warnings

11.4 GRAPHICS SETTINGS

make-transparent-graphics- These adjust details about what happens when you create a new turtle, graphics
boxes or sprite box.
include-sprite-in-new-graphics
name-new-sprites
make-diet-sprites

11.5 EDITOR SETTINGS

Zoom-pause These control some options in the way the Boxer editor works. Most inputs are
show-border-type-labels true or false; some are numbers.
smooth-scrolling
global-hotspot-controls
input-device-names
fullscreen-window

11.6 FILE SYSTEM SETTINGS
terse-file-status Sets parameters relevant to files.
backup-file-suffix
warn-about-outlink-ports
11.7 NETWORK SETTINGS
user-mail-address Sets parameters relevant to network operations.
mail-relay-host
max-viewable-message-size

11.8 COMMUNICATIONS SETTINGS

newline-after-serial-writes These preferences determine how Boxer reads and writes to (from) external
serial-read-base devices over the serial line.

206

Chapter 11

System Commands

11.9 MISCELLANEOUS SYSTEM COMMANDS

name-help

invisible-error

invisible-value

date-and-time

boxtop

dribble-on
dribble-off
playback-dribble-file

mark-for-saving

choose-file

11.10 EXTENSIONS

extension-info

load-extension

add-extension
remove-extension

11.11 SERIAL PORT: SETUP

open-serial-line
close-serial-line
configure-serial-line

set-default-line-parameters

serial-line-parameters

11.12 SERIAL PORT: READING

This command gives some brief information about all primitive commands in
Boxer that contain the sequence of letters in the input.

If Boxer cannot find a place to print an error message, it notifies you. Then,
invisible-error, when executed, will return the error. A typical place where you
get such errors is from interface messages, like sprite- or graphics-mouse-
commands.

If Boxer cannot find a place to print a returned value it notifies you. Then,
invisible-value, when executed, will return the value. A typical place where you
get such errors is from clicks in nametabs that execute something that returns a
value. (You can't put a box in a name-tab.).

This command returns the data and time according to the systems clock

If Boxer finds a graphics box called boxtop in a box, the graphics in that box
become the box's shrunken shape, in place of the usual small gray box. The size
of the graphics box will be the size of the boxtop. The best place for a boxtop
box is usually in the box's closet. Sprites don't show up in the boxtop.

Boxer can create and run "dribble files", which are records in a file of every
mouse click and keystroke done by a user. Then those files may be played back
at another time. These are useful to take data from subjects doing an experiment
in Boxer, or for storing an active demonstration, or for automating a test
procedure, etc.

Mark-for-saving forces the File pulldown menu to show that saving is allowed

This command pops up a Mac dialog box to allow you to select a file. Then,
choose-filereturns the complete file path to that file. Typical use is with read.
That is, you ask for a file to read: reglibose-file

Boxer extensions are files that add extra features to Boxer. Boxer automatically
loads any extensions placed in a folder called "Extensions" when it starts up.
(The Extensions folder must be placed in the same folder as the Boxer
application.) Extensions may be placed in a folder "Extensions(off)" when you
don't want them loaded at startgxtension-info allows you to see (1) what
extensions are available, (2) which ones are loaded automatically at startup, and
(3) which ones are currently loaded. In addition, commands allow you to move
extensions between Extensions and Extensions(off).

NOTE: Serial Port commands are minimally documented

These are commands to configure and open a serial port for communications
with external devices (such as computer-controlled video machines, or science
laboratory sensing devices). They provide many relatively standard ways of
reading from and writing to a serial line. These are designed for "hackers" so
our documentation is very brief.

207

Chapter 11

System Commands

serial-listen
serial-read-line
serial-read-line-with-timeout
serial-read-line-no-hang
serial-read-char
serial-read-char-with-timeout
serial-read-char-no-hang
serial-read-byte
11.13 SERIAL PORT: WRITING

serial-write
serial-write-byte

11.4 SERIAL PORT: PREFERENCES

serial-read-base
newline-after-serial-writes

208

Chapter 11 11.1 System Preference

11.1 SYSTEM-PREFERENCES

system-preferences

Syntax

system-preferences
Description
System-preferencegauses a box to appear that has all Boxer's adjustable system parameters
in it. You may change settings by editing and executing the lines in the system preferences
box that have preferences commands in them. This command appears in the closet of the top
level box of your world. Alternatively, use Edit menu, Preferences selection.
Examples

system-preferences | ¢ “y
Boxer Preferences. ..

|EEEu1t—appearannE|

(2)

|Era1natur—59ttings|

1

|Eraphic5—59tting5
P

[t

JEditur—Settingsl

209

Chapter 11 11.2 Result Appearance

11.2 RESULT APPEARANCE

preserve-empty-lines-in-build
Syntax
preserve-empty-lines-in-build<true-or-false>
Description
This tells Boxer whether or not to preserve empty lindsiilds. These refer only to
empty lines in evaluated partstmfild (@ or ! parts). Empty lines typed into theild
template directly are always preserved.

Example

|;| |space| |:—space| |I—5pace|

]
SICOI =

preserve—empty-lines-in~-build true

build R
Ty
Hi

There

preserve—enpty-lines-in-build fal=e
build ¢ |

210

Chapter 11 11.3 Evaluator Settings

11. 3 EVALUATOR-SETTINGS

step-wait-for-key-press
Syntax
step-wait-for-key-press <true-or-false>
Description
This determines whether Boxer waits for a keypress when showing the "stepper"
execution before going from step to the next step. (As of 9-99, the stepper is disabled.)

Examples

|a—prngral| |5uh—prugral|

input ralune input ralune
sub-program walne value + 5
Dwit: Dwit

Flace your cursor at the end of the Tryé&Look and
press the STEFR key (ctrl-linefeed on Sun, command-enter

on Macintosh —— or see interface and keystroke
documentation.). Do this with step—. .. turned on
and off.

Try: step-wait-for-key-press true

Try: step-wait-for-key-press false

Try&Look: a-program [“i)
3
hta

|lnte|

The =stepper shows Boxer's copy and execube model
in action. See documentation of Boxer Structures.
Ikt

211

Chapter 11 11.3 Evaluator Settings

step-time
Syntax
step-time<seconds>
Description
Step-time <seconds> determines how long the Boxer stepper waits before moving to the
next step. It is in effect only whestep-wait-for-key-pressis set to false. (As of 9-99,
the stepper is disabled.)

Examples
|a—prugral| |5uh—prugral|
input ralne input ralne
sub-program walnoe ralne + 5
Ceoat: [zt

Flace your cursor at the end of the Tryé&Llook and

press the STEFR key (ctrl-linefeed on Sun, command-enter
on Macintosh —— or =see interface and keystroke
documentation.). &djust the step-time in Setup: , and
try agaim.

Setup:
step-wait-for-key-press false
step-time 1
Dwit

Try&look: a-program [“‘]
3
[t

|lbte|

The stepper shows Boxer's copy and execukte model
in action. See documentation of Boxer Structuwres.
ks

212

Chapter 11 11.3 Evaluator Settings

evaluator-help

Syntax
evaluator-help <True or False>

Description
Evaluator-help determines whether Boxer supplies "helpful" messages when it detects

stylistic oddities. For example, making a port to the result of a Boxer primitive is an odd
thing to do.Evaluator-help set to false also suppresses some other information that
Boxer otherwise prints out about its internal state (e.g., when it is expanding internal
space reserved for various activities).

Examples
" File BoH: env-miscellaneous »= |

Made a PORT to a copy of the result of a primitive.

|exalp195|

o

Try the below port-to command with ewalwvator
help ==t to true and then fal=e.

Try: evalvator-help true

Try: port—-to first [

[i:jm{ :I | & box |
[kt

Lt

SOt

213

Chapter 11 11.3 Evaluator Settings

primitive-shadow-warning

Syntax
primitive-shadow-warning <True or False>

Description
Primitive-shadow-warning controls whether Boxer should print out a warning when

you create a box that has the same name as a primitive, and will "shadow" the primitive
so that it cannot be used in the current or inferior boxes. See Boxer Structures

documentation concerning shadowing.

Examples
=—————————— "' File BoX: enr-miscellaneous * From: env-miscellam

Warning: The Primitive FORIWWARD will no longer be available in this box

|Exalp195|

-
Zetnp: FRIIOTITE-SHADOW-TWARNINGS true

Edit the following procedure so that it has the same name as
The primitiwe FOEWARD. With shadow-warnings set to true,
Boxer will print a warning at the top of its window.

forward I

[kta

214

Chapter 11 11.4 Graphics Sett ings

11.4 GRAPHICS SETTINGS

make-transparent-graphics-boxes

Syntax
make-transparent-graphics-boxes<true or false>

Description
This command controls whether Boxer makes transparent graphics boxes, or non-
transparent ones. Graphics boxes that are not transparent will not "export” the names of
sprites (or anything else) that are inside them. If you want to address sprites inside, you
need to talk first to the graphics box (usually first giving it a name). Make a graphics box
below with make-transparent-...set totrue, thenfalse

Examples
make-transparent-graphics-hoxes true

make—transparent—graphics-boxes false
- "y

[hts -~

215

Chapter 11 11.4 Graphics Sett ings

include-sprite-in-new-graphics
Syntax
include-sprite-in-new-graphics< true or false>
Description
This command determines whether Boxer includes a sprite when you create a new
graphics box.
Examples

incluwde-sprite-in-new-graphics true

[I-POSITION| [T-FOSITION| |[HEADING|

1 criin Y critiin Yoo | |

incluwde-sprite-in—new-graphics false

0
gty

name-new-sprites
Syntax
name-new-sprites<true-or-false> >
Description
Name-new-spritesdetermines whether you are automatically left in the name-tab of a
sprite when you make one.

Example

name-new—-sprites true

[I-POSTITION| [f-POSITION] [EEADING]

D | D | O

ritt
name—new-sprites false

[I-POSTITION| [f-POSITION] [EEADING]

(D} (TR) (D

216

Chapter 11 11.4 Graphics Sett ings

make-diet-sprites
Syntax
make-diet-sprites< true orfalse>
Description
This command determines whether sprites are created in their diet configuration (where
most sprite attributes are not shown unless needed), or with all attributes included (some
in the closet).

Examples

make-diet-sprite Ltrue

Show—Sprite-Froperties
[I-rosITION| [T-POSITION| [HEADING|

D} (TR) (D

make-diet-sprite false

|SHAPE| |[SHOWN?| [HOHE-FOSITION| [SPRITE-SIZE|
[|[?RUE |[F 000 j [|

|Pl-:l| [PEN-¥IDTH| [TYPE-FONT| [PEN-COLOE]

) = Drren)

[I-POSITION| [f-PosTTION| [EEADING]|

D) CCEED A Ol

“&nu

217

Chapter 11 11. 5 Editor Settings

11.5 EDITOR SETTINGS

Zoom-pause

Syntax
Zoom-pause<seconds>

Description
This command controls the wait time between steps of the animation during zooming.

Examples
s "y
One= box

nested

[inside the n:-th.erj
1% -
[t

Flace your cursor inside the following port and Z0O0E
(press cobrl-z, or command-=7.

inside the n:-therj
[t)

How change the pauvse time and try it again (normal is . 05).
Zoom-panse .1

Zoom-panse 0

218

Chapter 11 11. 5 Editor Settings

show-border-type-labels

Syntax
show-border-type-labels<true or false>

Description
This command causes type labels to appear or disappear from the bottom line of boxes.

Examples

I

show-border-type-labels true

(o L)]

[t
-

show-border-type—labels fal=e

L

smooth-scrolling

Syntax
smooth-scrolling <true or false>

Description
When executed with true, scrolls a pixel at a time. When false, scrolls a line at a time.

Examples

smooth-scrolling true

"

smooth-scrolling false

219

Chapter 11 11. 5 Editor Settings

global-hotspot-controls

Syntax
global-hotspot-controls<true or false>

Description
This command causes turning off or on a hotspot (like graphics flip--lower left) to affect

all boxes. Otherwise, turning on or off hotspot sensitivity affects only the box changed.
Examples

Jlobal-hotspot-controls true

global-hotspot-controls false

220

Chapter 11 11. 5 Editor Settings

input-device-names
Syntax
input-device-names<SUN-TYPE-4 or Mac>
Description
Determines the set of names used for keyboard keys, shifts, and mouse clicks interface
messages. This command will allow you to run programs written for the Mac or Sun on
the other platform without changing all the messages.

DON'T KNOW IF THESE ARE CORRECT

Mac: Sun:
sprite mouse click sprite-mouse-middle
mouse-double-click-on-graphics graphics-mouse-middle-twice
mouse-double-click-on-name name-mouse-middle
command-mouse-click mouse-right
option-mouse-click mouse-left

Examples

input-device-names
SUH-TYPE-4
input-device—names

Try both of the above then perform some ackion that
resvlts in an interface message. E.g, click on oa
gqraphics box or sprite.

221

Chapter 11 11. 5 Editor Settings

fullscreen-window

Syntax
fullscreen-window <true or false>

Description
Determines whether Boxer starts up with its window filling the full screen, or a smaller
(more typical) size. The former is better if someone is using only Boxer; the latter is
better if you are moving back and forth among applications.

Examples

fullscreen—window tirue

222

Chapter 11 11.6 File System Settings

11.6 FILE SYSTEM SETTINGS

terse-file-status

Syntax
terse-file-status<true or false>

Description
With input true, abbreviates information in the Boxer window title bar.
Examples

= ' File Bod: env-miscellaneous * From: (disk) env-miscellaneous
Purdueqold BoHer

terse-file-status true

| t File Box: env-miscellaneous = From: env-miscellaneous {Medalist:B...
Purdueqold Boxer

[terse—file—status fal=se 1

backup-file-suffix
Syntax
backup-file-suffix <symbol>
Description
Its input determines the suffix that marks backup files. The default symbol is ~.
Examples

backup-file-=suffix [_j
kta

warn-about-outlink-ports
Syntax
Warn-about-outlink-ports <true or false>
Description
Should Boxer provide a warning when saving a file that has ports to boxes outside that
file? (Such links will NOT be preserved through the file-saving file-reading process.).
Examples

warn—abont-cvtlink-ports true

223

Chapter 8 11.7 Network Settings

11.7 NETWORK SETTINGS

user-mail-address

Syntax
user-mail-address<address>

Description
Sets the "return address" for network operations like sending mail.

Examples

n=er—-mail-address J

nobodyisoe . berkeley . edn
(15

mail-relay-host

Syntax
mail-relay-host <machine>

Description
Sets the name of the computer responsible for relaying mail to the Internet.
Examples
mail-relavy-host
[ﬁewey.sne.herkeley.eduj
Tt

max-viewable-message-size
Syntax
max-viewable-message-sizsize-in-bytes>
Description
Sets the maximum size of a message that will be read directly into Boxer with read-mail.
larger messages will be read to a file..

Examples

max—viewable—-message—size &4000

224

Chapter 11 11.8 Communication Settings

11.8 COMMUNICATIONS SETTINGS

newline-after-serial-writes

Syntax
newline-after-serial-writes <true-or-false>

Description
This command determines ifcarriage returnshould be added at the end of each Serial-
Write. This command is only useful if you are communicating with an external device
through the serial port on your computer.

Examples

newline—-after-serial-writes ftrue

newline—-after-serial-writes false

serial-read-base

Syntax
serial-read-base<interger>

Description
This command sets the radix that will be used when the serial line reads in numbers.

Examples

serial-read-baz=e 10

serial-read-baze 2

225

Chapter 11 11.9 Other Commands

11.9 MISCELLANEOUS SYSTEM COMMANDS

name-help

Syntax
name-help<word-or-part-of-word>

Description
name-help <word-or-part-of-word> gives some brief information about all primitive
commands in Boxer that contain the sequence of letters in the input.

Examples

name-help clear |

CLEAP-GRAPHTCS i= a primitive with no arquments
CLEARSCEEEN i= a primitive with no arguments
CLEARGEAFPHTCS i=s a primitive with no arguments
CLE&P-B&CEGROTUND i= a primitive with no arguments
CLEAPEACKGROUND is a primitive with no arguments
bt

226

Chapter 11 11.9 Other Commands

invisible-error

Syntax
invisible-error

Description
If Boxer cannot find a place to print an error message, it notifies you. iflvesible-
error , when executed, will return the error. A typical place where you get such errors is
from interface messages, like sprite- or graphics-mouse- commands.

Examples

* File Bod: env-miscellaneous = From: (disk)
Graphics Mouse Click Can't print error boX, Invisible-Error returns it

|Exalplesl

-

Click on the sprite or graphics box above, note the
information line at the top of your Boxer window.
Then try "invisible-error”.

Look: |-uuse—click—un—graphiGE|

undefined-procedure
—[ioit

|luuse—c1ick—unr5pritel

undefinsd-procedure
— [t

Try: inwvisible-error |
Error: Can't find a box named
UHDEFINED-FROCEDUEE
in linse UNDEFINED-FROCEDUEE
of box [H]
bt

227

Chapter 11 11.9 Other Commands

invisible-value

Syntax
invisible-value

Description
If Boxer cannot find a place to print a returned value it notifies you. rwsible-
value, when executed, will return the value. A typical place where you get such errors is
from clicks in nametabs that execute something that returns a value. (You can't put a box
in a name-tab.).
Examples
' File BoX: env-miscellaneous

Can't print returned value, Invisible-Ualue returns it

|exalp195|

o

Look:

|lnu59—dnuhle—c1ick—nnrnnle|

|a ralue |
1%

[hoi

Douwble click in the name tab below and watch for the
notification, above. Then execubte invisible-walue.

|duu.ble-¢1ick here|

-)
Try: inwi=sible-wvalue |
|a ralue |
bt

date-and-time

Syntax
date-and-time

Description
Date-and-timereturns the date and time according to the system clock.

Examples

date-and-time |
Monday May 17 1999 16:55:14 +DDDD)
(15
items 1 4 date-and-time |
Honday Hay 17 1999]
1

228

Chapter 11 11.9 Other Commands

boxtop

Syntax
boxtop

Description
If Boxer finds a graphics box calléabxtop in a box, the graphics in that box become the
box's shrunken shape, in place of the usual small gray box. The size of the graphics box
will be the size of th&oxtop. The best place forl@oxtop box is usually in the box's
closet. Sprites don't show up in thextop.

Example

¢ "y

(173 1
Thi= i= a box whose boxtop has heen ==t to a button shape.

However , it's movse-clicks have not been altered —- it still
opens and closes with the wsval mouwse clicks.

Check the closet!

229

Chapter 11 11.9 Other Commands

dribble-on

Syntax
dribble-on <file>

Description
Dribble-on <file> causes each mouse click and keystroke to be stored in a file called
<file>. As usual, the file name should be put in a lwhble-off halts saving and
playback-dribble-file <file> replays it. Note: For playback, in order to have click
positions and typing placement appear properly, you must have the screen showing
exactly what it was whedribble-on was executed. A good convention is to start with a
blank screen or some fixed file, then start dribble or replay with key bindings (e.g.,
option-command-s-key (Start) bounddibble-on, option-command-r-key (Replay)
boundto playback-dribble-file.

Example
Expand this box to fuvll screen. Execubte the
line below, then perform a few edits in this
box, incwding executing each line in the menm.
Then execute the "dribble-off" command, "reset”
and "plavback-dribble-file". (You will have to
locate the dribble-test file, by defauwlt at the
top level of your hard disk.)

Trv: dribble-on
dribble—test
bt

|t1pe a little herel |lenu|
'

[}a rida loca) 2+ 2 |
Tt | 4 |
bt

asfd

[t

Stop-dribble: dribble-off

Re=et:
Léhange examples start-screen
[Ckait:

pPlavback-dribble-file choose-file

Playback: L
Dwit:

230

Chapter 11 11.9 Other Commands

dribble-off

Syntax
dribble-off

Description
dribble-off halts saving of a dribble file. See atytbble-on.

Example
See dribble-on example

playback-dribble-file
Syntax
playback-dribble-file <file>
Description
This command causes the dribble file called <file> to be run, thus executing all the
keystrokes and mouse clicks stored there.dsidble-on for another example and other
details. <file> must be in a data box. Note: 8abble-on.

Example
See dribble-on example

mark-for-saving

Syntax
mark-for-saving

Description
Mark-for-saving forces the file pulldown menu to show that saving is allowed. Boxer

notes when a box has been changed by the editor, and it then shows this status with an
up-arrow in the Boxer window title bar and by the fact that SAVE is an available option

in the FILE pulldown. However, Boxer does NOT note if a file box has been changed by
the action of a commanthark-for-saving lets you compensate in a program if you

know the file has been changed or you want saving to be available for some other reason

Example

mark-for-savings

231

Chapter 11 11.9 Other Commands

choose-file

Syntax
choose-file

Description
This command pops up a Mac dialog box to allow you to select a file. Gheose-file

returns the complete file path to that file. Typical use is with read. That is, you ask for a
file to read: read choose-file.

Example

5] Boder 2.3alpha

@ dribble-test = Medalist
[7] error-log _

[TExtensions (gt)
[T Extensions(off) [Desktop |

[T1landscape tutorial
[TILS Tools E S orooee)
[TIMRC 98 Activities .—.
il PPCBoxer2.3beta+2 = [_Cancel |

choose-file |
[E?cintnsh HD:anerE.Salpha:dribble—testj
ta

232

Chapter 11 11.10 Extensions

11.10 EXTENSIONS

extension-info

Syntax
extension-info

Description
This commangrovides information on which extensions are loaded, which are
automatically loaded at startup, and which are available for loading. It also lists
commands to load extensions and move them between Extensions folder (load on startup)
and Extensions(off) folder (not automatically loaded).

Example
extension-info | ™y
Current
[}anﬂEGapE—vl—Sj
kta
Startup:
[}&DﬂSD&pE—vl—EJ
[kt

dvajlable:
[}&nﬂEG&PE—?l—SJ
Lt

Extension PrilitiTE5|

load-extension

Syntax
load-extension<box containing an extension name>

Description
Loads into Boxer facilities from the Boxer extension file name in its input. It will almost
always load from Extensions(off) folder.

Example

load—-extension

land=cape—v1-3
hta

233

Chapter 11 11.10 Extensions

add-extension

Syntax
add-extension<box containing an extension name>

Description
This command moves a Boxer extension from the folder Extensions(off) to the folder
Extensions. (Both folders must be in the same folder as Boxer.) This causes the extension
to be loaded automatically the next time you start Boxerldaekextensionto load an
extension without restarting Boxer.

Example

add-extension

land=cape—vrl-3
Ikt

remove-extension

Syntax
remove-extensiorkbox containing an extension name>

Description
This command moves a Boxer extension from the folder Extensions to the folder
Extensions(off). Both these folders must be in the same folder as Boxer. This means the
extension willnotbe loaded automatically the next time you start Bdkemove-
extensiondoes not remove the extension resources from the running Boxer.

Example
remove—extension

[}anﬁscape—vl—E]
it

234

Chapter 11 11.11 Serial Port: Setup

11.11 SERIAL PORT: SETUP

open-serial-line
Syntax
open-serial-line<line>
Description
Opens a serial line per input spec.
Example

|59tup|

open~serial-line
|fdevfttya |
1

Cwoit:

setup

close-serial-line

Syntax
close-serial-linecline>

Description
Closes a serial line.

configure-serial-line

Syntax
configure-serial-line <baud> <charsize> <stopbits> <parity>
<echo> <canonical> <flowcontrol>

Description
Sets up the parameters of the serial line. See serial-line-parameters and set-default-line-
parameters. A typical setup is:
Speed: 1200
Character Size: 8
Stop Bits: 1
Parity: 0 (None)
No Echo
Canonical Processing Off
Flow Control Disabled

235

Chapter 11 11.11 Serial Port: Setup

set-default-line-parameters
Syntax
set-default-line-parameters<box containing an extension name>
Description
This sets parameters to:
Speed: 9600
Character Size: 7
Stop Bits: 1
Parity: 2 (Even)
Echo On
Canonical Processing On
Flow Control Enabled

serial-line-parameters

Syntax
serial-line-parameters

Description
Returns a list of current settings of the serial line.@adgure-serial-line.

236

Chapter 11 11.12 Serial Port: Reading

11.12 SERIAL PORT: READING

serial-listen

Syntax
serial-listen

Description
Returns true if something is in the serial buffer.

serial-read-line

Syntax
serial-read-line

Description
Read a line from serial buffer. Hangs until a full line is there.

serial-read-line-with-timeout

Syntax
serial-read-line-with-timeout <seconds>

Description
Reads a line, waiting <seconds> before returning nothing if a full line is not available.

serial-read-line-no-hang
Syntax
serial-read-line-no-hang

Description
Returns instantly. Returns nothing if a full line is not in the buffer.

serial-read-char

Syntax
serial-read-char

Description
Read a character from serial buffer. Hangs until a character is there.

serial-read-char-with-timeout

Syntax
serial-read-char-with-timeout <seconds>

Description
Reads a character, waiting <seconds> before returning nothing if a character is not

available.

serial-read-char-no-hang

Syntax
serial-read-char-no-hang

Description
Returns instantly. Returns nothing if a character is not in the buffer.

237

Chapter 11 11.12 Serial Port: Reading

serial-read-byte

Syntax
serial-read-byte

Description
Reads a byte, waiting <seconds> before returning nothing if a byte is not available.

238

Chapter 11

11.13 Serial Port: Writing

11.13 SERIAL PORT: WRITING

serial-write

Syntax
serial-write <box>

Description
Sends text to the serial line.

Example

serial-write
| Hello |
1%

serial-write-byte
Syntax
serial-write-byte <byte>
Description

Sends one byte of information to the serial line.

239

Chapter 11 11.14 Serial Port: Preferences

11.14 SERIAL PORT: PREFERENCES

serial-read-base

Syntax
serial-read-base<radix>

Description
See System-preferences.

newline-after-serial-writes

Syntax
newline-after-serial-writes <True or False>

Description
See System-preferences

240

A

abs, 134

acos, 139
add-extension, 234
alpha<, 18

alpha>, 17

and, 144
append-column, 50
append-item, 44
append-row, 47
asin, 139

ask, 9, 34

atan, 139

B

back, 65
backup-file-suffix, 223
beep, 154
bg-color-at, 99
bg-color-at?, 100
bg-color-at=, 99
bg-color-under, 96
bg-color-under?, 98
bg-color-under=, 97
boxify, 38, 52
boxtop, 229

build, 37
butcolumn, 32
butfirst, 26
butfirst-column, 32
butfirst-row, 29
butitem, 27

butlast, 27
butlast-column, 32
butlast-row, 30
but-row, 30

C

ceiling, 140
change, 40
change-column, 48
change-graphics, 88
change-item, 42
change-last-column, 48
change-last-item, 43
change-last-row, 45
change-rc, 51
change-row, 45
choose-file, 179, 232

INDEX

clean, 84
clear-background, 94
cleargraphics, 84
clearscreen, 84
click-sound, 154
close-serial-line, 235
color=, 89

color-at, 92

color-at=, 92

color-under, 90
color-under=, 91

column, 31
column-numbers, 24
columns, 32

command-', 187
command-"-key, 161
command-/, 187
command-@, 187
command-<number, 187
command-c, 186
command-delete, 186
command-f, 187
command-Help, 187
command-k, 186
command-'-key, 161
command-left-arrow, 184
command-mouse-click, 162
command-mouse-double-click, 162
command-option-delete, 186
command-option-left-arrow, 184
command-option-p, 185
command-option-right-arrow, 184
command-option-v, 187
command-option-v-key, 161
command-r, 187
command-space, 187
command-t, 187
command-tab, 184
command-v, 186
command-x, 186
command-y, 186
command-z, 187
configure-serial-line, 235
copy, 53

cos, 138

count, 19

ctype, 82

current-directory, 180
cursor-column-number, 193
cursor-row-number, 193

241

D G

datafy, 39, 52 get-mail, 203
date-and-time, 228 global-hotspot-controls, 220
Delete, 186 graphics-mode, 86
delete-column, 49 graphics-size, 85
delete-columns, 49 greater?, 128

delete-file, 179 greater-or-equal?, 128
delete-item, 42

delete-items, 43 H

delete-last-column, 49

delete-last-item, 43 handle-input, 171

delete-last-row, 46 heading, 103
delete-rc, 51 height, 20
Help, 187

delete-row, 46
delete-rows, 46
denominator, 142

hide-subsprites, 71
hideturtle, 70

directory, 180 home, 67, 184

distance, 110 home-position, 108

divide, 125

down-arrow, 184 |

dribble-off, 231 if. 3

dribble-on, 230 ifs, 4

include-sprite-in-new-graphics, 216

E input?, 172

edit-box, 173 input-device-names, 221

empty? ’21 insert-column, 50

enclosing-rectangle, 110 Insert-item, 44

end, 184 insert-rc, 51

entér 187 insert-row, 47

integer?, 130

try-tri , 148 L2
entry-trigger invisible-error, 227

equal?, 17 Invisi
e\cjaluator-help 213 invisible-value, 228
even?, 132 !:em, 25] ’s
exit-trigger, 149 !tem-nuzrg ers,
exp, 136 items,

expand-box, 194

extension-info, 233 J

join-bottom, 37

F join-right, 38

false, 144

first, 25 K

first-column, 31 “key, 160

first-row, 28

float?, 129 L

floor, 141

follow-mouse, 69 last, 26

for-each-item, 7 last-column, 31

for-each-row, 7 last-row, 29

forward, 65 left, 66

freeze, 95 left-arrow, 184

fullscreen-box, 195 length, 20

fullscreen-window, 222 less?, 127
less-or-equal?, 128
letters, 55

242

In, 137
load-extension, 233
local-name?, 57
log, 137

loop, 6

Itype, 82

M

mail, 202
mail-relay-host, 224
make-color, 89
make-diet-sprites, 217
make-transparent-graphics-boxes, 215
mark-for-saving, 231
math & logic characters

* 123

** 136

/,124

+, 123

<, 126

<= 127

=, 16, 126

> 126

>= 127
max, 135
max-viewable-message-size, 224
membe?, 23
min, 135
minus, 124
minus?, 131
mod, 133
modified-trigger, 150
mouse-box, 164
mouse-box-on-, 166
mouse-buttons, 164
mouse-click, 162
mouse-click-on-bottom-left, 163
mouse-click-on-bottom-right, 163
mouse-click-on-graphics, 114
mouse-click-on-name, 163
mouse-click-on-scroll-bar, 163
mouse-click-on-sprite, 115
mouse-click-on-top-left, 163
mouse-click-on-top-right, 163
mouse-click-on-type, 163
mouse-double-click, 162
mouse-double-click-on-, 163
mouse-double-click-on-graphics, 114
mouse-double-click-on-sprite, 115
mouse-position, 116
mouse-position-on-click, 116
mouse-position-on-release, 116
mouse-rc, 169
mouse-rc-box, 167
mouse-rc-box-on-, 168

mouse-rc-on-, 170
mouse-x-position, 117
mouse-x-position-on-click, 117
mouse-x-position-on-release, 117
mouse-y-position, 118
mouse-y-position-on-click, 118
mouse-y-position-on-release, 118
move-cursor, 193

N

name?, 56

name-help, 56, 226
name-in-box?, 57
name-new-sprites, 216
names, 58
newline-after-serial-writes, 225, 240
not, 145

number?, 21, 129
number-of-columns, 19
number-of-items, 19
number-of-rows, 19
numerator, 141

O

odd?, 132

open, 175, 197
open-serial-line, 235

option left-arrow (command-a), 184
option-/, 187

option-c, 187

option-delete, 186

option-f, 187

option-g, 185

option-Help, 187

option-l, 187
option-mouse-click, 162
option-mouse-double-click, 162
option-p, 185

option-return, 187
option-right-arrow (command-e), 184
option-s, 185

option-space, 187

option-t, 185

option-tab, 184

option-u, 187

option-x, 187

or, 145

P

pen, 105
pen-color, 107
pendown, 72
penerase, 73
penreverse, 73

243

penup, 72

pen-width, 106

PgDn, 184

PgUp, 184
playback-dribble-file, 231

plus, 124

plus?, 131

port-to, 53

position, 103

power, 136
preserve-empty-lines-in-build, 210
primitive-shadow-warning, 214
print-fractions, 143
printing-precision, 143

PrSc, 187

R

random, 135
rational?, 130
rationalize, 142
rc, 33
read-text-file, 181
redisplay, 158
remainder, 133
remove-extension, 234
repeat, 6
retarget, 41

right, 66
right-arrow, 184
round, 140

row, 28
row-numbers, 23
rows, 30

rtype, 83

run, 10

S

save, 177, 199

save-as, 178, 200

save-box-as, 178, 201
save-text-file, 181

self, 35

send, 204
serial-line-parameters, 236
serial-listen, 237
serial-read-base, 225, 240
serial-read-byte, 238
serial-read-char, 237
serial-read-char-no-hang, 237
serial-read-char-with-timeout, 237
serial-read-line, 237
serial-read-line-no-hang, 237
serial-read-line-with-timeout, 237
serial-write, 239

serial-write-byte, 239
set-background, 94
set-color-at, 93
set-current-directory, 180
set-default-line-parameters, 236
set-graphics-mode, 86
set-graphics-size, 85
setheading, 67
set-home-position, 113
set-pen-color, 75
set-pen-width, 74
setposition, 68
setshape, 112
set-sprite-size, 112
set-type-font, 75
setxy, 68
shape, 104
show-border-type-labels, 219
shown?, 105
show-sprite-properties, 109
show-subsprites, 71
showturtle, 70
shrink-box, 194
signum, 134
sin, 138
sleep, 155
smooth-scrolling, 219
snap, 87
snip, 87
Special Character

1,190

. (dot), 34, 76, 191

5, 192

5 192

@, 190

[, 185

A 11,191

{, 185

[, 187
special characters

@, 10

], 184

}, 184
sprite-size, 107
sqrt, 134
stamp, 76
stamp-arc, 80
stamp-circle, 77
stamp-ellipse, 78
stamp-hollow-circle, 77
stamp-hollow-ellipse, 78
stamp-hollow-rectangle, 79
stamp-rectangle, 79
stamp-self, 81
stamp-wedge, 80
status-line-message, 158

244

status-line-y-or-n, 159
step-time, 212
step-wait-for-key-press, 211
stop, 8

stop-loop, 8

superior, 36
supershrink-box, 195
system-preferences, 209

T

tab, 184

tan, 138
target-name, 58
tell, 9
terse-file-status, 223
times, 125
top-level-name?, 58
touching?, 111
towards, 111

true, 144

truncate, 141
turtle-shape, 113
type, 81

type-font, 106

]
unbox, 54

unboxable?, 22
unigue-symbol, 155
unless, 4

up-arrow, 184, 187
update-, 109
update-color-box, 93
user-mail-address, 224

W

warn-about-outlink-ports, 223
when, 5
width, 20
without-recording, 101
word, 55
word?, 22
X

X-position, 102

Y
y-position, 102

4

zero?, 131
zoom-pause, 218

245

