
BOXER MANUAL V2

"A box is all things."
Ancient Proverb

This manual is an abridged version of the on-line Boxer Command Manual. The
latter is generally more up to date, more complete, and contains working examples.
Use these manuals in conjunction with the Boxer Structures document, which
provides an explanation of the general Boxer forms and mechanisms on which the
commands listed here operate.

Compiled & Edited by
Rafael Granados
September 1994

Revised, December, 1999

Berkeley Macintosh Boxer Legal Notification

Berkeley Boxer and related documentation are ©; Copyright 1999, Andrea A. diSessa and Edward H.
Lay (“the authors”). Prior copyright by the Regents of the University of California has been assigned to
the authors. The University of California makes no representation with respect to Berkeley Boxer and
assumes no liability whatsoever. Berkeley Boxer may contain code from the original Boxer development,
copyright of MIT. All rights reserved, except for non-exclusive license expressly set forth below.

Permission to use, copy, and distribute this software and its documentation (with the exclusion of Boxer
Structures) for educational, research and non-profit purposes, without fee, and without a written
agreement is hereby granted, providing at the above copyright notice and the following seven paragraphs
appear in all copies.

Contact Andrea A. diSessa (1053 Park Hills Rd., Berkeley, CA 94708, 510-845-6561) concerning
permission to use Boxer for commercial purposes, or to incorporate this software into existing or new
commercial products.

IN NO EVENT SHALL THE AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS,
AND THE AUTHORS HAVE NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Berkeley Boxer for the Macintosh is implemented with Digitool Macintosh Common Lisp (“MCL”).

DIGITOOL, INC. (“DIGITOOL”) AND ITS LICENSOR MAKE NO WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING DIGITOOL
MCL. DIGITOOL AND ITS LICENSOR DO NOT WARRANT, GUARANTEE OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RELIABILITY, CURRENTNESS OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF MCL IS
ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY
SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL DIGITOOL, ITS LICENSOR, THEIR DIRECTORS, OFFICERS, EMPLOYEES
OR AGENTS BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT
DAMAGE (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOST OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE
USE OR INABILITY TO USE MCL, EVEN IF DIGITOOL, AND/OR ITS LICENSOR HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY
FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT
APPLY TO YOU. Digitool’s and its licensor’s liability to you for actual damages for any cause

whatsoever, and regardless of the form of action (whether in contract, tort (including negligence), product
liability or otherwise) will be limited to $50.

 i

Table Of Contents

BOXER MANUAL V2 .. 1

CHAPTER 1... 1

CONTROL STRUCTURE .. 1
1.1 SELECTION ... 3
1.2 REPETITION.. 6
1.3 EVALUATION... 8

CHAPTER 2... 12

DATA MANIPULATION ... 12
2.1 DATA COMPARISON .. 16
2.2 DATA INFORMATION: BOX SIZE.. 19
2.3 DATA INFORMATION: CONTENTS TYPE.. 21
2.4 DATA INFORMATION: CONTENTS LOCATION... 23
2.5 DATA INFORMATION: ACCESS BY ITEM ... 25
2.6 DATA INFORMATION: ACCESS BY ROW.. 28
2.7 DATA INFORMATION: ACCESS BY COLUMN ... 31
2.8 DATA INFORMATION: ACCESS BY ROW & COLUMN... 33
2.9 DATA INFORMATION: ACCESS BY NAME... 34
2.10 DATA CONSTRUCTION ... 37
2.11 DATA CONVERSION... 40
2.12 CONVERSION BY ITEM ... 42
2.13 CONVERSION BY ROW.. 45
2.14 CONVERSION BY COLUMN.. 48
2.15 CONVERSION BY ROW & COLUMN... 51
2.16 CONVERSION BY BOX... 52
2.17 CONVERSION BY CHARACTER... 55
2.18 ACCESSING NAME INFORMATION.. 56

CHAPTER 3... 59

GRAPHICS.. 59
3.1 MOVES AND TURNS... 65
3.2 SETTING POSITION AND HEADING ... 67
3.3 HIDE & SHOW .. 70
3.4 PEN.. 72
3.5 CLEARING GRAPHICS.. 84
3.6 GRAPHICS SIZE & MODE .. 85
3.7 SNAPPING & CHANGING .. 87

 ii

3.8 COLOR.. 89
3.9 SPRITE INFORMATION & PROPERTIES... 102
3.10 UPDATE PROPERTIES .. 109
3.11 OTHER INFORMATION .. 110
3.12 SPRITE SIZE, SHAPE & HOME.. 112
3.13 MOUSE INPUT & CLICKS .. 114
3.14 MOUSE POSITION ... 116

CHAPTER 4... 119

ARITHMETIC & L OGIC.. 119
4.1 ARITHMETIC OPERATORS & FUNCTIONS ... 123
4.2 COMPARISON OPERATORS & FUNCTIONS.. 126
4.3 NUMBER TYPE... 129
4.4 VALUE INFORMATION.. 131
4.5 OTHER NUMERIC FUNCTIONS.. 133
4.6 EXPONENTIAL & LOG FUNCTIONS ... 136
4.7 TRIGONOMETRIC FUNCTIONS.. 138
4.8 NUMBER CONVERSION TO INTEGERS ... 140
4.9 NUMBER PRINTING CONTROL.. 143
4.10 LOGIC... 144

CHAPTER 5... 146

Triggers ………………………………………………………………………………………..146
5.1 TRIGGERS ... 148

CHAPTER 6... 152

MISCELLANEOUS COMMANDS.. 152
6.1 MISCELLANEOUS COMMANDS .. 154

CHAPTER 7... 155

ENVIRONMENT: I NPUT & OUTPUT.. 155
7.1 OUTPUT ... 158
7.2 INPUT: KEYSTROKE BINDING... 160
7.3 INPUT: MOUSE BINDING... 162
7.4 INPUT: MOUSE POLLING .. 164
7.5 REQUEST FOR INPUT HANDLING .. 170

CHAPTER 8... 172

ENVIRONMENT: FILE COMMANDS .. 172
8.1 STANDARD FILE COMMANDS .. 175

 iii

CHAPTER 9... 183

ENVIRONMENT: KEYSTROKES AND EDITING .. 183
9.1 MOVING IN BOXER .. 184
9.2 MAKING BOXES .. 185
9.3 CUT AND PASTE.. 186
9.4 OTHER KEYSTROKES .. 187
9.5 KEYS THAT PRINT.. 189
9.6 CURSOR LOCATION ... 192
9.7 BOX-SIZING.. 193

CHAPTER 10... 194

ENVIRONMENT : NETWORKING .. 194
10.1 NET BOX FILE/DIRECTORY COMMANDS... 197
10.2 MAIL... 202

CHAPTER 11... 205

ENVIRONMENT: MISCELLANEOUS... 205
11.1 SYSTEM-PREFERENCES.. 209
11.2 RESULT APPEARANCE .. 210
11. 3 EVALUATOR-SETTINGS... 211
11.4 GRAPHICS SETTINGS... 215
11.5 EDITOR SETTINGS .. 218
11.6 FILE SYSTEM SETTINGS ... 223
11.7 NETWORK SETTINGS... 224
11.8 COMMUNICATIONS SETTINGS ... 225
11.9 MISCELLANEOUS SYSTEM COMMANDS... 226
11.10 EXTENSIONS .. 233
11.11 SERIAL PORT: SETUP... 235
11.12 SERIAL PORT: READING... 237
11.13 SERIAL PORT: WRITING.. 239
11.14 SERIAL PORT: PREFERENCES ... 240

 1

CHAPTER 1

Control Structure
In general, Boxer executes procedures one command at a time, left to right, top to bottom -- just
like reading text. However, for many reasons, you may want to change this behavior. The two
most frequent non-linear control patterns are repetition, in which a segment of code is evaluated
several times, and selection, in which some code may be executed, or not, depending on
circumstances. if is the main control selection command, and repeat is the main repeater.

Boxer also includes other control options. You may choose to execute data in Boxer using the
run command, effectively changing a data box into a doit box. You may also choose to
deliberately stop some currently running procedure. Or you may change where execution takes
place with tell (ask)

Chapter 1 Boxer Language

 2

1. SELECTION

if
ifs

unless
when

These are conditional commands that execute some code, or not, depending on
some condition.

2. REPETITION

repeat
loop

for-each-item
for-each-row

These are iterators that run some code over and over.

3. EVALUATION

stop
stop-loop

tell
ask
run
@
^

These commands all change the normal modes by which Boxer executes code.
They change place of execution (tell); they change where Boxer looks to find a
variable (tell and ̂); they cause data to be executed like a procedure (run); and
they allow you to construct command lines on the fly out of computed
information or information in data boxes (@).

Chapter 1 1.1 Selection

 3

1.1 SELECTION

if
Syntax

if <condition> <action> <optional-alternate-action>
Description

Runs <action> or <optional-alternate-action> depending on whether <condition> is true
or false. If the <optional-alternate-action> is not present, nothing happens when the
condition is false. Always enclose actions in boxes unless they are single words. Note
that if can be used as a function (that is, to return a value) as well as a command. This
happens if expressions are used in place of <action> and <optional-alternate-action>. The
value returned by if is the result produced by whichever expression is evaluated. It is best
to put the <action> and <optional-alternate-action> in doit boxes: for clarity, for
inspectability (some ifs might be long -- a doit box can be shrunk to hide it for easy
inspection of the rest of the command), and to avoid bugs due to Boxer reading your if in
a different way than you intended.

Example

Chapter 1 1.1 Selection

 4

ifs
Syntax

Description
A command to handle multiple conditions. It takes as input a data box, with each line
having (1) a condition and (2) an action (no alternates). ifs executes the action for the first
true statement only. You can have as many or as few condition-action pairs as you want.
The else clause is optional. If you include an else and none of the conditions are true, the
<optional-alternative-action> gets run. Like if , the actions or alternative-action may end
with a value, which will be returned as the value of the whole ifs. However, unlike if , the
<actions> need not be a single token (word or box), so you need not include multiple
command actions in a doit box if you chose not to.

Example

unless
Syntax

 unless <condition> <action>
Description

This command will execute the action unless the condition is true. It is the same as saying
if not, except that you can't have an alternative action. You need not enclose <action> in a
box; unlike if , <action> need not be a single word or box.

Example

Chapter 1 1.1 Selection

 5

when
Syntax

 when <condition> <action>
Description

This command is the same as if , except that you can't use it to specify an alternate action.
It's just a nice, natural-language way to say if , and it allows you to type an <action> of
several words without placing them in a doit box, as with unless.

Examples

Chapter 1 1.2 Repetition

 6

1.2 REPETITION

repeat
Syntax

repeat <number> <action>
Description

This command takes two inputs, a number and an action. The number specifies how
many times the action should be executed. The first input is rounded to the nearest
integer, in case it is not already an integer.

Example

loop
Syntax

loop <action>
Description

This command creates an infinite loop. It repeats over an over until you manually stop,
use a stop or stop-loop command.

Example

Chapter 1 1.2 Repetition

 7

for-each-item
Syntax

for-each-item <variable> <data box> <action>
Description

This command first changes the value of the specified variable to be the first item in the
input box, and then executes the action (which may involve the value of the variable).
Then it changes the value of the variable to the second item and executes the action, and
so on, once for each item.

Example

for-each-row
Syntax

for-each-row <variable> <data box> <action>
Description

This command is the same as for-each-item, but with rows. It sets the value of the
specified variable to the first row of the input box and executes the action. Then it sets the
value to the second row and executes the action, and so on, once for each row.

Example

Chapter 1 1.3 Evaluation

8

1.3 EVALUATION

stop
Syntax

stop <procedure-name>
Description

This command stops a procedure. It is an unusual Boxer primitive in that it has an
optional input: if you specify the name of a procedure, it stops that procedure (if it is
running!). If you don't specify the name of a procedure, it stops whatever box it is in.
Note that stop returns a value if one is computed as the last command before stop.
Because of this, stop is as powerful as catch and throw in Lisp or Logo.

Example

stop-loop
Syntax

stop-loop
Description

This command stops the currently running loop (see loop). Loops may be nested within
one another, and stop-loop will stop the innermost loop. Note that stop-loop will not
work with named user procedures (see stop for stopping named procedures.)

Example

Chapter 1 1.3 Evaluation

9

tell
Syntax

tell <box> <action or variable name>
Description

tell takes the <action or variable name> as a message and executes it in inside <box>.
Usually, when you execute an action or the name of a variable in Boxer, it looks for that
action or variable starting in the box you're currently in. If it doesn't find the variable, it
looks in the box that contains the one you're in, and so on outward. With tell you can
direct Boxer to execute the action or find the variable in a particular named box. So tell
asks the box you specify to execute the action or find the variable as if you had done this
from within that box. tell <box> <message> operates as if you moved your cursor into
<box>, typed the <message> and pressed the doit key. Except it doesn't leave any "mess"
(typing) in the <box>, and it returns any results back to the place that tell was executed.
ask is a synonym for tell. You can think of ask as a polite form, or a form better suited to
asking for information than telling a box (to execute a variable name or procedure) for
some information.

Example

ask
Syntax

 ask <box> <action or variable name>
Description

 ask is a synonym for tell.
Example

Chapter 1 1.3 Evaluation

10

run
Syntax

run <input>
Description

run takes its input (a data box) and executes it as a procedure. That is, it effectively turns
a data box into a doit box. It will return a value if running its input results in a value.

Example

@
Syntax

@ <data-box>
Description

@ in front of a data box, or in front of a procedure that will provide it with a data box,
tells Boxer to strip away the box and use what's inside. You can read it as "the contents
(insides) of ..." It is handy in case you want some text to appear in a line of code, but that
text needs to be computed or exists in a data box. @ was designed to be used with build ,
but was extended to be useful in "computing lines of code to execute." @ is very special
in Boxer. It does not return a result in the usual way. Instead, Boxer replaces every @
with the result of running what follows it, and then executes the resulting line of code. It
is similar to unbox, except more powerful. (unbox always returns a value in a data box,
hence that value never gets executed, as it does with @.)

Example:

Chapter 1 1.3 Evaluation

11

^
Syntax

^ <a name>
Description

^ is used before a name. It means "use the box with this name from the place where the
last tell (ask) was executed." This is an important feature when you want to send along
the value of a variable, or a certain procedure, in the message told to a box that ordinarily
wouldn't have access to the variable or procedure. Read ^ as "this <variable, procedure>"
or as "the local <variable, procedure>". In the example, the tell causes change to be
executed inside tom, who does not have access to how-much (inside deposit) unless ^ is
used.

Example

12

CHAPTER 2

Data Manipulation
This chapter discusses the manipulation of data. In BOXER, the primitive data type is the data
box (Figure 1a). A named data box is a variable (Figure 1b). Data boxes can be filled with text,
numbers, or other boxes (Figure 1c). By nesting data boxes, you can create hierarchical data
structures. The parts of a hierarchical data structure can be individually named (Figure 1d. See
also "access-by-name" in "data-access"). There also exists a mechanism for creating arbitrarily
connected networks of boxes (see Boxer Structures on Ports).

(a) (b) (c) (d)
Figure 1. Examples of data boxes

Data is passed into a procedure in a data box, and returned from a procedure in a data box (see
procedure inputs and outputs). Data may be treated as a list (one-dimensional), as a sequence of
rows, as a sequence of columns, or as an array (two-dimensional). There are accessors (that fetch
part of the data) and mutators (that change part of it) for each of these modes.

Graphics boxes (see sprite graphics) have most of the behaviors of data boxes, except they have
a graphical presentation on which pictures can be shown and in which sprites can wander and
draw. Numbers are a special kind of data that do not have to be typed in a data box. But
executing a number will return the number in a data box. Not having to type numbers in boxes to
designate them as data is merely a convenience. true and false are special in exactly this way.

The following sections present examples of commands for comparing boxes, getting information
from data structures, accessing data from data structures, constructing data, and for accessing
information on commands and on things named by the user. The information gathered through
these commands can be used in several ways, such as to check if a piece of data is of the proper
type (e.g., if number? X ...), as arguments to selectors, as termination conditions (if empty? X
stop), as parameters for iteration (repeat number-of-items X ...), or just to let you know what's
there.

Chapter 2 Boxer Language

13

2.1 DATA COMPARISON

=
equal?
alpha>
alpha<

These commands compare two boxes.

2.2 DATA INFORMATION: BOX SIZE

number-of-items
number-of-rows

number-of-columns
count
length
height
width

These commands give the size of a box, in different measures (rows, columns,
items).

2.3 DATA INFORMATION: CONTENTS TYPE

empty?
number?

unboxable?
word?

These commands tell you something about the contents of a box.

2.4 DATA INFORMATION: CONTENTS LOCATION

member?
item-numbers
row-numbers

column-numbers

These commands find numerical locations of specified items in a box, or
(member?) whether an item is in a box at all.

2.5 DATA INFORMATION: ACCESS BY ITEM

first
item
last

butfirst
butitem
butlast
items

These commands treat the box as a one-dimensional collection of sub-items.
The ordering of the items is by item number, which starts at one for the first
item and increases as you go from left to right and top to bottom.

2.6 DATA INFORMATION: ACCESS BY ROW

first-row
row

last-row
butfirst-row

but-row
butlast-row

rows

A box may be considered a sequence of rows, and there are corresponding
accessors and mutators that are very similar to those for a box considered as a
list (i.e., as a sequence of items). Sometimes the vertical presentation of rows
is better than horizontal lists, so you may want to list process on rows, using
first-row and butfirst-row in exactly the way you use
first and butfirst . Also, rows are more convenient when you have short lists as
data items.

Chapter 2 Boxer Language

14

2.7 DATA INFORMATION: ACCESS BY COLUMN

first-column
column

last-column
butfirst-column

butcolumn
butlast-column

columns

A box may be considered a sequence of columns, and there are corresponding
accessors and mutators that are very similar to those for a box considered as a
list, (i.e., as a sequence of items). Columns are generally less useful than rows,
so these commands are more for completeness than general use. Note that a
column is defined by the number of the item in each row -- spacing is
irrelevant.

2.8 DATA INFORMATION: ACCESS BY ROW & COLUMN

rc This command views the box as a two dimensional array of elements.

2.9 DATA INFORMATION: ACCESS BY NAME

ask (tell)
.

self
superior

Two methods are provided for getting the pieces of a box by name. Ask
(synonym tell) uses message passing. "Dot notation" allows you to specify a
chain of boxes within boxes by name.

2.10 DATA CONSTRUCTION

build
join-bottom
join-right

boxify
datafy

Boxer basically only has one very powerful and graphical means of
constructing complex data objects out of pieces: build . With build , you may
also create newly named boxes whose names are computed. Join-bottom and
join-right are convenient abbreviations. Boxify and datafy are also
conveniences.

2.11 DATA CONVERSION

change
retarget

These commands mutate or change boxes.

2.12 CONVERSION BY ITEM

change-item
change-last-item

insert-item
append-item
delete-item

delete-last-item
delete-items

These commands treat the box as a list of items. This class is frequently used
to fiddle with parts of a box one at a time, as a program progresses. Contrast
accessors like item, first, which are usually used in list processing that
systematically moves through a box

2.13 CONVERSION BY ROW

change-row
change-last-row

delete-row
delete-last-row

delete-rows
insert-row

append-row

These commands treat the box as a list of rows. This class of functions is
frequently used to fiddle with parts of a box one at a time, as a program
progresses. Contrast accessors like row, first-row , which are usually used in
list processing that systematically moves through a box

Chapter 2 Boxer Language

15

2.14 CONVERSION BY COLUMN

change-column
change-last-column

delete-column
delete-last-column

delete-columns
insert-column

append-column

Similar to row and item mutators, except oriented to columns. These are not
frequently used, since columns are awkward visually in many instances.

2.15 CONVERSION BY ROW & COLUMN

change-rc
insert-rc
delete-rc

These change part of a box, indexed by row and column (array) specification.

2.16 CONVERSION BY BOX

boxify
datafy
copy

port-to
unbox

These are functions that do some simple conversions on data, like putting it in
a box, getting a port to it, or making a copy of it. Boxer gets character data by
taking words apart into letters, or, uses characters to build words (see directly
below). This is unlike Logo.

2.17 CONVERSION BY CHARACTER

letters
word

Characters are handled in Boxer by converting words into a series of letters,
doing any operations on the letters (treated as individual items) and converting
back to a word. letters converts to a list of letters. word converts back to a
word. You are best off processing many words at the word level first,
converting only one word at a time to letters.

2.18 ACCESSING NAME INFORMATION

name-help
name?

local-name?
name-in-box?

names
top-level-name?

target-name

These commands get information about the names of things or a b
things that are named. These include Boxer commands as well a s
boxes named by the user.

Chapter 2 2.1 Data Comparison

16

2.1 DATA COMPARISON

=
Syntax

<box1> = <box2>
Description

= checks if <box1> and <box2> have identical contents. It returns true or false. It works
on numbers as well as boxes, and it treats decimals, integers and fractions as equivalent
types. Note that = ignores "portness" and just checks the contents of the target box. In the
last example (below), a port to a box containing "apple" is considered equal to a box
containing "apple".

Examples

Chapter 2 2.1 Data Comparison

17

equal?
Syntax

equal? <box1> <box2>
Description

equal? checks if <box1> and <box2> have identical contents. It returns true or false. It
also works on numbers as well as boxes, and it treats decimals, fractions and integers as
the same if they are numerically equal. Note that equal? ignores "portness" and just
checks the contents of the target box as is illustrated by the second example.

Examples

alpha>
Syntax

alpha> <box1> <box2>
Description

This command checks if <box1> comes alphabetically after <box2>. It returns true or
false. Spaces, boxes and special characters might have surprising behavior. Upper case
letters come before lower case, and, generally, symbols come before upper case.

Example

Chapter 2 2.1 Data Comparison

18

alpha<
Syntax

alpha< <box1> <box2>
Description

This command checks if <box1> comes alphabetically before <box2>. It returns true or
false. Spaces, boxes and special characters might have surprising behavior. Upper case
letters come before lower case, and, generally, symbols come before upper case.

Example

Chapter 2 2.2 Data Information: Box Size

19

2.2 DATA INFORMATION: BOX SIZE

number-of-items
Syntax

number-of-items <box>
Description

Returns the number (an integer >= 0) of items in the input <box>.
Example

number-of-rows
Syntax

number-of-rows <box>
Description

Returns the number (an integer >= 1) of rows in the input <box>.
Example

number-of-columns
Syntax

number-of-columns <box>
Description

Returns the number (an integer >= 0) of columns in the input <box>.
Example

count
Syntax

count <box>
Description

Abbreviation for number-of-items for Logo compatibility. Returns an integer >= 0 in a
box.

Example

Chapter 2 2.2 Data Information: Box Size

20

length
Syntax

length <box>
Description

Abbreviation for number-of-items. Returns an integer >= 0 in a box.
Example

height
Syntax

height <box>
Description

Abbreviation for number-of-rows. Returns an integer >= 1 in a box.
Example

width
Syntax

width <box>
Description

Abbreviation for number-of-columns. Returns an integer >= 0 in a box.
Example

Chapter 2 2.3 Data Informat ion: Contents Type

21

2.3 DATA INFORMATION: CONTENTS TYPE

empty?
Syntax

empty? <box>
Description

Asks if its input is an empty <box>. It returns true or false. A box is empty if all of its
lines are empty. The last example below shows a typical use of empty?, i.e., to reverse a
list.

Examples

number?
Syntax

number? <box>
Description

Returns true precisely when the input is a number.
Example

Chapter 2 2.3 Data Informat ion: Contents Type

22

unboxable?
Syntax

unboxable? <box>
Description

Returns true if and only if its input contains precisely one box, so that you may apply
unbox to it. This command is useful to find out if a box can be safely unboxed with the
command unbox (to result in another data box).

Examples

word?
Syntax

word? <box>
Description

Returns true or false depending on whether the input is a box containing a single word.
Numbers count as words.

Examples

Chapter 2 2.4 Data Information: Contents Location

23

2.4 DATA INFORMATION: CONTENTS LOCATION

member?
Syntax

member? <item> <list>
Description

This returns true or false depending on whether <item> is in <list> or not. The <item
may actually be a sequence, and member? checks whether the full sequence appears in
<list>.

Example

item-numbers
Syntax

item-numbers <template> <list>
Description

This returns a list of numbers that tells you at which positions <template> is found in
<list>. A typical use of this command is to give you information as to the location of
occurrences of a particular item in a list.

Example

row-numbers
Syntax

row-numbers <template> <box>
Description

This returns a list of numbers that tells you at which rows <template> is found in <box>.
A typical use of this command is to give you information as to the location of
occurrences of a particular item in different rows.

Example

Chapter 2 2.4 Data Information: Contents Location

24

column-numbers
Syntax

column-numbers <template> <box>
Description

This returns a list of numbers that tells you at which columns <template> is found in
<box>. A typical use of this command is to give you information as to the location of
occurrences of a particular item in different columns.

Example

Chapter 2 2.5 Data Access By Item

25

2.5 DATA INFORMATION: ACCESS BY ITEM

first
Syntax

first <box>
Description

Returns the first item in <box> (and that item will be enclosed in a box). Note that all
data accessors preserve as much "portness" as possible. So if the input to first is a port
and the first item is a box, then the result will be a box containing a port to that box (see
second example below). If the first element of a port which is the input to first is not a
box, Boxer cannot return a port to it, of course, and so you get a copy (see third example
below). If the first element of the box is a port, naturally Boxer returns a box containing a
duplicate port.

Examples

item
Syntax

item <n> <box>
Description

Returns item number <n> of <box> enclosed in a box. The valid range of item numbers is
from 1 up to the number of items in the box. Numbers outside this range return an error
box. This command preserves as much "portness" as possible. See documentation for
first .

Example

Chapter 2 2.5 Data Access By Item

26

last
Syntax

last <box>
Description

Returns the last item in <box> enclosed in a box. All data accessors preserve as much
"portness" as possible.

Examples

butfirst
Syntax

butfirst <box>
Description

Returns a copy of the box with the first item missing. If the box contains only one item,
then butfirst returns an empty box. Note that all data accessors preserve as much
"portness" as possible.

Examples

Chapter 2 2.5 Data Access By Item

27

butitem
Syntax

butitem <n> <box>
Description

Returns a copy of <box> with item number <n> removed. If n is <= 0 or > the number of
items in the box, then an error is signaled. Note that all data accessors preserve as much
"portness" as possible.

Example

butlast
Syntax

butlast <box>
Description

Returns a copy of the <box> with the last item missing. If the box contains only one item,
then butlast returns an empty box. Used like butfirst , except in cases an inverted order is
preferred for some reason. All data accessors preserve as much "portness" as possible.

Example

items
Syntax

items <start> <end> <box>
Description

Returns a box containing all the items in <box> from <start> to <end>.
<start> and <end> are integers. As usual for data selectors, items returns a port to a box,
where possible, when a port is given as input.

Examples

Chapter 2 2.6 Data Access By Row

28

2.6 DATA INFORMATION: ACCESS BY ROW

first-row
Syntax

first-row <box>
Description

Returns a box whose contents are the same as the contents of the first row of the input. If
the input's first row is empty, an empty box will be returned. See first for documentation
on typical use. first-row preserves "portness" as much as possible.

Examples

row
Syntax

row <n> <box>
Description

Selects row number <n> of <box> and returns a box whose contents are that row. Rows
are ordered from top to bottom, and start at one and end up at the number-of-rows of the
box. Row numbers outside this range result in an error box being returned. If the number
is not an integer, an error is returned. See item for more comparable documentation.
Preserves "portness" as much as possible.

Example

Chapter 2 2.6 Data Access By Row

29

last-row
Syntax

last-row <box>
Description

Returns a box whose contents are a copy of the last row of the input. If the input's last
row is empty, an empty box will be returned. See first for more extensive documentation
on typical use. Preserves "portness" as much as possible.

Example

butfirst-row
Syntax

butfirst-row <box>
Description

Returns a copy of its input with the first row missing. Preserves "portness" as much as
possible.

Examples

Chapter 2 2.6 Data Access By Row

30

but-row
Syntax

but-row <n> <box>
Description

Returns a copy of <box> with row <n> missing. Preserves "portness" as much as
possible.

Example

butlast-row
Syntax

butlast-row <box>
Description

Returns a copy of its input with the last row missing. Preserves "portness" as much as
possible.

Example

rows
Syntax

rows <start> <end> <box>
Description

Returns rows numbered <start> to <end>. <start> and <end> must be in order and
between 1 and the number-of-rows in <box>. Preserves "portness" as much as possible.

Example

Chapter 2 2.7 Data Access By Column

31

2.7 DATA INFORMATION: ACCESS BY COLUMN

first-column
Syntax

first-column <box>
Description

Returns the first column of the input. Note spaces do not shift items into other columns.
The first item on the row is in the first column, no matter where it appears due to spacing.
Preserves "portness" as much as possible.

Example

column
Syntax

column <n> <box>
Description

Returns column number <n> of <box>. In Boxer columns are counted logically; spacing
doesn't matter. Preserves "portness" as much as possible.

Example

last-column
Syntax

last-column <box>
Description

Returns the last column of the input. Beware that "last" means the last logical item of
each row -- spacing and alignment don't count! Preserves "portness" as much as possible.

Example

Chapter 2 2.7 Data Access By Column

32

butfirst-column
Syntax

butfirst-column <box>
Description

Returns all but the first column of the input. Preserves "portness" as much as possible.
Example

butcolumn
Syntax

butcolumn <n> <box>
Description

Returns a copy of the <box> without column number <n>. In Boxer columns are counted
logically; spacing doesn't matter. Preserves "portness" as much as possible.

Example

butlast-column
Syntax

butlast-column <box>
Description

Returns a copy of the input box without the last column. The last column (removed) is
the last item of each row, independent of spacing. Preserves "portness" as much as
possible.

Example

columns
Syntax

columns <start> <end> <box>
Description

Returns rows numbered <start> to <end>. <start> and <end> must be in order and
between 1 and the number-of-columns in <box>. Preserves "portness" as much as
possible.

Example

Chapter 2 2.8 Data Access By Row & Co lumn

33

2.8 DATA INFORMATION: ACCESS BY ROW & COLUMN

rc
Syntax

rc <row> <column> <box>
Description

Returns a box containing the element that is at row number <row> (starting at 1 and
moving from top to bottom) and column number <column> (also starting at 1 and
moving from left to right) of the input. If there is no element at the specified row and
column numbers, then an error is signaled. In Boxer columns are counted logically;
spacing doesn't matter. Blank rows, however, count as a row. This command preserves
"portness" as much as possible.

Example

Chapter 2 2.9 Data Information: Access by Name

34

2.9 DATA INFORMATION: ACCESS BY NAME

ask
Syntax

ask <box> <whatever>
Description

Returns the box named <name> from inside the box named <box>. Can be chained as in
ask <box1> ask <box2> <name>. tell is a synonym for ask. ask is Boxer's standard
message passing command. The model is that " ask <who> <whatever>" takes Boxer
into <who>, then types <whatever> and executes it. Any result from executing
<whatever> is returned from ask. ask together with the usual variable behavior (a name
fetching a copy of the data named) allows the general hierarchical data access method to
work. ask is more general and powerful than its use as documented here. See tell and ask
(message-passing) in Boxer Structures. Fine point: " ask " is preferable to " tell " in this
case, even though the two are synonyms, because tell sounds like it wants an action, not
just some data.

Example

. (dot)
Syntax

 <name>.<name2>
Description

x.y denotes the part of x named y. May be chained as in “x.y.z”. This denotes the z part
of the y part of box x. Think of a dotted name as specifying a path down through a series
of named boxes to the part needed. It is difficult (though possible) to "compute" the
names involved. box.@name does not work. In this case it is better to use ask. Dot
notation is more compact and sometimes easier to read, but not as flexible as ask.

Example

Chapter 2 2.9 Data Information: Access by Name

35

self
Syntax

self
Description

Returns a port to the place where execution last started. Or, if a tell or ask was executed,
it returns a port to the place told (asked). This command is useful if you what to know
where execution was started, e.g., it might be started by a graphics or mouse click. See
mouse-box-on-click for a similar function.

Example

Chapter 2 2.9 Data Information: Access by Name

36

superior
Syntax

superior <box>
Description

Returns a port to the box that contains <box>, the input to superior. superior is useful
when you want to find out about or manipulate some aspect of the environment that some
box (which you have a port to) is located in. Use (1) a data accessor (e.g., in a data search
procedure that returns a port), (2) self (e.g., to find out which sprite instigated a sprite-
mouse- command), or (3) one of the mouse-rc commands to get a port whose superior is
useful. The input should be a port, or the name of a box (which superior converts to a
port). The examples below are not very interesting since you know what the superior to
the specified box is just by looking at the target of the port, or the (named) superior of a
chained name like x.z.t. However, they help illustrate the point.

Examples

Chapter 2 2.10 Data Construction

37

2.10 DATA CONSTRUCTION

build
Syntax

build <template box>
Description

This command takes a single data box as input. The input serves as a template. Each part
of the template that does not have a special symbol in front of it (@ or !) appears in the
output exactly as in the template. Parts of the template preceded by ! are replaced by the
result of executing the word or doit box following !, including the box wrapper. If @ is
used in place of !, the box wrapper is removed. @ may be used in the nametab of a box to
create new named variables or procedures. ! only works as part of the input to build . @
can be used independent of build to refer to the contents of a box.

Examples

join-bottom
Syntax

join-bottom <box1> <box2>
Description

The contents of <box1> are vertically concatenated with the contents of <box2>. The
resulting box appears as if <box1> had been placed on top of <box2> and the common
box border erased. Note that join-bottom X Y is (almost) the same as build <template>
where the template is a data box with row 1 containing @X and row two containing @Y.
However, they may treat spaces differently.

Example

Chapter 2 2.10 Data Construction

38

join-right
Syntax

join-right <box1> <box2>
Description
The contents of <box2> are concatenated to the right of <box1>. The resulting box appears
as if <box2> had been placed to the right of <box1> and the common box border erased.
Note that join-right X Y is (almost) the same as build <template>, where template is a box
containing @x and @y in the same row.
Example

boxify
Syntax

boxify <box>
Description

Returns a copy of its (evaluated) input inside a box. That is, it adds one data box wrapper
to its input.

Examples

Chapter 2 2.10 Data Construction

39

datafy
Syntax

datafy <any-item>
Description

Returns a copy of its (unevaluated) input inside a box. That is, it adds one data box
wrapper to its input. Useful only for demonstrating data flavored inputs.

Examples

Chapter 2 2.11 Data Conversion

40

2.11 DATA CONVERSION

change
 Syntax

 change <box> <new-box>
Description

Replaces the contents of <box> with a copy of the contents of <new-box>. If <box> is a
literal data box, that box gets changed. If <box> is the name of a data box, that named
box gets changed. If <box> is a port or evaluates to a port, the target of the port is
changed. See retarget for "rewiring" ports. Also, note that the closet of the box changed
does not get changed. This is deliberate so that you can have some behavior or
identification stay with a box when you change it. Note that in the last example below, if
you can arrange for the first input to change to be a port to a box, that box is changed.
This is simply a consequence of the "stickiness" of ports. See ports and port-flavored
inputs in Boxer Structures.

Examples

Chapter 2 2.11 Data Conversion

41

retarget
Syntax

retarget <port> <new-target>
Description

Changes the target of a port to some other box. Used for "rewiring" your world. This is
"the port equivalent" of change. change is more flexible that retarget. You can change
any box-part of a complex box by using port-to and stickiness. But you cannot do this
with retarget.

Examples

Chapter 2 2.12 Data Conversion By Item

42

2.12 CONVERSION BY ITEM

change-item
Syntax

change-item <n> <box> <new-item>
Description

Changes the item number <n> of <box> to a copy of the contents of <new-item>. To
remember input sequence read as: "Change item 1 (of) box (to) new item." Note that all
the parts of <new-item> get stuffed into the position of the nth item. Also, note that item
at position <n> is completely replaced, even if it is a box. Like change, if you manage to
pass a port change-item as its second input, that target of that port will be changed. Like
change, the last input will be copied, but any ports contained in that box will remain
ports, according to the standard Boxer rules for copying boxes and ports. See change and
first . See ports and "stickiness" of ports in Boxer Structures.

Example

delete-item
Syntax

delete-item <n> <box>
Description

Changes <box> by removing item number <n> from it. This command follows the same
rules of "portness" as change.

Example

Chapter 2 2.12 Data Conversion By Item

43

delete-last-item
Syntax

delete-last-item <box>
Description

Changes <box> by removing the last item from it. This command follows the same rules
of "portness" as change.

Example

delete-items
Syntax

delete-items <start> <end> <box>
Description

Removes items from <box> starting at <start> and ending at item number <end>. This
command follows the same rules of "portness" as change.

Example

change-last-item
Syntax

change-last-item <box> <new-item>
Description

Changes the last item of <box> to the contents of <new-item>. This command follows
the same rules of "portness" as change.

Example

Chapter 2 2.12 Data Conversion By Item

44

insert-item
Syntax

insert-item <new-item> <box> <n>
Description

Puts whatever is in box <new-item> into <box> at the item position <n>. If more than
one item is in <new-item>, all of them get inserted, starting at position <n>. The order of
inputs is designed to reflect "English" usage, e.g., "insert-item <which item> into:
<which box> at: <place>.“ insert-item is similar to change-item in its operation. This
command follows the same rules of "portness" as change.

Example

append-item
Syntax

append-item <new-item> <box>
Description

Adds the stuff in <new-item> to the end of <box>. The order of inputs is designed to
reflect English usage, e.g.: append-item <which-item> to: <box>. As a generic append,
append-row will probably be "neater" in accumulating stuff. This command follows the
same rules of "portness" as change.

Example

Chapter 2 2.13 Data Conversion By Row

45

2.13 CONVERSION BY ROW

change-row
Syntax

change-row <n> <box> <new-row>
Description

Changes the row number <n> of <box> to a copy of the contents of <new-row>. Multiple
rows from <new-row> can replace the specified row. This command follows the same
rules of "portness" as change.

Example

change-last-row
Syntax

change-last-row <box> <new-row>
Description

Changes the last row of <box> to the contents of <new-row>. This command follows the
same rules of "portness" as change.

Example

Chapter 2 2.13 Data Conversion By Row

46

delete-row
Syntax

delete-row <number> <box>
Description

Deletes the specified row from its input. This command is needed because changing a
row to be an empty row is not the same thing as deleting it. This command follows the
same rules of "portness" as change.

Example

delete-last-row
Syntax

delete-last-row <box>
Description

Deletes the last row of its input. This command follows the same rules of "portness" as
change.

Example

delete-rows
Syntax

delete-rows <start> <end> <box>
Description

Removes rows from <box> starting at <start> and ending at row number <end>. This
command follows the same rules of "portness" as change.

Example

Chapter 2 2.13 Data Conversion By Row

47

insert-row
Syntax

insert-row <new-row> <box> <n>
Description

Puts whatever is in box <new-row> into <box> at the row number <n>. If more than one
row is in <new-row>, all of them get inserted, starting at position <n>, and the rest of the
box rows gets pushed down. The input sequence is patterned after English usage: insert-
row <new row> into: <box> at: <row number>. This command follows the same rules of
"portness" as change.

Example

append-row
Syntax

append-row <new-row> <box>
Description

Adds the stuff in <new-row> to the end of <box>, starting on a new row.
The order of inputs is designed to reflect English usage: append-row <new row> to:
<box>. As a generic append, append-row will probably be "neater" in accumulating stuff
than append-item. This command follows the same rules of "portness" as change.

Example

Chapter 2 2.14 Data Co nversion By Column

48

2.14 CONVERSION BY COLUMN

change-column
Syntax

change-column <n> <box> <new-column>
Description

Changes the column number <n> of <box> to a copy of the contents of <new-column>.
Multiple columns from <new-column> can replace the specified column. This command
follows the same rules of "portness" as change.

Example

change-last-column
Syntax

change-last-column <box> <new-column>
Description

Changes the last column of <box> to the contents of <new-column>. This command
follows the same rules of "portness" as change.

Example

Chapter 2 2.14 Data Co nversion By Column

49

delete-column
Syntax

delete-column <number> <box>
Description

Deletes the specified column from its input. It deletes the last item from each row. This
command follows the same rules of "portness" as change.

Example

delete-last-column
Syntax

delete-last-column <box>
Description

Deletes the last column of its input. This command follows the same rules of "portness"
as change.

Example

delete-columns
Syntax

delete-columns <start> <end> <box>
Description

Removes columns from <box> starting at <start> and ending at column number <end>.
This command follows the same rules of "portness" as change.

Example

Chapter 2 2.14 Data Co nversion By Column

50

insert-column
Syntax

insert-column <new-column> <box> <n>
Description

Puts <new-column> into <box> at the column number <n>. Multiple columns can be
inserted if <new-column> has more than one. This command follows the same rules of
"portness" as change.

Example

append-column
Syntax

append-column <new-column> <box>
Description

Adds the stuff in <new-column> to the right end of <box>. This command follows the
same rules of "portness" as change.

Example

Chapter 2 2.15 Data Conversion By Row & Column

51

2.15 CONVERSION BY ROW & COLUMN

change-rc
Syntax

change-rc <row> <column> <box> <new-item>
Description

Changes the item at <row> and <colunm> to the contents of <new-item>. Multiple items
can be inserted. This command follows the same rules of "portness" as change.

Example

insert-rc
Syntax

insert-rc <more> <box> <row> <column>
Description

Inserts the contents of <more> into <box> at position indicated by <row> and <column>
(and the rest of the box moves to the right and down). This command follows the same
rules of "portness" as change.

Example

delete-rc
Syntax

delete-rc <row> <column> <box>
Description

Deletes the element of <box> specified in by <row> and <column>. This command
follows the same rules of "portness" as change.

Example

Chapter 2 2.16 Data Conversion By Box

52

2.16 CONVERSION BY BOX

boxify
Syntax

boxify <box>
Description

Returns a copy of its (evaluated) input inside a box. That is, it adds one data box wrapper
to its input.

Examples

datafy
Syntax

datafy <any-item>
Description

Returns a copy of its (unevaluated) input inside a box. It adds one data box wrapper to its
input. It differs from boxify only in that it has a data flavored input, so it works on words
as well as boxes.

Examples

Chapter 2 2.16 Data Conversion By Box

53

copy
Syntax

copy <box>
Description

This command makes a copy of its input. It is useful when you want to duplicate the data
in a port. The usual copy and execute rules apply. This means ports originally with
targets internal to box-to-be-copied will be completely new in the copy. Their targets are
new boxes. Ports to boxes outside the copied box will become ports to those old external
boxes.

Example

port-to
Syntax

port-to <box>
Description

Gets a port to the input. That is, if the input is a box, it returns a port to the box. If the
input is a named data box, it returns a port to the box. See retarget in data-mutation. See
also port-flavored inputs in Boxer Structures.

Example

Chapter 2 2.16 Data Conversion By Box

54

unbox
Syntax

unbox <box>
Description

This command expects exactly one box inside a box as input, and it returns the inside
box. It removes the outside layer of box. Use unboxable? to check whether the input is
suitable for unboxing. You can unbox a box containing a variable. However, this is only
useful at top level, directly on the screen. A named data box unboxed as part of a
procedure will not establish a variable. See @ (special characters) for a different kind of
unboxing.

Example

Chapter 2 2.17 Data Conversion By Character

55

2.17 CONVERSION BY CHARACTER

letters
Syntax

letters <box>
Description

This command separates all the letters in its input with spaces. It does not process
subboxes.

Examples

word
Syntax

word <box>
Description

This command takes its input and removes all spaces. It does not process subboxes or
combine rows.

Examples

Chapter 2 2.18 Accessing Name Information

56

2.18 ACCESSING NAME INFORMATION

name-help
Syntax

name-help <pattern>
Description

Returns a box containing very brief information on all the things Boxer knows about that
have the text in the <pattern> as part of their name. This includes all primitives and user
defined boxes that are accessible where name-help is executed. Do not put a box around
the text <pattern>. name-help is used mostly to find the name of a command when you
have some idea of what the command name might be. Many times, you can find
interesting commands by guessing what might be part of their name, like "sprite" or
"graphics" or "mouse".

Example

name?
Syntax

name? <name>
Description

This command tells you if any accessible box or primitive has the name that is inside its
input box. This command does scoping as Boxer does usually, looking inside the current
box then looking inside the containing box, and so on. name? only looks at the first word
in its input.

Example

Chapter 2 2.18 Accessing Name Information

57

local-name?
Syntax

local-name? <name>
Description

local-name? tells you if any box has the name that is inside its input box. It differs from
name? In not returning true for primitives and it differs from name-in-box? by returning
true for names that are defined, not in the particular box, but at some higher level of the
box hierarchy.

Example

name-in-box?
Syntax

name-in-box? <name> <box-to-check>
Description

Tells you if there is a box defined in the local environment (the box where name-in-box?
is executed) with the name that is inside <name>. In contrast to name?, it does not look
outside the box where it is executed, hence will never find a primitive.

Examples

Chapter 2 2.18 Accessing Name Information

58

names
Syntax

names
Description

Returns a list of all the names defined where names is executed. It does not return the
names of Boxer primitives or of boxes named in boxes superior to where it is called.

Example

top-level-name?
Syntax

top-level-name? <name>
Description

Returns true or false depending on whether <name> is a Boxer primitive. If the primitive
is redifined, top-level-name? will return false.

Example

target-name
Syntax

target-name <box-or-port>
Description

This command returns the name of the target of the port given as input. target-name is a
way of finding the name of boxes under program control. Use data accessors to get a port
to the box you want, and apply target-name to the result. Input must be a port to work
properly.

Example

59

CHAPTER 3

Graphics

Graphics in Boxer appear inside "graphics boxes." These may contain line drawings, bitmap
graphics (including typed text) and "sprites," which are mobile graphical objects that can have
their own shapes. In general, sprites are the creatures that draw the figures inside graphics boxes.
Sprites can draw lines; they can stamp their shapes or stamp a bitmap on the graphics
background; similarly, they can type text. You normally have to address sprites with tell
(synonym, ask) as in tell joe forward 100. However, you can avoid tell by using Turtle boxes
(see turtle boxes bellow). In addition, if you happen to be inside a sprite, of course, you need not
use tell. Finally, Graphics boxes are the place you may also create flexible "point and click"
interfaces. It is easy to arrange any action to occur on clicking in a graphics box, or clicking on a
sprite.

Graphic Boxes
Graphics boxes, unlike most boxes, have two presentations. Ordinarily, you can see the pictures
they contain, including any sprites that that might be in them. But if you "flip" a graphics box by
clicking the mouse button on its lower left corner, you will see the computational structure of the
box. This includes the sprite boxes that correspond to sprite shapes appearing in the graphical
presentation, and any data or procedures that are defined specially for that graphics box. Some of
these procedures may define actions carried out when you click a mouse button in the graphics
box (see section on mouse clicks).

Graphics boxes are data in the ordinary sense; they may be named to become variables; they may
be passed as input to, and returned as outputs from procedures. Hence, a procedure can construct
a complex interactive ("clickable") graphics box, and return that box as a tool for you to use
(e.g., a calculator).

It is handy to have graphics boxes be transparent, so that any sprites inside may be directly
addressed, as in tell joe forward 100. The default is that Boxer creates graphics boxes in
transparent form, which accounts for their dashed box boundary.

Sprite Boxes
Sprites are Boxer's version of Logo turtles. You can make as many of these as you like in a
graphics box. (You can have sprites outside of a graphics box too, but their shapes will not
appear anywhere.) Each sprite may have its own shape. If you put a sprite inside another sprite, it
becomes a subsprite. That means the subsprite moves with any commands sent to the supersprite,
and any commands you execute in the subsprite will cause it to move relative to the supersprite.

Chapter 3

60

Although sprites are very much like special data boxes that happen to cause their shape to appear
on the graphical presentation of graphics boxes, there is one significant difference. When you
execute a sprite or its name, you get a port to that sprite rather than a copy of it. This is because
you generally use a sprite's name to get access to it, to send messages to it (rather than to a copy
of it). If you want a copy, use the copy command, as in copy joe.

Sprite Properties
Conceptually, each sprite contains (1) a set of its own properties (local variables like x-position,
heading, and so on) and (2) ways to manipulate them, such as forward , setheading, and so on.
This is why you must either tell a sprite a command, or be inside the sprite when you execute it.
When you create a sprite, you will see inside it its x and y position variables, and its heading.
You may edit these directly (changes will take place when you exit the edited variable), or you
can use change, or any of the other property-changing commands such as forward or
setheading.

There are additional properties of a sprite, other than position and heading. The most useful of
these are pen (whether the pen is up or down), show? (whether a sprite is showing or hidden),
shape, pen-color, and pen-width. These normally do not appear (unlike x-position, y-position
and heading). They can be made to appear in the closet of the sprite by simply asking for their
values. E.g., ask joe pen will cause the pen property to appear as a variable in Joe's closet.
Alternatively, all of these properties can be made to appear at once in the sprite closet by
executing show-sprite-properties. That command appears in the closet of every sprite when it is
created.

You can delete any property boxes if you don't want to see them. They will still work properly.
You can save a lot of memory this way. Regular turtle commands won't cause them to reappear.

Special Note: All sprite commands must be addressed to a sprite (e.g. tell joe), or used in the
presence of a turtle box (transparent graphics box). Or you may type and execute directly inside
a sprite. Graphics box commands are similar.

Turtle Boxes
For compatibility with Logo, a keystroke (or menu) command is provided to create a "turtle
box," that is, a transparent graphics box containing exactly one (transparent) sprite. Once a turtle
box has been created, any turtle commands, like forward , right , etc., may be executed in the box
containing the turtle box without tell. In addition, because the sprite is transparent, all sprite
properties are also accessible outside both the sprite and the turtle box. E.g., you can execute
shape, pen-color, and also any commands or data names that you have defined yourself for that
sprite, all without using tell. In net, after you make a turtle box, you can immediately "do Logo"
by executing turtle commands, without using tell.

You can only have one turtle box present in a given box. This is because multiple turtle boxes
will create confusion about who is being addressed by any turtle command, and there will be
conflicts in terms of sprite property names. Also, you can add more sprites inside a turtle box.
However you will have to address them with tell.

Chapter 3

61

Drawing
As a sprite moves, it will draw over the background according to the state of its pen. E.g., if the
pen is down, it will draw; if it is up, it will not. You can adjust the size of the pen and its color. A
sprite can stamp certain shapes, like circles, rectangles, and any picture that you may have in
Boxer (You might have scanned some in.). It can also stamp its own shape onto the background,
or stamp some text (type). Graphics boxes may "clip" a drawing (not show the sprite or its
drawing once past the edge), or it may "wrap", bringing the sprite back on the graphics box from
the opposite side when it crosses a box boundary. You can adjust the size of a graphics box
manually or under program control. You may "snap" portions of a graphics box out of them, or
change the graphics of a box all at once. You may query a sprite for the color it is over, or ask a
graphics box what color is at a given position.

Colors
Colors in Boxer are simply graphics boxes whose background has been set to a particular color.
If you "flip" a color box, you will see the red-blue-green percentages that specify that color. If
you change those percentages either by direct editing or by program control, the color will be
changed by a "modified trigger," just like x-position and other sprite properties. See "update-
properties" in "sprite-information" section of graphics. Boxer includes some built in color names:
black, white, gray, red, green, blue, orange, yellow, purple, cyan, and magenta.

Mouse clicks
Mouse clicks over a graphics box do not always do the same things mouse clicks usually do.
Instead, you can define them to do anything you want. Graphics boxes are supposed to be the
place where you can change the usual boxer interface to be any point-and-poke kind of interface
you want.

When you click on a graphics box, a set of special commands, such as mouse-click-on-
graphics, are executed in the graphics box. You can think of these as "messages" that are
automatically sent to the graphics box. If there is no appropriately named box, you will get an
error message at the top of the Boxer screen. If you do have a box named mouse-click-on-
graphics, for example, it will get executed when you click the mouse button over a graphics box.

Similarly, clicking a mouse button while the mouse is positioned over a sprite sends a message to
that sprite. Again, if there is no mouse-click-on-sprite box (for example), you will get an error
message at the top of the screen. (There are sometimes default actions for mouse-clicks, if you
do not define them yourself. For example, pressing on a sprite by default will let you drag it
around.)

Chapter 3 Boxer Language

62

3.1 MOVES & TURNS

forward (fd)
back (bk)
right (rt)
left (lf)

These are the standard turtle commands that cause a sprite to move
relative to its current position and heading. They are all used to address
sprites, as in tell joe forward 100 or can be used “near” a turtle box
without tell.

3.2 SETTING POSITION & HEADING

home
setheading (seth)

setxy
setposition (setpos)

follow-mouse

These commands move a sprite to a particular position, or set its heading
to some absolute compass heading.

3.3 HIDE & SHOW

hideturtle (hide, ht)
showturtle (show, st)

hide-subsprites
show-subsprites

These commands change the visibility of a sprite. You can find out the
visibility state of the sprite with shown? See sprite-information .

3.4 PEN

pendown (pd)
penup (pu)

penerase (pe)
penreverse (pr)
set-pen-width
set-type-font
set-pen-color

These commands all adjust the state of a sprite's pen and tell a sprite to
stamp a shape of some kind onto the background. The property variables
pen, pen-width, pen-font and pen-color return information about the
pen's current state. See List-of-properties, under sprite-information , in
"graphics."

dot
stamp

stamp-circle
stamp-hollow-circle

stamp-ellipse
stamp-hollow-ellipse

stamp-rectangle
stamp-hollow-rectangle

stamp-wedge
stamp-arc
stamp-self

type
ctype
ltype
rtype

These commands all cause a sprite to stamp a shape of some kind onto the
background. They are all affected by the state of the sprite's pen. That is, if
the pen is up, a stamp command will not result in anything appearing in
the graphics box. None of the stamp commands change orientation when
the sprite is tilted. E.g., you can't have slanted typing in a graphics box.

3.5 CLEARING GRAPHICS

clearscreen (cs)
clean

These commands clear out a graphics box.

Chapter 3 Boxer Language

63

3.6 GRAPHICS SIZE & MODE

set-graphics-size
set-graphics-mode

graphics-mode

These commands change basic state of the graphics box (and allow you to
inspect that state). In general they may be addressed to a graphics box or
to a sprite inside it. They may be executed directly inside a graphics box
or “near” a turtle box.

3.7 SNAPPING & CHANGING

snap
snip

change-graphics

These commands either grab the graphics contents of a graphics box, a
part of it, or change it.

3.8 COLOR

make-color
color=

color-under
color-under=

color-at
color-at=

update-color-box
set-color-at

set-background
clear-background (cb)

freeze
bg-color

bg-color-at=
bg-color-at?

without-recording

These commands allow you to use color with sprites and graphics boxes.
You can create colors of any specification in Boxer (e.g., to assign to a
sprite's pen for drawing, or to change the color in the background of a
graphics box). You can ask what the color of the box is under a sprite (or
at a particular x, y point). Similarly, you can ask for the color of the
background underneath any sprite drawing. Note that Pen color is
irrelevant for pictures and shapes drawn with penreverse. penreverse
simply reverses the color of whatever it draws over. Sprite graphics boxes
contain a separate background that may be assigned a color, or into which
the current sprite picture may be "frozen." The background will not be
cleared on clearscreen or clean; these clear only the foreground sprite
graphics. clear-background clears the background. You can ask what
color is at a particular place in the background, similar to the way one can
ask what color appears in the regular sprite picture. Background. Colors
are represented in Boxer with graphics boxes, the graphics side of which
shows the color, the "flip" side of which shows red, green and blue
percentages. The built in color names are black, white, gray, red, green,
blue, orange, yellow, purple, cyan, and magenta.

3.9 SPRITE INFORMATION & PROPERTIES

x-position
y-position
heading
shape

shown?
pen

*pen-width(not on online man)
*type-font(not on online man)
*pen-color (not on online man)

sprite-size
home-position

These are commands that either set properties of sprites or get information
about sprite state. Each sprite has a collection of properties that are
changed by sprite commands like forward , change shape, and so on.

Chapter 3 Boxer Language

64

3.10 UPDATE PROPERTIES

Update-
show-sprite-properties

These commands make Boxer's internal representation of sprite properties
correspond to what's in the property variables in a sprite. Thus, they make
the actual changes to the visible representation of the sprite corresponding
to a change in shape, heading, and so on. See the section on sprites
(subsection "more on sprite properties") in the overview of the graphics
section. Most people will never need to use them.

3.11 OTHER INFORMATION

distance
enclosing rectangle

touching?
towards

These commands get useful information from a sprite.

3.12 SPRITE SIZE, SHAPE & HOME

set-sprite-size
setshape

turtle-shape
set-home-position

A sprite's size, shape and home-position (where it goes when you tell it
home or clearscreen) may be change with these commands. See also
Sprite-properties under Sprite-information .

3.13 MOUSE INPUT & CLICKS

-click-on-graphics
-click-on-sprite

These provide methods to get input from mouse clicks and mouse
positioning over a graphics box. For other input methods, see input-
output chapter.

3.14 MOUSE POSITION

mouse-position
mouse-position-on-
mouse-x-position

mouse-x-position-on-
mouse-y-postion

mouse-y-postion-on-

These commands provide mouse-positioning information for graphics.

Chapter 3 3.1 Moves & Turns

65

3.1 MOVES AND TURNS

forward
Syntax

forward <steps>
fd abbreviation for forward

Description
This command tells a sprite to move forward the specified number of steps.
A negative argument causes the sprite to move backward rather than forward. The
direction of movement is determined by the value in the sprite's heading, and the sprite's
x-position and y-position variables are updated appropriately.

Example

back
Syntax

back <steps>
bk abbreviation for back

Description
This command tells a sprite to move backward the specified number of steps. A negative
argument causes the sprite to move forward rather than backward. The direction of
movement is determined by the value in the sprite's heading, and the sprite's x-position
and y-position variables are updated appropriately.

Example

Chapter 3 3.1 Moves & Turns

66

right
Syntax

right <degrees>
rt abbreviation for right

Description
This command tells a sprite to turn right the given number of degrees. If a negative
argument is given then the sprite turns left.

Example

left
Syntax

left <degrees>
lt abbreviation for left

Description
This command tells a sprite to turn left the given number of degrees. If a negative
argument is given then the sprite turns right.

Example

Chapter 3 3.2 Setting Position & Heading

67

3.2 SETTING POSITION AND HEADING

home
Syntax

home
Description

This command tells a sprite to move to its home position. A sprite's home position is
specified inside the sprite in a property variable named home-position, inside the sprite's
closet. The home-position variable will not generally appear inside the sprite until this
variable has been modified by a change instruction. See graphics overview, under sprites
(explanation of properties). The default value of home-position is 0,0. See also
clearscreen.

Example

setheading
Syntax

setheading <heading>
seth abbreviation for setheading

Description
This command tells a sprite to set its heading so that it points in the direction specified by
the given angle. The zero of angle is straight up in the graphics box. Positive is to the
right (compass heading). Angles greater than 360 degrees and negative angles are
interpreted appropriately. Boxer always enters a value between 0 and 360 in the sprite's
heading variable.

Example

Chapter 3 3.2 Setting Position & Heading

68

setxy
Syntax

setxy <x> <y>
Description

This command tells a sprite to move to the specified x and y coordinates relative to the
origin of the graphics box. On graphics boxes that are wrapped, the x and y coordinates
will wrap also, so that they will always appear as number within the size constraints of
the box. See graphics-mode.

Example

setposition
Syntax

setposition <position>
setpos abbreviation for setposition

Description
This command tells a sprite to move to the position specified by its input. The form of the
input is a box containing two numbers, the x and y coordinates relative to the origin of
the graphics box. setposition differs from setxy only in the form of the input.

Example

Chapter 3 3.2 Setting Position & Heading

69

follow-mouse
Syntax

follow-mouse
Description

This command causes the sprite to follow the mouse cursor wherever it goes, until you let
up on the mouse buttons. It is just a shortcut for writing your own command to fetch the
coordinates of the mouse and set the sprite to them.

Example

Chapter 3 3.3 Hide & Show

70

3.3 HIDE & SHOW

hideturtl e
Syntax

hideturtle
ht or hide are abbreviations for hideturtle

Description
This command causes a sprite to become invisible. See also shown? under Sprite-
information . To make a sprite visible use the showturtle command.

Example

showturtle
Syntax

showturtle
st or show are abbreviations for showturtle

Description
This command causes a sprite to become visible. To make a sprite invisible, use the
hideturtle command.

Example

Chapter 3 3.3 Hide & Show

71

hide-subsprites
Syntax

hide-subsprites
Description

This command tells a sprite to hide all of its subsprites. See show-subsprites. To make
the subsprites visible again use show-subsprites.

Example

show-subsprites
Syntax

show-subsprites
Description

This command tells a sprite to make all of its subsprites visible. To make the subsprites
invisible use hide-subsprites.

Example

Chapter 3 3.4 Pen

72

3.4 PEN

pendown
Syntax

pendown
pd abbreviation for pendown

Description
This command tells a sprite to put its pen down. After this command is executed any
place that the sprite draws will become black (or whatever color the pen has been set to),
regardless of its previous color. Use the pu (penup) command to lift the sprite's pen,
preventing drawing and stamping. Compare the effects of pendown (pd) with the
penreverse (pr) and penerase (pe) commands. See pen under sprite-information .

Example

penup
Syntax

penup
pu abbreviation for penup

Description
This command tells a sprite to pick up its pen. After this command is executed, no
movement or stamping by the sprite will cause any drawing in the graphics box. After
this command is executed, no drawing by the sprite will have any effect on the graphics
box. Use the pendown command to put the sprite's pen back down. See also: penreverse,
penerase.

Example

Chapter 3 3.4 Pen

73

penerase
Syntax

penerase
pe abbreviation for penerase

Description
This command tells a sprite to erase instead of drawing. After this command is executed
any place that the sprite draws will become white, (or whatever is the background color)
regardless of its previous color.

Example

penreverse
Syntax

penreverse
pr abbreviation for penreverse

Description
After this command is executed any place that the sprite draws will reverse its color. For
example, black becomes white and white becomes black. Note: Sprites whose shapes are
drawn with penreverse will move much faster than with pendown. Colors also change
(in fairly complex ways) when drawn in penreverse.

Example

Chapter 3 3.4 Pen

74

set-pen-width
Syntax

set-pen-width <width>
Description

This command sets the width of lines drawn by the particular sprite. The size
is in screen pixels. This affects any future drawing in which the result is a line, including,
for example, stamp-hollow-circle. The size of dots produced by the dot primitive are
also affected. See pen-width under sprite-information .

Example

Chapter 3 3.4 Pen

75

set-type-font
Syntax

set-type-font
Description

This command sets the font that will be used for any text typed by the sprite. Fonts may
be specified by <size> <optional style> in a data box, or with a number. Setting a
font to a number higher than the number of available fonts is not illegal but will result in
repeated use of lower numbered fonts. See type-font under sprite-information .

Example

set-pen-color
Syntax

set-pen-color <a-color>
Description

This command sets the color for all drawing, stamping or typing done by a sprite. This
affects any future drawing, including, for example, stamp-rect, stamp-hollow-circle and
dot.

Example

Chapter 3 3.4 Pen

76

. (dot)
Syntax

dot
Description

This command tells a sprite to make a dot centered on the sprite’s current location. The
size of the dot is affected by the sprite's current pen-width. Orientation is not affected by
sprite heading.

Example

stamp
Syntax

stamp <graphics>
Description

Stamps the contents of a graphics box at the position of a sprite. Must be addressed to a
sprite, like forward . Orientation is not affected by sprite heading.

Example

Chapter 3 3.4 Pen

77

stamp-circle
Syntax

stamp-circle <radius>
Description

This command tells a sprite to draw a filled circle of the specified radius centered on the
sprite's current location.

Example

stamp-hollow-circle
Syntax

stamp-hollow-circle <radius>
Description

This command tells a sprite to draw a hollow circle of the specified radius centered on its
current location. The thickness and color of the line is determined by the sprite's current
pen-width and pen-color.

Example

Chapter 3 3.4 Pen

78

stamp-ellipse
Syntax

stamp-ellipse <width> <height>
Description

This command tells the sprite to draw an ellipse with the given width and height centered
on the sprite's current location. Orientation is not affected by sprite heading.

Example

stamp-hollow-ellipse
Syntax

stamp-hollow-ellipse <width> <height>
Description

This command tells the sprite to draw a hollow ellipse with the given width and height
centered on the sprite's current location. The thickness and color of the line is determined
by the sprite's current pen-width and pen-color. Orientation is not affected by sprite
heading.

Example

Chapter 3 3.4 Pen

79

stamp-rectangle
Syntax

stamp-rectangle <width> <height>
stamp-rect abbreviation for stamp-rectangle

Description
This command tells the sprite to draw a rectangle with the given width and height
centered on the sprite's current location. Orientation is not affected by sprite heading.

Example

stamp-hollow-rectangle
Syntax

stamp-hollow-rectangle <width> <height>
Description

This command tells the sprite to draw a hollow rectangle with the given width and height
centered on the sprite's current location. Orientation is not affected by sprite heading.

Example

Chapter 3 3.4 Pen

80

stamp-wedge
Syntax

stamp-wedge <radius> <angle>
Description

This command tells the sprite to stamp a pie wedge of radius <radius> and angular size
<angle>, starting at the sprite's position and heading. Orientation IS affected by sprite
heading.

Example

stamp-arc
Syntax

stamp-arc <width> <height>
Description

This command tells the sprite to stamp an arc of radius <radius> and angular size
<angle>, centered at the sprite's position and heading. Orientation IS affected by sprite
heading. Width is affected by pen-width.

Example

Chapter 3 3.4 Pen

81

stamp-self
Syntax

stamp-self
Description

This command tells a sprite to draw its shape in the graphics box at its current location.
Unless the shape of the sprite is a bitmap, the stamp will be affected by the orientation of
the sprite.

Example

type
Syntax

type <box>
Description

This command tells a sprite to draw the text specified in the argument centered at the
sprite's current location. Orientation is not affected by sprite heading. Typing is
horizontal only. Multiple lines are acceptable. However sub-boxes will not be printed
except as data box. The font used is controlled by the current value of the sprite's type-
font property. A more complete description of the use of fonts can be found with the set-
type-font command.

Example

Chapter 3 3.4 Pen

82

ctype
Syntax

ctype <box>
Description

"Center type." Same as type.
Example

ltype
Syntax

ltype <box>
Description

"Left type." Typing is left justified--aligned on the left, starting from the center of the
sprite.

Example

Chapter 3 3.4 Pen

83

rtype
Syntax

trype <box>
Description

"Right type." Typing is right justified--aligned on the right, starting from the center of the
sprite.

Example

Chapter 3 3.5 Clearing Graphics

84

3.5 CLEARING GRAPHICS

clearscreen
cleargraphics

Syntax
clearscreen
cleargraphics
cs or cg abbreviations for clearscreen or cleargraphics

Description
This command clears all sprite drawing in a graphics box and (if it is addressed to a
sprite) moves the sprite to its home position. You may tell either a sprite or graphics box
to clearscreen. Or you may execute it inside a sprite or graphics box, or in the presence
of a turtle box.

Example

clean
Syntax

clean
Description

This command tells a sprite to clear all drawing in the graphics box without moving to its
home position. Like clearscreen, it may also be executed in a graphics box directly or by
telling the graphics box.

Example

Chapter 3 3.6 Graphics Size & Mode

85

3.6 GRAPHICS SIZE & MODE

set-graphics-size
Syntax

set-graphics-size <width> <length>
Description

Changes graphics box size to <width> pixels wide and <length> pixels high. It should be
executed inside a graphics box, in the vicinity of a transparent graphics box, or using tell
to address either a graphics box, or a box (sprite) inside the graphics box.

Example

graphics-size
Syntax

graphics-size
Description

Returns the width and height of a graphics box in pixels. It should be executed inside a
graphics box, in the vicinity of a transparent graphics box, or using tell to address either a
graphics box, or a box (sprite) inside the graphics box.

Example

Chapter 3 3.6 Graphics Size & Mode

86

set-graphics-mode
Syntax

set-graphics-mode <clip or wrap>
Description

This command sets a graphics box to clip or wrap modes. Executing this command puts
the graphics box in "clip" or "wrap" mode. If the graphics box is in "clip" mode then,
when the sprite goes off an edge of the graphics box, the sprite will become invisible and
any drawing that the sprite does will not be seen. If you expand the graphics box by
grabbing its lower-right corner, you may be able to bring the drawing on screen. If the
graphics box is in "wrap" mode then, when a sprite goes off the edge, it will reappear at
the opposite side, directly across from where it goes "out of bounds." Use tell to the
graphics box, or a to a sprite in it, or just in the presence of a turtle box.

Examples

graphics-mode
Syntax

graphics-mode
Description

This commands returns a data box with either "clip" or "wrap" depending on the mode of
the graphics box to which it is addressed. It should be executed inside a graphics box, or
using tell to address either a graphics box, or a box (sprite) inside the graphics box.

Example

Chapter 3 3.7 Snapping & Changing

87

3.7 SNAPPING & CHANGING

snap
Syntax

snap <graphics box>
Description

This command takes a graphics box as input and returns a graphics box containing the
picture that is currently in that graphics box, minus any sprite shapes that might also
appear there.

Example

snip
Syntax

snip <graphics box> <x> <y> <width> <height>
Description

This command takes <graphics box>, <x> and <y> position coordinates, and <width>
and <height> as inputs, and returns a rectangular piece of the graphics.

Example

Chapter 3 3.7 Snapping & Changing

88

change-graphics
Syntax

change-graphics <graphics-box> <new-graphics>
Description

This command will change the graphics that is shown in a graphics without changing the
sprites that might be there. During the execution of a program, the graphics box will not
change size without a redisplay command.

Example

Chapter 3 3.8 Color

89

3.8 COLOR

make-color
Syntax

make-color <red> <blue> <green>
Description

This command creates a color specified by the percentage of red, blue and green which
are given as inputs.

Example

color=
Syntax

color= <color 1> <color 2>
Description

Returns true if its inputs are the same screen color, and false otherwise. Similar but not
identical to =. It differs from = in that = checks only the Red-Green-Blue percentages in
the color boxes, and color= checks the actual displayed color. These may differ in that
hardware limitations may force different R-G-B percentages to be displayed identically.

Example

Chapter 3 3.8 Color

90

color-under
Syntax

color-under
Description

color-under returns the color in a graphics box at the position of a sprite. You must use
tell (ask) <a sprite> or be in the presence of a turtle box. If the sprite is clipped, i.e., out
of the visible portion of the box, color-under will not be able to determine the color at
that position.

Example

Chapter 3 3.8 Color

91

color-under=
Syntax

color-under= <color>
Description

color-under = checks that the color at a sprite's position is the same as the color given as
an input to color-under=. color-under = <color> is essentially the same as color =
color-under <color>, only much faster to execute. As with color-under, you must use
tell (ask) <a sprite> or a turtle box.

Example

Chapter 3 3.8 Color

92

color-at
Syntax

color-at <x> <y>
Description

Returns the color in graphics box at the specified coordinates. You must use tell, ask, or
a turtle box. color-at returns the actual color you see at a particular point, even if that is
due to a sprite shape. If the coordinates specified are out of the visible portion of the box,
color-at will not be able to determine the color at that position.

Example

color-at=
Syntax

color-at= <x> <y> <color>
Description

Checks that the color at the specified position is the same as the color given as an input.
In other words, it asks the question “Is the color in this <x> <y> position the same as the
<color> given as an input.” Use tell, ask, or a turtle box. color-at = <x> <y> <color> is
same but faster than color = <color-at <x> <y>> <color>.

Example

Chapter 3 3.8 Color

93

set-color-at
Syntax

set-color-at <x> <y> <color>
Description

This command sets the position <x> <y> to the specified <color>. Use tell, ask, or a
turtle box.

Example

update-color-box
Syntax

update-color-box
Description

This command is used by Boxer to keep the color shown in a color box the same as it
red-blue-green percentages. It appears in a modified trigger in the closet of color boxes.
Most users are unlikely to use this command. See also the explanation at the beginning of
this chapter or in the Boxer Structures document of how sprite properties work.

Chapter 3 3.8 Color

94

set-background
Syntax

set-background <color>
Description

This command will set the background of a graphics box to <color>. You must address
set-background to a graphics box, to a sprite in a graphics box, or execute it inside a
graphics box (or near a transparent graphics box). Turtle boxes, as usual, need no tell.

Example

clear-background
Syntax

clear-background
cb abbreviation for clear-background

Description
This command erases an existing background color or "frozen" background (below) in a
graphics box. Compare with set-background.

Example

Chapter 3 3.8 Color

95

freeze
Syntax

freeze
Description

This command puts the current picture drawing into the background. Then cs will not
clear it, and the picture could serve as a backdrop for any drawing. clear-background
will erase what has been frozen. freeze is cumulative; it adds any sprite drawing done on
top of an existing background to that background. freeze makes a good way to produce a
background for a video game. Then you can use bg-color-at= to check the backbround to
see, for example, if you (a sprite) have run into a (black) mountain and should explode.

Example

Chapter 3 3.8 Color

96

bg-color-under
Syntax

bg-color-under
Description

bg-color-under returns the color of the background in a graphics box at the position of a
sprite. It ignores any drawing done on top of the background. You must tell (ask) <a
sprite> or be in the presence of a turtle box. If the sprite is clipped, i.e., out of the visible
portion of the box, bg-color-under will not be able to determine the color at that
position. In the following example note that the black circle is stamped OVER the
background, hence it is not the color seen by bg-color-under.

Example

Chapter 3 3.8 Color

97

bg-color-under=
Syntax

bg-color-under= <x> <y>
Description

bg-color-under= checks that the color in the background at a sprite's position is the same
as the color given as an input to bg-color-under=. bg-color-under= ignores any colors
that have been stamped or drawn over the background. bg-color-under= <color> is
essentially the same as color = bg-color-under <color>, only much faster to execute. As
with bg-color-under, you must use tell (ask) <a sprite> or a turtle box. Note that in the
example below the invisible part of the black circle, which has been placed in the
background of this box, was merely stamped over with white. bg-color-over= still sees
the background color.

Example

Chapter 3 3.8 Color

98

bg-color-under?
Syntax

bg-color-under?
Description

bg-color-under? checks that the color at a sprite's position is the same as the color of the
background at that point. Essentially, it checks whether the position of the sprite has been
drawn over with a different color. As with bg-color-under, you must use tell (ask) <a
sprite> or a turtle box. Note that in the example below the sprite will stamp exactly where
the color is not the same as the background color (which has been colored over with
white).

Example

Chapter 3 3.8 Color

99

bg-color-at
Syntax

bg-color-at <x> <y>
Description

Returns the background color at the specified coordinates in a graphics box. You must
use tell, ask, or a turtle box. If the sprite is clipped, i.e., out of the visible portion of the
box, bg-color-under will not be able to determine the color at that position. If the
coordinates specified are out of the visible portion of the box, bg-color-at will not be
able to determine the color at that position. Note that the background may be a different
color than what shows, i.e., you may cover a background with sprite graphics and bg-
color-at will still return the background.

Example

bg-color-at=
Syntax

bg-color-at= <x> <y> <color>
Description

Checks the background color at the specified position and returns true or false if it
matches <color>. That is, is the color in this position the same as the color given as an
input to bg-color-at=. As with color-at, you must use tell, ask, or a turtle box. If the
coordinates specified are out of the visible portion of the box, bg-color-at= will not be
able to determine the color at that position. Note that the background may be a different
color than what shows, i.e., you may cover a background with sprite graphics and bg-
color-at= will still check the background.

Example

Chapter 3 3.8 Color

100

bg-color-at?
Syntax

bg-color-at? <x> <y>
Description

Returns true or false depending on whether the color showing at <x> <y> is the
background color in a graphics box. You must use tell, ask, or a turtle box. It tells you if
the background (or "frozen" graphics) has been drawn over. If the coordinates specified
are out of the visible portion of the box, bg-color-at? will not be able to determine the
color at that position.

Example

Chapter 3 3.8 Color

101

without-recording
Syntax

without-recording <commands>
Description

This is an efficiency hack, not for general use. without-recording <commands> will
execute the drawing commands that follow it, but no record will remain in the graphics
box. Thus a redisplay, or shrink and expand, will cause the drawing to disappear.

Example

Chapter 3 3.9 Sprite Information & Properties

102

3.9 SPRITE INFORMATION & PROPERTIES

x-position
Syntax

x-position
Description

This is the x coordinate of the sprite in its current graphics box, or, if it is a subsprite, its
x coordinate relative to its supersprite. forward , back, setxy, and setpos, affect x-
position. All sprite properties work similarly.

Example

y-position
Syntax

y-position
Description

This is the y coordinate of the sprite in its current graphics box, or, if it is a subsprite, its
y coordinate relative to its supersprite.

Example

Chapter 3 3.9 Sprite Information & Properties

103

position
Syntax

position
Description

This returns a box containing the x and y coordinates of the sprite in its current graphics
box. If it is a subsprite, the coordinates are relative to its supersprite.

Example

heading
Syntax

heading
Description

Heading is the orientation of a sprite. It is compass heading (zero is up, right is positive)
for a regular sprite, and compass heading relative to its supersprite for a subsprite. right ,
left and setheading affect heading.

Example

Chapter 3 3.9 Sprite Information & Properties

104

shape
Syntax

shape
Description

A sprite’s shape property controls the visual presentation of the sprite. Use
setshape<graphics box> (or change shape ...) to change the shape of a sprite. Normally
you will want to have the shape drawn in reverse mode, as it will allow moving turtles
faster than with pen in down mode. The sprite's pen is located at the origin of its shape,
the (0,0) home position in the graphics box that defines the shape. The normal turtle
shape can be accessed by executing turtle-shape. So you can return to the turtle shape
with setshape turtle-shape

Example

Chapter 3 3.9 Sprite Information & Properties

105

shown?
Syntax

shown?
Description

This command tells whether the sprite is seen in the graphics presentation of the
enclosing graphics box. It should be true or false. See showturtle and hideturtle .

Example

pen
Syntax

pen
Description

This property tells how the sprite's pen draws. It should be up, down, reverse or erase.
(reverse causes the pen to "flip" black to white, and vice-versa, when drawing. erase
causes the pen to draw in the background color, usually white.). See penup, pendown,
penreverse, penerase.

Example

Chapter 3 3.9 Sprite Information & Properties

106

pen-width
syntax

pen-width
description

This property determines the width of a sprite pen's drawing in pixels. set-pen-width
changes pen-width.

example

type-font
syntax

type-font
description

This property determines the size, and bold and italics properties of the font the sprite
types in. This should be font specification (Helvetica 12 bold) or an integer. set-type-font
changes the font.

example

Chapter 3 3.9 Sprite Information & Properties

107

pen-color
syntax

pen-color
description

This property determines the color that the sprite draws in, and the color it will stamp and
type with. color should be a color box (see make-color). set-pen-color changes the
color.

example

sprite-size
Syntax

sprite-size
Description

You can change the size of a sprite simply by changing this attribute. 1.0 is the standard
size. Some parts of a sprites' shape (such as typed text or a bitmap graphic) will not
change size. tell joe set-sprite-size 2.0 will double the size of the sprite.

Example

Chapter 3 3.9 Sprite Information & Properties

108

home-position
Syntax

home-position
Description

This command shows where the sprite goes when you execute clearscreen or home. It is
a pair of numbers, x and y coordinates. tell joe change home-position will change Joe's
home position.

Example

Chapter 3 3.10 Update Properties

109

3.10 UPDATE PROPERTIES

update-
Syntax

update-heading
update-home-position
update-pen
update-pen-width
update-type-font
update-pen-color
update-shape
update-shown?
update-sprite-size
update-x-position
update-y-position

Description
All update commands are mainly for Boxer's use. They make the visual presentation
correspond to what you have changed the sprite property (e.g., X-POSITION, SHAPE)
to.

show-sprite-properties
Syntax

show-sprite-properties
Description

When this command is executed in a sprite it will cause all properties to appear (in the
closet). Normally only position and heading properties appear in a sprite.

Example

Chapter 3 3.11 Other Information

110

3.11 OTHER INFORMATION

distance
Syntax

distance <x> <y>
Description

This command computes the distance in turtle steps (pixels) between the sprite's current
position and the given (x, y) coordinates. You can use this command to find the distance
between two sprites.

Example

enclosing-rectangle
Syntax

enclosing-rectangle
Description

This command returns the sprite's enclosing rectangle (the rectangle that encloses the
sprites shape). The result is a single box in the form <x1 y1 x2 y2> where (x1,y1) is the
upper left corner of the rectangle and (x2, y2) is the lower right corner. The enclosing
rectangle always includes the origin in the imaginary drawing space of the sprite's shape.

Example

Chapter 3 3.11 Other Information

111

touching?
Syntax

touching? <other-sprite>
Description

This command tells you if the sprite you're talking to is touching another sprite. The
command works by checking if the rectangle enclosing one sprite overlaps with the
rectangle overlapping the other. Thus, sprites whose shapes are horizontal or vertical
lines seem much smaller than sprites whose shapes are diagonal lines. The latter kind of
sprite may surprise you when you find it is touching another sprite whose shape doesn't
appear to overlap. See enclosing-rectangle.

Example

towards
Syntax

towards <x> <y>
Description

This command computes the heading in degrees for the sprite to point in the direction of
the given x, y coordinates. You can use this command to make one sprite point towards
another sprite.

Example

Chapter 3 3.12 Sprite Size, Shape & Home

112

3.12 SPRITE SIZE, SHAPE & HOME

set-sprite-size
Syntax

set-sprite-size <size>
Description

This command adjusts the graphical size of a sprite. 1.0 is normal and 2.0, for example,
means the sprite will appear at twice the size of its assigned shape. See sprite-size under
sprite-information, sprite-properties. Note that bitmap shapes or typing will not change in
size. However, stamp-circle, stamp-rect, etc., will be affected. Subsprites are also
affected by changing a supersprite's size.

Example

setshape
Syntax

setshape <new shape>
Description

This command changes the shape property of a sprite. The input must be a graphics box.
It must be addressed to a sprite (with tell), executed inside a sprite, or executed in the
presence of a turtle. Alternatively you may change shape <data box containing turtle
commands>. See shape under Sprite Information and Properties.

Example

Chapter 3 3.12 Sprite Size, Shape & Home

113

turtle-shape
Syntax

turtle-shape
Description

Returns the default shape of sprites. setshape turtle-shape returns a sprite to its usual
shape. The flip side of the returned graphics box contains the "code" that will draw the
shape, if you want to modify it. This is just information, however, and is not linked to the
picture in the turtle-shape graphics box. You can execute the code and use snap and set-
shape, or use change shape <code>.

Example

set-home-position
Syntax

set-home-position <new home>
Description

This command determines where a sprite goes when it is issued a home or a cs
command. It must be addressed to a sprite (with tell), executed inside a sprite, or
executed in the presence of a turtle box. See home-position under sprite-properties in
sprite-information .

Example

Chapter 3 3.13 Mouse Input & Clicks

\ 114

3.13 MOUSE INPUT & CLICKS

-click-on-graphics
Syntax

mouse-click-on-graphics mouse-double-click-on-graphics
Description

These commands are executed automatically when you click a mouse button over a
graphics box in its graphics presentation. They are executed inside the graphics box. The
prefixes command- and option- may also be used. Note that if mouse-click-on-graphics
is a data box, that box will be returned inside the graphics box, which you will not see
until you flip the box to see its box-contents. mouse-click-on-graphics and mouse-click-
on-sprite mouse commands only work when the graphics box is showing the graphics
presentation. Regular mouse clicks are activated when showing the regular box
presentation side. However, option-mouse-click-on-graphics is initially defined to
shrink a graphics box. If you want a mouse click command to do the same thing whether
it is over a sprite or not, define a mouse-click-on-sprite command to do the same thing
as any mouse-click-on-graphics command you have defined. The obvious place to put
these commands is in the graphics box, or in its closet. However, they can be inherited by
multiple graphics boxes if they are placed in a containing box.

Examples

Chapter 3 3.13 Mouse Input & Clicks

\ 115

-click-on-sprite
Syntax

mouse-click-on-sprite mouse-double-click-on-sprite
Description

these commands are executed automatically when you click the appropriate mouse button
over a sprite in a graphics box, when the graphics box is in its graphics presentation.
They are executed inside the sprite you clicked on. The prefixes command- and option-
may also be used. Note that if mouse-click-on-sprite is a data box, that box will be
returned inside the sprite, which you will not see until you flip the box to see its box-
contents. -click-on-sprite and -click-on-graphics mouse commands only work when the
graphics box is showing the graphics presentation. Regular mouse clicks are activated
showing the box presentation side. The obvious place to put these commands is in the
sprite you want them to work with. However, they can be inherited by multiple sprites if
they are placed in a containing box, such as the graphics box that contains all the sprites.
(As a default, mouse-click-on-graphics executes follow-mouse, so you can drag a sprite
around.)

Example

Chapter 3 3.14 Mouse Position

116

3.14 MOUSE POSITION

mouse-position
Syntax

mouse-position
Description

Returns a box containing the x and y coordinates of the mouse cursor. The coordinate
system is the same as for sprite positions; (0,0) is at the center of the graphics box. Note:
mouse-position is a graphics command, and must be used in the presence of a turtle box,
or addressed to a sprite or graphics box. mouse-position returns coordinates that may be
beyond the size of the graphics box if the mouse cursor is outside the graphics box.
Beware of setting the position of a sprite beyond the borders of its graphics box with pen
down in wrap mode. Very long lines that endanger the health of Boxer can result. Finally,
even when the graphics box is shrunken, the coordinates are relative to (0,0) at where the
center of the graphics box would be, if expanded.

Example

mouse-position-on-
Syntax

mouse-position-on-click
mouse-position-on-release

Description
These are the same as mouse-position, except they wait for either a mouse click or the
release of a mouse button before returning the location of the mouse. See mouse-position
for details. Note a mouse-position-on-release waits for the release of a mouse button. If
a button is not pressed when it is executed, you (obviously) must press first before
releasing.

Example

Chapter 3 3.14 Mouse Position

117

mouse-x-position
Syntax

mouse-x-position
Description

Returns a box containing the x coordinate of the mouse cursor. The coordinate system is
the same as for sprite positions; (0,0) is a the center of the graphics box. Note: mouse-x-
position is a graphics command, and must be used in the presence of a turtle box, or
addressed to a sprite or graphics box. mouse-x-position is the same as item 1 mouse-
position. See mouse-position for details.

Example

mouse-x-position-on-
Syntax

mouse-x-position-on-click
mouse-x-position-on-release

Description
These are the same as mouse-x-position, except they wait for either a mouse click or the
release of a mouse button before returning the location of the mouse. Note a mouse-x-
position-on-release waits for the release of a mouse button. If a button is not pressed
when it is executed, you (obviously) must press first before releasing. See mouse-
position for details.

Example

Chapter 3 3.14 Mouse Position

118

mouse-y-position
Syntax

mouse-y-position
Description

Returns a box containing the Y coordinate of the mouse cursor. The coordinate system is
the same as for sprite positions; (0,0) is a the center of the graphics box. Note: mouse-y-
position is a graphics command, and must be used in the presence of a turtle box, or
addressed to a sprite or graphics box. mouse-y-position is the same as item 2 mouse-
position. See mouse-position for details.

Example

mouse-y-position-on-
Syntax

mouse-y-position-on-click
mouse-y-position-on-release

Description
These are the same as mouse-y-position, except they wait for either a mouse click or the
release of a mouse button before returning the location of the mouse. Note mouse-y-
position-on-release waits for the release of a mouse button. If a button is not pressed
when it is executed, you (obviously) must press first before releasing. See mouse-
position for details

Example

119

CHAPTER 4

Arithmetic & Logic

Boxer has a standard set of number types and operations. There are:

1. integers (e.g., 1, 2, -37)
2. rational numbers (e.g., 2/3, 29/21, 195/7).
3. floating point numbers (e.g., 2.65, 1.0, -73.94827).

Note that 2/3 denotes a rational number (fraction), NOT a divide; see Arithmetic. Note also that
commas are not allowed, even to make big numbers more readable.

There are predicates that tell you what type you have (see Number-Information). You can
convert from one type to another (See Number-conversion).

Numbers are the only kind of data that can be typed outside of a data box. If you execute a
number, you get a datafied number. And note that rational numbers are reduced to lowest terms,
whenever possible.

Automatic type conversion
Arithmetic with integers is not complete in the sense that some operations result in non-integers.
E.g., 1 / 2 is not an integer, but it is a rational number. Boxer comes set up to present calculations
that might represent rational numbers as decimals. E.g.: 1/2 executes to return 0.5.

Any calculation that involves a floating point number forces Boxer to convert from integer to
floating point numbers. 1.0 * 2 returns 2.0.

In addition, you can force Boxer to use fractions to print out the results of rational arithmetic
with "print-fractions true ". (Also Boxer preferences in the Edit menu.) When print-fractions is
true, calculations that involve only integers or rational numbers are done perfectly, with no
roundoff. (The default setting in Boxer is print-fractions false.)

Controlling the number of decimals shown
You can change the number of decimal places used by Boxer with the command printing-
precision. Printing-precision 2 shows two digits after the decimal place. In Boxer, what you see
is what you have, so your calculations are in danger of losing accuracy when you change printing
precision to a small number. Boxer does, however, maintain full precision until it has to show
you values; so calculations with small precisions lose accuracy only at the end of the calculation,
when results are shown to you. To preserve accuracy, you might what to keep a high value of
high printing-precision, and then round for display separately.

Chapter 4 Boxer Language

120

Scientific Notation
Very large or very small numbers may be shown in scientific notation. Thus, 2.01E6 means
"2.01 times 10 to the sixth power", which is 2010000. (E stands for Exponent.) You can type in
numbers in this format also.

Chapter 4 Boxer Language

121

4.1 ARITHMETIC OPERATORS & FUNCTIONS

+
-
*
/

plus
minus
times
divide

Arithmetic in Boxer is fairly straightforward. Arithmetic is one of the few
places Boxer allows infix operations, that is, placing the operator between two
inputs. Pretty much only +, -, * , / and ** (power) are infix. Even these have
prefix forms, if you prefer to use those. Most people write out arithmetic
expressions in full detail, using boxes to show subexpressions. Note that
parentheses are not understood by Boxer. Also, boxes are better than
parentheses because: (1) you can't have unmatched parentheses; (2) you can
shrink and expand parts of expressions, or execute them to see their value (just
place cursor in box and hit doit); (3) they provide a visually clear parsing of the
expression.

4.2 COMPARISON OPERATORS & FUNCTIONS

=
<
>

<=
>=

less?
greater?

less-or-equal?
greater-or-equal?

These functions compare the size of two numbers. They return true or false,
and are useful for conditionals like if . For each infix command, there is a
written out prefix version.: =, <, >, <=, >=; equal?, less?, greater?, less-or-
equal?, greater-or-equal?

4.3 NUMBER TYPE

number?
float?

integer?
rational?

These functions return true or false depending on which type of number is
given as input.

4.4 VALUE INFORMATION

zero?
plus?

minus?
even?
odd?

These predicates return true or false depending on whether their numerical
inputs are as indicated by the name.

4.5 OTHER NUMERIC FUNCTIONS

mod
remainder

abs
signum

sqrt
random

max
min

These are various useful numeric functions. See also number-conversion for
other functions, for example, to round off numbers.

Chapter 4 Boxer Language

122

4.6 EXPONENTIAL & LOG FUNCTIONS

**
power

exp
log
ln

Boxer has exponential and logarithmic functions.

4.7 TRIGONOMETRIC FUNCTIONS

sin
cos
tan
asin
acos
atan

These are trigonometric and inverse trigonometric functions. Angles are
degrees, not radians.

4.8 NUMBER CONVERSION TO INTEGERS

round
ceiling
floor

truncate
numerator

denominator
rationalize

These functions convert from various kinds of numbers to others. There are
several ways to get integers from floating point numbers. Numerator and
denominator give you the specified parts of fractions. Rationalize converts
floating point numbers to fractions (rational numbers).These are all ways of
converting rational or decimal (floating-point) numbers to integers that are
"close" to the given number.

4.9 NUMBER PRINTING CONTROL

printing-precision
print-fractions

You can control how many decimal places Boxer shows or whether a divide of
integers shows up as a rational number (1/2) or as a decimal (.5). These
commands appear in the boxer preferences (Edit menu, preferences option; or
top-level closet). See also the Overview of Arithmetic and logic, under number
types (auto conversion, and precision sections).

4.10 LOGIC

true
false
and
or
not

These are the logical types and operators in Boxer. true and false are the
(Boolean) values of all predicates. not, and and or are functions on Boolean
inputs. These are useful to construct your own predicates (things that return
true or false), and to construct inputs to flow-of-control primitives like if , ifs,
unless, and when. not, and and or signal an error if their inputs are not true or
false. Note: By convention, Boxer uses a ? at the end of any command that
returns true or false. These commands are questions that have true or false
answers (aka predicates).

Chapter 4 4.1 Arithmetic Operators & Functions

123

4.1 ARITHMETIC OPERATORS & FUNCTIONS
Note: The first two of each example set below are shown with print-fractions true. With print-
fractions false, the result would be a decimal number.

+
Syntax

<number1> + <number2>
Description

 Returns the sum of two numbers. plus is prefix form.
Examples

-
Syntax

<number1> - <number2>
Description

Returns the difference of two numbers. minus is the prefix version.
Examples

*
Syntax

<number1> * <number2>
Description

Returns the product of two numbers. times is the prefix version.
Examples

Chapter 4 4.1 Arithmetic Operators & Functions

124

/
Syntax

 <number1> / <number2>
Description

Returns the ratio of two numbers. divide is the prefix version.
Examples

plus
Syntax

plus <number1> <number2>
Description

Prefix version of +.
Examples

minus
Syntax

minus <number1> <number2>
Description

Prefix version of -.
Examples

Chapter 4 4.1 Arithmetic Operators & Functions

125

times
Syntax

times <number1> <number2>
Description

Prefix version of *.
Examples

divide
Syntax

divide <number1> <number2>
Description

Prefix version of /.
Examples

Chapter 4 4.2 Comparison Operators & Functions

126

4.2 COMPARISON OPERATORS & FUNCTIONS

=
Syntax

<number1> = <number2>
Description

Returns true or false depending on whether inputs are numerically equal. equal? is the
prefix version. Both these commands work to compare any box structure, not just
numbers. See data manipulation.

Examples

<
Syntax

<number1> < <number2>
Description

Returns true or false depending on whether the first input is numerically less than the
second. less? is the prefix version. Use alpha< to compare text alphabetically.

Examples

>
Syntax

<number1> > <number2>
Description

Returns true or false depending on whether the first input is numerically greater than the
second. greater? is the prefix version. Use alpha> to compare text alphabetically.

Examples

Chapter 4 4.2 Comparison Operators & Functions

127

<=
Syntax

<number1> <= <number2>
Description

Returns true or false depending on whether the first input is numerically less than or
equal to the second. less-or-equal? is the prefix version.

Examples

>=
Syntax

<number1> >= <number2>
Description

Returns true or false depending on whether the first input is numerically greater than or
equal to the second. greater-or-equal? is the prefix version.

Examples

less?
Syntax

less? <number1> <number2>
Description

Prefix version of <.
Examples

Chapter 4 4.2 Comparison Operators & Functions

128

greater?
Syntax

greater? <number1> <number2>
Description

Prefix version of >.
Examples

less-or-equal?
Syntax

less-or-equal? <number1> <number2>
Description

Prefix version of <=.
Examples

greater-or-equal?
Syntax

greater-or-equal? <number1> <number2>
Description

Prefix version of >=.
Examples

Chapter 4 4.3 Number Type

129

4.3 NUMBER TYPE

number?
Syntax

number? <number>
Description

 Returns true or false depending on whether its input is a number of any sort. number?
gives an error if it is not given a number as input.

Examples

float?
Syntax

float? <number>
Description

Returns true or false depending on whether its input is a floating point number (i.e., one
with a decimal point in it). float? gives an error if it is not given a number as input.

Examples

Chapter 4 4.3 Number Type

130

integer?
Syntax

integer? <number>
Description

Returns true or false depending on whether its input is a positive or negative integer.
integer? gives an error if it is not given a number as input.

Examples

rational?
Syntax

rational? <number>
Description

Returns true or false depending on whether its input is a rational number (i.e., a fraction).
rational? gives an error if it is not given a number as input.

Examples

Chapter 4 4.4 Value Information

131

4.4 VALUE INFORMATION

zero?
Syntax

zero? <number>
Description

Returns true or false depending on whether its input is equal to zero. As usual, finite
precision of computers can occasionally give some surprising results.

Examples

plus?
Syntax

plus? <number>
Description

Returns true or false depending on whether its input is greater than zero. As usual, finite
precision of computers can give some surprising results.

Examples

minus?
Syntax

minus? <number>
Description

Returns true or false depending on whether its input is less than zero. As usual, finite
precision of computers can give some surprising results.

Examples

Chapter 4 4.4 Value Information

132

even?
Syntax

even? <number>
Description

Returns true or false depending on whether its input is an even integer. That is, if it is
divisible by two evenly.

Examples

odd?
Syntax

odd? <number>
Description

Returns true or false depending on whether its input is an odd integer.
Examples

Chapter 4 4.5 Other Numeric Functions

133

4.5 OTHER NUMERIC FUNCTIONS

mod
Syntax

mod <number> <base>
Description

This command does "clock arithmetic" and returns the number a clock with <base> hours
on the face (starting at 0 and running to <base> - 1) would read after <number> hours.
For negative numbers, run the clock backwards, but still read the (positive) result off the
face. mod is similar to remainder, except remainder returns negative numbers for
<numbers> grater than 0. mod works for fractional and floating point bases too.

Examples

remainder
Syntax

remainder <number> <divisor>
Description

Returns the remainder of dividing <number> by <devisor>. That is, if R = remainder of
<number> <devisor>, then <number> = m * <devisor> + R, where m is the biggest
integer that leaves R positive. remainder is similar to mod, except mod returns a
positive number always if the base is positive. remainder works for fractional and
floating point divisors too.

Examples

Chapter 4 4.5 Other Numeric Functions

134

abs
Syntax

abs <number>
Description

Returns the absolute value of its input; i.e., it returns x if x is positive, and -x if x is
negative.

Examples

signum
Syntax

signum <number>
Description

Return +1 if its input is positive and -1 if its input is negative. It's a way to get the "sign"
of a number, hence the name.

Examples

sqrt
Syntax

sqrt <number>
Description

Returns the square root of its input.
Examples

Chapter 4 4.5 Other Numeric Functions

135

random
Syntax

random <number>
Description

Returns a number between 0 and one less than the number specified. With floating point
numbers, random returns a number >= 0 and < n. Random gives an error on negative
inputs.

Examples

max
Syntax

max <number1> <number2>
Description

Returns the greater of its two arguments.
Examples

min
Syntax

min <number1> <number2>
Description

Returns the lesser of its two inputs.
Examples

Chapter 4 4.6 Exponential & Log Functions

136

4.6 EXPONENTIAL & LOG FUNCTIONS

**
Syntax

<number> ** <exponent>
Description

Returns number to the exponent power.
Examples

power
Syntax

power <number> <exponent>
Description

Prefix version of **.
Examples

exp
Syntax

exp <number>
Description

Returns e (2.718281828459045) to the <number> power. exp is the inverse to ln (log to
the base e).

Examples

Chapter 4 4.6 Exponential & Log Functions

137

log
Syntax

log <number>
Description

Returns the logarithm to the base 10 of its input. Note that log is the inverse of power 10
x.

Examples

ln
Syntax

ln <number>
Description

Returns the natural logarithm of its input. That is, the logarithm to the base e =
2.7182818284590456. Note that ln is the inverse of exp.

Examples

Chapter 4 4.7 Trigonometric Functions

138

4.7 TRIGONOMETRIC FUNCTIONS

sin
Syntax

sin <angle>
Description

Returns the sine of its input. The inverse function is asin (arc sine).
Examples

cos
Syntax

cos <angle>
Description

Returns the cosine of its input. The inverse function is acos (arc cosine).
Examples

tan
Syntax

tan <angle>
Description

Returns the tangent of its input. See atan entry concerning inverse.
Examples

Chapter 4 4.7 Trigonometric Functions

139

asin
Syntax

asin <number>
Description

Returns the arc sine of its input. It's the inverse function of sine. asin returns an angle
between -90 and 90 as its input varies from -1 to 1.

Examples

acos
Syntax

acos <number>
Description

Returns the arc cosine of its input. It's the inverse function of cosine. acos returns an
angle between 0 and 180 as its input varies from 1 to -1.

Examples

atan
Syntax

atan <y> <x>
Description

This command is the arc tangent function. Because the arctangent of an angle does not
contain enough information to determine the quadrant of the angle, atan takes two inputs.
These are the separate y and x components of the tangent, rather than just the ratio, y / x .
Multiplying both inputs by a constant does not change their atan.

Example

Chapter 4 4.8 Number Conversion To Integers

140

4.8 NUMBER CONVERSION TO INTEGERS

round
Syntax

round <number>
Description

This command is the traditional rounding to the nearest integer. It rounds toward zero.
That is, .5 gets rounded to 0, and so does -.5.

Examples

ceiling
Syntax

ceiling <number>
Description

This command takes as input any number and returns the smallest integer greater than or
equal to that number. If you think of a floor in a building at each integer, ceiling returns
the integer that is your ceiling if you are at <number>.

Examples

Chapter 4 4.8 Number Conversion To Integers

141

floor
Syntax

floor <number>
Description

This command takes as input any number and returns the largest integer less than or
equal to that number. If you think of a floor in a building at each integer, floor returns the
integer that is your floor if you are at <number>.

Examples

truncate
Syntax

truncate <number>
Description

This command takes as input any number and returns the integer portion. It simply lops
off any digits after the decimal place. Note: floor and truncate give the same result for
positive numbers, but different results for negative numbers.

Examples

numerator
Syntax

numerator <number>
Description

Returns the numerator of the fraction (rational number) given it as input. It first reduces
the fraction to lowest terms so that numerator x * n / x * d is the same as numerator n /
d.

Examples

Chapter 4 4.8 Number Conversion To Integers

142

denominator
Syntax

denominator <number>
Description

Returns the denominator of the fraction (rational number) given it as input. It first
reduces the fraction to lowest terms so that denominator x * n / x * d is the same as
denominator n / d.

Examples

rationalize
Syntax

rationalize <number>
Description

This command produces the rational number, in lowest terms, equal to its input. It is
mostly used to force floating point number into rational (fraction) format.

Examples

Chapter 4 4.9 Number Printing Control

143

4.9 NUMBER PRINTING CONTROL

printing-precision
Syntax

printing-precision <new-precision>
Description

This command specifies how many decimal places to show. It does not effect internal
calculations until a number is shown on the screen. However, from then on, the accuracy
of the number will be reduced. The input, naturally, must be an integer.

Examples

print-fractions
Syntax

print-fractions <true or false>
Description

This command controls whether a divide of two integers (a fraction) will be a fraction or
a floating point number. An input of false forces printing results as decimals. As with
printing-precision , this only effects numbers when they get shown on the screen. But
once that has occurred, there's no turning back.

Examples

Chapter 4 4.10 Logic

144

4.10 LOGIC

true
Syntax

true
Description

Returns standard-form Boolean value, the word true in a data box. In this way, it is an
"automatic" data object that does not need to be placed in a data box, just like a number.
"IF <predicate> <consequent> <alternative>" will do the <consequent> if <predicate>
returns true and the <alternative> if the predicate returns false.

Example

false
Syntax

false
Description

Returns standard-form Boolean value, the word false in a data box. In this way, it is an
"automatic" data object that does not need to be placed in a data box, just like a number.
"if <predicate> <consequent> <alternative>" will do the <consequent> if <predicate>
returns true and the <alternative> if the predicate returns false.

Example

and
Syntax

and <predicate1> <predicate2>
Description

This command is the logical and of its inputs: and returns true if both its inputs are true.
It returns false otherwise.

Example

Chapter 4 4.10 Logic

145

or
Syntax

or <predicate1> <predicate2>
Description

This command is the logical or of its inputs: or returns true if either or both its inputs are
true; It returns false if neither are.

Example

not
Syntax

not <predicate>
Description

This command returns the negative of its input. It returns true if its input is false and
false if its input is true. Gives an error if its input is not true or false.

Examples

146

CHAPTER 5

Triggers
Boxer has a set of structures called triggers that allow you to program in an "activation-
oriented" style. This means things can be triggered to happen when particular other things
occur.

Chapter 5 Boxer Language

147

5.1 TRIGGERS

entry-trigger
exit-trigger

modified-trigger

These commands can be set to run when a box is entered, when a box is
exited, and when a box is changed (either with the editor or with a change
command).

Chapter 5 5.1 Triggers

148

5.1 TRIGGERS

entry-trigger
Syntax

entry-trigger
Description

The command entry-trigger is executed when you enter the box in which an entry-
trigger is defined. Boxes inferior to the box in which you define an entry-trigger do not
inherit the trigger. Entering a subbox of one that has an entry-trigger does not count as
entering the box, but exiting a subbox (into the interior proper of the box) does count as
entering it. Entering a port to a box that contains an entry-trigger will also trigger it.

Example

Chapter 5 5.1 Triggers

149

exit-trigger
Syntax

exit-trigger
Description

The command exit-trigger is executed when you leave the box in which an exit-trigger
is defined. Boxes inferior to the box in which you define an entry-trigger do not inherit
the trigger. Exiting a box directly from an inferior box (with the mouse) also triggers the
exit-trigger . Exiting a port to a box that contains an entry-trigger will also trigger it.

Example

Chapter 5 5.1 Triggers

150

modified-trigger
Syntax

modified-trigger
Description

The command modified-trigger is executed when you change a box in which a
modified-trigger is defined. This happens when you change it with the editor, or when
you use change. If you change a box with the editor, the modified-trigger is triggered
when you exit the box. Boxes inferior to the box in which you define a modified-trigger
do not inherit the trigger. Changing a port to a box will also result in a modified-trigger
being executed.

Example

152

CHAPTER 6

Miscellaneous Commands
Commands not covered in the other categories.

Chapter 6 Miscellaneous

153

6.1 MISCELLANEOUS

beep
click-sound

sleep
unique-symbol

Commands not cover in other categories

Chapter 6 6.1 Miscellaneous

154

6.1 MISCELLANEOUS COMMANDS

beep
Syntax

beep
Description

beep emits a short sound.
Example

click-sound
Syntax

click-sound
Description

Click-sound emits a short click..
Example

Chapter 6 6.1 Miscellaneous

155

sleep
Syntax

sleep <seconds>
Description

sleep causes Boxer to pause for the number of <seconds> specified. It is useful to
delay or slow down Boxer processing so that things can be comfortably viewed.
The input may be a fraction or decimal less than one. Note that for the example
below, if you remove the sleep command you will not be able to read it.

Example

unique-symbol
Syntax

unique-symbol
Description

unique-symbol returns a word that is guaranteed to be unique during the current
Boxer session.

Example

155

CHAPTER 7

Environment: Input & Output
This chapter explains how a program can provide output to the user, and how you can arrange for
the user of a program to supply input to the program.

Output of information to the user of a program in Boxer is done simply by making part of Boxer
visible, say, a variable or graphics box, and changing that variable or executing graphics
commands. The only complication is that, for speed of execution, Boxer does not ordinarily
attend to its own display during the running of a program (in contrast to while one is directly
editing Boxer, or after some execution has stopped). So you must sometimes tell Boxer when
you want changes to be made visible using the command redisplay.

Input comes in two classes: keystrokes and input from the mouse. Boxer can provide for the
following kinds of input from the user:

4. Essentially any keystroke in Boxer can be rebound (reconnected) to an arbitrary Boxer action
by defining a box whose name contains the suffix -key. E.g., a-key, command-f-key, F1-
key.

5. As with redisplay, Boxer does not ordinarily attend to keyboard or mouse input when a
program is running, but you can request it to do so with handle-input. This can allow users
of a program the full editing capabilities of Boxer to provide input.

6. Any Boxer program can "poll" (request information about) the state of the mouse buttons,
and get information about where the mouse is pointing.

Rebinding keys is a very powerful device, and should be used cautiously. For example, generally
it is far better to redefine function keys (F1, etc.) than any keys that would be used for something
else. Next in line are the control, command, or option keys; but beware redefining those you use
for other things. Finally, it's neat and powerful to define regular letter and number keys, but
frequently you will have difficulty continuing to work in your own environment. Anybody else
using your environment will have trouble working or changing things if you change frequently
used keys, especially things like "doit" and "stop"! Actions on various kinds of mouse clicks can
similarly be redefined (see Mouse Input below). Note: Mouse input specific to graphics boxes is
described in the graphics section. See request-for-input-handling to make key bindings and
mouse clicks active during execution of another program.

Mouse Input
Using the mouse as an input device can be done in two ways (in addition to using it to control
editing and activation of operations, as usual in controlling Boxer).

Chapter 7 7.1 Output

156

1. You may redefine what Boxer does when you click mouse buttons in various places.

2. You may "poll" the mouse to find out various things about its state; such as where it is
pointing and which buttons are currently being pressed.

Here are some ideas for coping with input and output in Boxer.

Idea 1
Work as much as possible from Boxer top level. Many times it is unnecessary to program any
input or output at all because Boxer shows you the state of your world directly, and has access to
any changes you make. So program output might simply be changing a variable that is shown on
the screen (or executing some graphics commands). Program input might be having a user
change a variable, or chose a "menu item," which might just be a line of text typed on the screen.

Idea 2
Use simple user-defined extensions of the standard input forms. For example, it is simple to
arrange for any Boxer action to take place whenever one clicks mouse buttons on sprites or
graphics boxes (see the section on graphics). Also, any key may be used as an instant-action
function key.

Idea 3
Boxer has a few simple commands to allow you to use any of the tricks in Key Ideas 1 or 2 while
a program is running. See handle-input, input?, and edit-box.

Chapter 7 Boxer Language

157

7.1 OUTPUT

redisplay
status-line-message

status-line-y-or-n

The first command makes changes that happen in Boxer visible. The other two
request or present information to the user.

7.2 INPUT: KEYSTROKE BINDING

-key
command-option-v-

command-"-
command-'-

This suffix is how you redefine what Boxer should do when you press a key.
See Request For Input Handling to make key bindings active during execution
of another program. Press option-help (option-?) and press the key to see its -
key name.

7.3 INPUT: MOUSE BINDING

-click
mouse-click-on-

These suffixes are how you define (or redefine) what Boxer should do when
your click the mouse. Mouse click redefinition for graphics boxes and sprites,
and graphics-specific polling methods are documented in the graphics chapter.
See Request For Input Handling to make mouse clicks active during execution
of another program. Press option-help (option-?) and then perform any mouse
action to see the mouse- or -mouse- name for it.

7.4 INPUT: MOUSE POLLING

mouse-buttons
mouse-box

mouse-box-on-
mouse-rc-box

mouse-rc-box-on-
mouse-rc

mouse-rc-on-

These commands return information about the mouse when executed.
mouse-buttons tells you whether and which buttons on the mouse are pressed.
The other commands give you information about where the mouse
is pointed: either the box it is in (-box), the row and column number
of the item it is pointing to (-rc), or both (rc-box). See Environment, Cursor-
location, for related commands based on the cursor.

7.5 REQUEST FOR INPUT HANDLING

handle-input
input?

edit-box

These commands allow you to get input from a user while a program is
running.

Chapter 7 7.1 Output

158

7.1 OUTPUT

redisplay
Syntax

redisplay
Description

This command causes Boxer to recompute its presentation to the user so that all changes
that have been made by a running program can be seen. Note: You don't need redisplay
for graphics commands since they cause automatic redisplay of the graphics box.

Examples

status-line-message
Syntax

status-line-message
Description

This command places some text in the Boxer status and information line. It prints only
the first line from the input box. Note: The message will disappear whenever Boxer
would ordinarily place a new message in the status line.

Examples

Chapter 7 7.1 Output

159

status-line-y-or-n
Syntax

status-line-y-or-n
Description

This command places some text in the Boxer status and information line. It returns true if
the user types y in response, and false otherwise. See status-line-message.

Examples

Chapter 7 7.2 Input: Keystroke Binding

160

7.2 INPUT: KEYSTROKE BINDING

-key
Syntax

-key
Description

The suffix "-key"added to the name of a key in a box nametab creates a procedure or
variable that gets automatically executed when you press the named key. E.g., a-key as
the name of a procedure will cause that procedure to be run whenever you hit the "a" key.
See Request For Input Handling to make keybindings active during execution of another
program. Press option-help (option-?) and press any key to see its -key name. Most keys
can be rebound simply by adding -key to their printed form in the name of a procedure or
variable, like a-key, 1-key, #-key. However, since Boxer doesn't distinguish upper and
lower case under most circumstances, capital letters must use the prefix "capital," e.g.,
capital-a-key. Control keys should be prefixed with command-, e.g., command-a-key,
or option-, e.g., option-a-key. Special keys may have special names, like "space-key"
for redefining the space-bar, Delete-key for redefining the delete key, and so on.

In some instances you can avoid problems of redefined keys with the "quote" key. If you
press command-" (or command-'), the next key you press is not run through ordinary
Boxer channels, but is inserted directly. You can get keys like control-a to print this way.
You can also get keys that have been redefined to print.

You can temporarily turn off all key redefinitions and mouse redefinitions by entering
"Top Level" input mode. Use Other pulldown, Top Level (Local) Key/Mouse Mode
selections to control this. Or command-option-v ("v" for "vanilla"--ordinary mode) will
enter Top Level mode, during which keys and mouse clicks behave as they do in a "bare"
Boxer. Pressing command-option-v again, or stop exits to "Local" mode.

Example

Chapter 7 7.2 Input: Keystroke Binding

161

command-option-v-key
Syntax

command-option-v-key
Description

This keystroke causes key and mouse bindings to revert to "vanilla" bindings. That is, it
turns off any redefined keys or mouse clicks. It is most useful to type in a box in which
many keys have been rebound. The command is usually executed by pressing the
command-option-v key. Pressing the stop (command-g) key or command-option-v
again turns off its effect. Use also Other pulldown menu, Key/Mouse selection.

Examples

Note
In the example above, all vowel keystrokes have been redefined. It is virtually impossible
to type anything in the box, including any more key redefinitions. BUT, press the
command-option-v-key and you get back "vanilla" key bindings until you press STOP,
command-g or command-option-v again.

command-"-key
command-'-key

Syntax
command-"-key
command-'-key

Description
This keystroke causes key bindings to revert to "vanilla" bindings for one keystroke. It is
like command-option-v, except for only one key press. It is most useful to type in a box
in which many keys have been rebound. In the following example, all vowel keystrokes
have been redefined. It is virtually impossible to type anything in the box, including any
more key redefinitions. But, press the command-" (or command-') key and you can type
a vowel at a time.

Examples

Chapter 7 7.3 Input: Mouse Binding

162

7.3 INPUT: MOUSE BINDING

-click
Syntax

mouse-click
option-mouse-click
command-mouse-click
mouse-double-click
option-mouse-double-click
command-mouse-double-click

Description
Boxer executes commands by these names when you click the mouse. Under ordinary
circumstances, these do editor operations (expand box, shrink box, etc.), but you can
change that by defining new procedures that have these names. Note: You may use
command- or option- for other possibilities. See the graphics section for graphics
specific click rebinding. Note: You can turn off mouse key bindings with the "vanilla
mode" command, command-option-v. In the example that follows, when you click on
any of the boxes with the letters, their value will be added to the boxes named "typed."

Example

Chapter 7 7.3 Input: Mouse Binding

163

mouse-click-on-
Syntax

mouse-click-on-top-right
mouse-click-on-top-left
mouse-click-on-bottom-right
mouse-click-on-bottom-left
mouse-click-on-type
mouse-click-on-name
mouse-click-on-scroll-bar
mouse-double-click-on-

Description
Boxer executes commands by these names (e.g., mouse-click-on-top-right) when you
click the mouse in the "hot spots" indicated. Under ordinary circumstances, these mouse
actions do editor operations (flip the view, open/close the closet, allow you to grasp the
lower right corner of a box to resize, etc.), but you can change that by defining new
procedures that have these names. click may be replaced by double-click. control- and
option- prefixes may work, depending on window system and implementation. Use
vanilla-mode (command-option-v) to revert temporarily to standard mouse bindings. In
the example below, once the procedure mouse-click-on-top-right has been defined, any
time you click on any top-right corner of any box the message "you clicked in the top
right corner of a box" will be displayed in the X box.

Example

Chapter 7 7.4 Input: Mouse Polling

164

7.4 INPUT: MOUSE POLLING

mouse-buttons
Syntax

mouse-buttons
Description

This command tells you if any buttons are pressed and, if so, which ones. The code is
"binary digits": 0 for no buttons, 1 for option-mouse-click (Unix: left), 2 for mouse
(Unix: middle), 4 for command-mouse-click (Unix: right), and the sum of these codes for
multiple simultaneous presses.

Example

mouse-box
Syntax

mouse-box
Description

This command returns a port to the box in which the mouse cursor is currently placed.
Placing the mouse cursor in a port and executing mouse-box gets a port to the target of
the port you pointed to.

Example

Chapter 7 7.4 Input: Mouse Polling

165

mouse-box-on-
Syntax

mouse-box-on-click
mouse-box-on-release

Description
Like mouse-box, these commands return a port to the box in which the mouse cursor is
placed. mouse-box-on-click waits until you click a mouse button before looking where
the mouse is, and mouse-box-on-release waits until you release a pressed mouse button.
If a mouse button is not pressed when you execute mouse-box-on-release, it will wait
until you press a button, and then wait for a release. Placing the mouse cursor in a port
and executing either of these gets a port to the target of the port you pointed to.

Example

Chapter 7 7.4 Input: Mouse Polling

166

mouse-rc-box
Syntax

mouse-rc-box
Description

Returns a box containing, in sequence:
 1. The row number in that box that the mouse is pointing to.
 2. The column number (item number on the pointing-to row) of the nearest item in the
 box.
 3. A port to the box in which the mouse cursor is pointing.
Note: Name is mnemonic for the sequence -- rc-box means row, column, box, in that
order. mouse-rc-box uses the same algorithm to decide what item is closest to the mouse
that the Boxer editor does. Pointing at white space gets you the item closest to where the
cursor would be if you just clicked middle where you were pointing. Placing the mouse
cursor in a port and executing either of these commands gets a port to the target of the
port you pointed to.

Example

Chapter 7 7.4 Input: Mouse Polling

167

mouse-rc-box-on-
Syntax

mouse-rc-box-on-click
mouse-rc-box-on-release

Description
Like MOUSE-RC-BOX, these commands return the row and column numbers of the item
pointed to by the mouse, and a port to the box in which the mouse cursor is placed.
mouse-rc-box-on-click waits until you click a mouse button before looking where the
mouse is, and mouse-rc-box-on-release waits until you release a pressed mouse button.

Example

Chapter 7 7.4 Input: Mouse Polling

168

mouse-rc
Syntax

mouse-rc
Description

mouse-rc <box> returns a box containing the row and column numbers of the item in
<box> that you are pointing to with the mouse. In contrast to mouse-rc-box, mouse-rc
specifies the box that you are to get rc numbers with respect to. So pointing anywhere in
a subbox of <box> will get you the same rc numbers for mouse-rc <box> while mouse-
rc-box gives you numbers with respect to the particular box you happen to point to, and
will change if you move around inside a sub box. Placing the mouse cursor in a port and
executing either of these commands gets a port to the target of the port you pointed to.

Example

Chapter 7 7.4 Input: Mouse Polling

169

mouse-rc-on-
Syntax

mouse-rc-on-click
mouse-rc-on-release

Description
Like mouse-rc-box, these commands, when executed, return the row and column
numbers of the item pointed to by the mouse, and a port to the box in which the mouse
cursor is placed. Except mouse-rc-box-on-click waits until you click a mouse button
before looking where the mouse is, and mouse-rc-box-on-release waits until you release
a pressed mouse button. If a mouse button is not pressed when you execute -on-release
command, it will wait until you press a button, and then wait for a release. Placing the
mouse cursor in a port and executing either of these commands gets a port to the target of
the port you pointed to.

Example

Chapter 7 7.5 Request For Input Handling

170

7.5 REQUEST FOR INPUT HANDLING

handle-input
Syntax

handle-input
Description

This command causes Boxer to attend to mouse clicks and keystrokes. It is useful when
you want user input while a program is running. handle-input will wait for a mouse click
or keystroke if one is not already "waiting". Therefore, it is almost always used as in: if
input? handle-input, which will not "hang" (get stuck and wait) if there is no input.
Note: if you’re using Unix then use the command mouse-right. handle-input will cause
key presses or mouse clicks to be handled, one each time it is executed, in the order in
which they came. You are not allowed to do a "doit" (or mouse-middle-twice) during a
handle-input. Any input events pending, but not used by handle-input, will be saved and
executed when a running procedure stops. You can use the "waits for an input if none
already there" property of handle-input to have a command that is executing wait for a
signal (any mouse-click or key-stroke) before continuing.

Example

Chapter 7 7.5 Request For Input Handling

171

input?
Syntax

input?
Description

Returns true or false depending on whether or not the user has generated some input
(typed a key or pressed a mouse button) since input was last handled. handle-input will
attend to any pending input, one item each time it is executed. When all pending inputs
are taken care of, input? will become false again.

Example

Chapter 7 7.5 Request For Input Handling

172

edit-box
Syntax

edit-box <box>
Description

This command places the cursor in <box>, then allows the user to type, until the box is
exited. It is used during the running of a program to allow the user to input data that will
thereafter be used. You can essentially do the same thing as an edit-box by simply
stopping your program, letting the user type something in the Boxer world, and have
him/her restart the program with some signal (e.g., a menu click, "continue-when-done-
with-typing", or binding a key in that box to restart the program).

- If the input box is on-screen, but closed, it will be opened.
- If the input box is off-screen, you will get an error.
- If the input box is a graphics box in graphics presentation, you won't see the typing.
(This may actually be handy if you don't want the typing to show, e.g., you have some
instant keystrokes in the box.)

Note: You can actually do a lot while edit-box is running. You can type, execute
procedures, or whatever. edit-box will keep running until you exit the edited box.

Example

172

CHAPTER 8

Environment: File Commands
When you Open a file into Boxer, it appears as a box right where your typing cursor is. So you
may need to think a moment about where you want a file to appear. File boxes appear with
double-thick borders. When the typing cursor is in a file, the file box's name and on-disk file
name appear in the Boxer window title bar.

File menu "Save" saves the first superior file from where your typing cursor is currently located.
The same for Save As. Any box in Boxer may be saved as a file. The "Save Box As" menu option
saves the box in which your typing cursor currently sits. You may save a plain text box as a text
file with the Save As option. Note that Boxer usually saves a backup file with a ~ suffix
(adjustable in Preferences) for safety. You may also open plain text files from other applications
into Boxer.

Boxer also provides a general set of commands that may be used to save, open and delete files;
to read in directories, and to set the current directory (folder) for opening, saving and deleting.
Beginning users rarely need these commands, but use File menu versions.

Networking Files
File boxes and network boxes (which read in from remote machines over the network) are almost
identical. For example, the command open works with both. See Networking Chapter for details.

Subfiles
Subfiles will appear as black boxes (or boxtop icons) when you read the superior file back in.
They load automatically when clicked or double clicked. You may wish to use this feature to
organize all or most of your Boxer work from within Boxer. If you change the file name or
location of a subfile, save the containing file also so that the new location will be available when
the containing filebox is read in.

Box Properties
Box Properties ("Other" menu) allows you to adjust some file parameters, such as the file name,
whether the file is read only, and whether the file should be automatically read in with its
superior file. You can also unlink file boxes, hence turn them into regular boxes. If you try to
save a different box to the same filename, Boxer will warn you.

Chapter 8

173

Paths to files
In order to specify the exact location of a file with save-as or open Boxer commands, use a
"path." (A path is a sequence of nested directories (folders.) On the Mac, the path separator is ":"
as in "Hard Disk:Desktop Folder:Boxer Release Work:File" Unix notation uses "/" for separator.
The latter is useful for network paths (net boxes).

Links to non-Boxer files
The "File" pulldown menu, Link to Mac File selection, will allow you to create a link in Boxer to
an external file. A double-click on that link will activate the file, as if you had double clicked on
it directly. The link will appear as the normal file's icon and name.

Note
The commands in this chapter will not be needed by most users. Use the File pulldown menu
instead.

Chapter 8 Boxer Lan guage

174

8.1 STANDARD FILE COMMANDS

open
save

save-as
save-box-as
delete-file
choose-file
directory

current-directory
set-current-directory

save-text-file
read-text-file

Standard command files are programming alternatives to Menu commands in
Mac Boxer.

 Chapter 8 8.1 Standard File Commands

175

8.1 STANDARD FILE COMMANDS

open
Syntax

open <file-name>
Description

open takes a file name (in a box) as input and returns the Boxer box that has been saved
under that name. If the box had a name, Boxer tries to preserve the name. If open is
given a file name without a path, it looks in the current-directory . If it is given a
complete path + file name, the current directory is changed to that of the file opened.
open is also used to open in "net boxes" over the Internet. See also open in the
networking chapter. Note that the third example is opening a directory.

Examples

 Chapter 8 8.1 Standard File Commands

176

 Chapter 8 8.1 Standard File Commands

177

save
Syntax

save
Description

save saves the first superior file box to its corresponding file. Ordinarily Boxer is set up
to keep one previous file as backup. If the file saved is under the name file, the backup
will be called file~. save can also work for net boxes, provided you can connect to the
appropriate machine and have permissions or passwords. See also save in the manual
networking section. save, in a port, will save the target of the port if it is a file box, or
otherwise, the first superior file box from the target. Ports are preserved in files if their
target is within the current file. If the target is outside, the connection will be lost.

Examples

 Chapter 8 8.1 Standard File Commands

178

save-as
Syntax

save-as <file-name>
Description

save-as saves the first superior file box to a file named by its input. Save-box-as saves
the local box where the command is executed, whether or not that box is already a file
box. Ordinarily Boxer is set up to keep one previous file as backup. If the file saved is
under the name file, the backup will be called file~. save-as can also work for net boxes,
provided you can connect to the appropriate machine and have permissions or
passwords. save-as, in a port, will save the target of the port if it is a file box, or
otherwise, the first superior file box from the target. Ports are preserved in files if their
target is within the current file. If the target is outside, the connection will be lost. See
also save-as in the networking section of this manual.

Example

save-box-as
Syntax

save-box-as <file-name>
Description

save-box-as saves the box it is executed in (whether or not it is already a file box) to a
file named by its input. It can take a full path specification. Ordinarily Boxer is set up to
keep one previous file as backup. If the file saved is under the name file, the backup will
be called file~. save-box-as can also work for net boxes, provided you can connect to
the appropriate machine and have permissions or passwords. See also networking
section of this manual. An error results from a non-existent file directory, etc. Network
saves are subject to such things as establishing a connection to the appropriate machine.

Example

 Chapter 8 8.1 Standard File Commands

179

delete-file
Syntax

delete-file <file-name>
Description

delete-file deletes the specified file from disk. delete-file, like save and read, uses the
current directory if no path is specified in <file-name>, but it can take a full path to a file
if you wish.

Example

choose-file
Syntax

choose-file <path>
Description

choose-file brings up a dialog to choose a file from disk. It returns the path to that file.
Note: You can directly open a chosen file; see the second example.

Examples

 Chapter 8 8.1 Standard File Commands

180

directory
Syntax

directory <path>
Description

directory takes a directory (or file-specification) as input and returns a list of files in
that directory. May be used with URL for network access. Path separator is “:” for
MAC.

Example

current-directory
Syntax

current-directory
Description

current-directory returns your current directory in the form of a path. Path separator is
“:” for MAC.

Example

set-current-directory
Syntax

set-current-directory <path>
Description

set-current-directory changes the current directory for file reading and saving to the
one specified in the path. Note that this directory may not exist in your machine. But if
you can specify the path to one, you may try it out.

Example

 Chapter 8 8.1 Standard File Commands

181

save-text-file
Syntax

save-text-file <box> <file-name>
Description

save-text-file saves a Boxer file as plain text, instead of using the Boxer file format.
This might be useful if you want to transfer a Boxer file to a text processing program.
You can specified a path if you need to in <file-name>. save-text-file has a different
format. It must be given a box to save as input (rather than saving a superior file box),
and it doesn't turn that box into a file box.

Example

read-text-file
Syntax

read-text-file <box> <file-name>
Description

read-text-file reads in a plain text file (rather than one in Boxer format) and places the
result in a box. This way, you can import plain text from a text processing program. You
can specified a path if you need to in <file-name>.

Example

183

CHAPTER 9

Environment: Keystrokes and Editing
This section deals with the Boxer editor. It explains the basic key bindings, Boxer's special
characters and how to locate the cursor under program control. Note that keyboards differ, so
that some options explained here may not be available with your keyboard.

Chapter 9 9.1 Moving in Boxer

184

9.1 MOVING IN BOXER
Most motion is okeys. Of course, there are mouse equivalents to many of these.

Characters

left-arrow
right-arrow

left one character
right one character

Words

command-right-arrow
command-left-arrow

right one word
left one word

Lines

up-arrow
down-arrow
option-right-arrow (command-e)
option left-arrow (command-a)

up one line
down one line
end of line
beginning of line

Box-scroll

PgUp
PgDn

scroll up one box
scroll down one box

Global-box

home (option-up-arrow)
end (option-down-arrow)

to top of box
to bottom of box

Among-Box

command-option-right-arrow
command-option-left-arrow
tab

enter next box
enter previous box
hop to next box

Exit-box

]
)
command-tab
option-tab

exit box
exit box and shrink
exit, hop into next box
exit, hop into previous box

Chapter 9 9.2 Making Boxes

185

9.2 MAKING BOXES

Regular Boxes

[
{

doit box
data box

Graphics

option-t
option-s
option-g

turtle box
sprite box
graphics box

Ports

option-p
command-option-p

port box
set port target (then option-p ports to target)

Chapter 9 9.3 Other Keystrokes

186

9.3 CUT AND PASTE
Command-X, command-C and command-V are standard shortcuts for cut, copy and paste. There
are mouse equivalents to these actions.

Boxer saves up prior cuts or deletes you make (usually up to 8 of them). "Paste" ordinarily
retrieves a copy of the last one. You may paste any number of copies with multiple pastes.

"Yank" (command-y) does not fetch a copy of the last delete, but places the original at the point
of the cursor. (In Boxer you can tell the difference between a copy and the original if there are
ports to any part of the original. Those ports will not target a copy.)

Pressing Yank several times in succession cycles through saved cuts/copies or deletes. It leaves
the items highlighted so you can press "Copy" if you see something you want a copy of, you can
press "Delete" if you don't see what you want, or just click the mouse to leave the currently
yanked stuff. Yanked stuff, of course, no longer is saved.

Boxer tries to combine several presses of the delete key, and similar actions, into a single cut,
which is saved.

Cut & Paste Keys

command-x
command-c
command-v
command-y

cut region (also Delete key)
copy region
paste last cut or copy
yank last item cut, copied or deleted; or if pressed
more than once, yank cycles through prior cuts.

Other Cut & Paste Actions

Delete (Backspace)
Ins
option-delete (option-backspace)
command-delete (command-backspace)
command-k
command-option-delete (command-option-backspace)

delete previous character
delete one character forward
delete one word backward
delete one word forward
delete complete line
delete to end of line

Chapter 9 9.4 Other Keystrokes

187

9.4 OTHER KEYSTROKES

General Keystrokes
enter
(command-Return on keyboards without Enter.)

command-LineFeed (command-Enter)
command-. (command-g)
command-f
option-f
up-arrow
|
command-@ (may be control-@)
command-r
command-t
command-z
PrSc (command-p)
command-' (command-")

doit (execute current line)

step execution
stop execution
find (search)
reverse find
name this box (only from top line of box)
name this box
unbox this box (remove box boundary)
refresh display
toggle transparency (see Boxer Structures)
zoom to target port the cursor is in
print screen
quote next character (to print non-printing keys)

Places
command-space
option-space
command-/
option-/
option-x

mark this place
jump to last place (may be used in succession)
name this place
jump to named place
jump to last place and mark the current one

HELP
Help (command-h)
command-Help (command-?)

option-Help (option-?)

Help
Prompt inputs (show input names for command near
cursor)
Provides help on key bindings or mouse presses.

Capitalization
option-c
option-u
option-l

capitalize next word
upper case next word
lower case next word

Miscellaneous
option-return

command-<number>

command-option-v

open a line (insert carriage return, but leave cursor here)

numeric repeat for editor keys (Hold the command key
and press a number to repeat the editor command that
follows)

"vanilla" mode for keybindings and mouse actions (turn
off key and mouse redefinitions). Also available in the
Other pulldown menu, Top Level (Local) Mouse/Key
Mode. (See Input-Output on re-defining keys.)

Chapter 9 9.5 Special Characters: Keys-that-print

188

9.5 SPECIAL-CHARACTERS: KEYS-THAT-PRINT

@
!

. (dot)
^
;
:

These are characters that Boxer uses for special purposes, i.e., they have special
meanings. Most are also documented elsewhere.

9.6 CURSOR LOCATION

cursor-column-number
cursor-row-number

move-cursor

These commands tell you where the cursor is placed in a box, and allow you to
reposition it. These may be useful with edit-box or other programs that monitor
asking a user to edit. See Input-output, Mouse-polling, for related commands.

9.7 BOX-SIZING

expand-box
shrink-box

fullscreen-box
supershrink-box

These commands control the display size of boxes (fullscreen, expanded,
shrunk, or supershrunk). They may be used to replace "by hand" (mouse)
expanding and shrinking operations. They may be used with triggers to make
boxes that "know" what size they want to be displayed at. You cannot control
the sizes of ports this way, only their targets.

Chapter 9 9.5 Special Characters: Keys-that-print

189

9.5 KEYS THAT PRINT

@
Syntax

@
Description

@ is used inside a build template to mean "evaluate and unbox." See Data-manipulation
Section, build . @ also may be used outside a build template. In this case it means
"evaluate this part of a command line first, then unbox in place, and finish by executing
the line as modified." See Boxer Structures and Control-structure, Evaluation.

Example

!
Syntax

!
Description

! is used in a build template to mean "evaluate" (and leave boxed) this expression. See
build in Data-manipulation.

Example

Chapter 9 9.5 Special Characters: Keys-that-print

190

^
Syntax

^
Description

^ is used with tell (ask) to cause a name refer to a box accessible from the place tell is
executed. Ordinarily, any name in the message for tell will refer to the boxes accessible
in the object told. See Evaluation in Control-structure, and also Boxer Structures.

Example

. (dot)
Syntax

<name1>.<name2>
Description

dot is used to "chain" box names into a path. x.y.z refers to the z box inside y, inside x.
See Data-manipulation, Data-access by name.

Example

Chapter 9 9.5 Special Characters: Keys-that-print

191

;
Syntax

;
Description

; is a comment character. Boxer ignores anything following it on a line when executing
Example

:
Syntax

:
Description

Words that end with : are not executed They are "in-line comments".
Example

Chapter 9 9.6 Cursor Location

192

9.6 CURSOR LOCATION

cursor-column-number
Syntax

cursor-column-number
Description

Returns the character number at which the cursor is located in a box (i.e., which character
in its current row it is placed before.) It works in name tabs, too.

Example

cursor-row-number
Syntax

cursor-row-number
Description

Returns the row number at which the cursor is located in a box.
Example

move-cursor
Syntax

move-cursor <box> <row> <character>
Description

Moves the cursor, and animates its motion, to the box, row, and character number
specified. Note: You can only move to boxes, not ports. Move-cursor moves you to the
target of any port passed as first input.

Example

Chapter 9 9.7 Box- siizing

193

9.7 BOX-SIZING

expand-box
Syntax

expand-box <box>
Description

This command is used to set a box to normal expanded size under program control,
instead of having to do it "by hand" using the mouse. It will actually shrink a fullscreen
box to merely expanded size. expand-box will expand the target of a port passed to it as
input.

Example

shrink-box
Syntax

shrink-box <box>
Description

This command is used to set a box to normal shrunk size under program control, instead
of having to do it "by hand" using the mouse. shrink-box will actually "expand" a
supershrunk box to merely "shrunk" size. Expand-box, shrink-box, etc., will operate on
the target of a port passed to it as input.

Example

Chapter 9 9.7 Box- siizing

194

fullscreen-box
Syntax

fullscreen-box <box>
Description

This command is used to set a box to fullscreen size under program control, instead of
having to do it "by hand" using the mouse. fullscreen-box will expand the target of a port
passed to it as input.

Example

supershrink-box
Syntax

supershrink-box <box>
Description

This is used to set a box to supershrunk size under program control, instead of having to
do it "by hand" using the mouse. Expand-box, shrink-box, etc., will operate on the target
of a port passed to it as input.

Example

194

CHAPTER 10

Environment: Networking
In order to access remote boxes on the Internet, you need to have a direct or modem (SLIP, PPP)
connection to it. (Technically, you need TCP/IP services.) In order to host others by making
some of your local boxes available, you need to configure your machine to be an FTP server. If
you do not have or use such services, we suggest you consult your local network guru.

Boxer has a special kind of box, a "net box", to maintain connection to resources over the
network, or to browse the known Boxer network universe. Net boxes appear like file boxes, but
instead of remembering the file associated with them, they remember the network location
(URL) of the information in that box. Like file boxes, net boxes start shrunk and empty when
you read them in within a file, but they fetch their internals whenever you click on them or in any
other way try to use them. Once read in, they behave like ordinary data boxes.

Net boxes can link to Boxer or text files, or to directories. The contents of directories (which
consists of files or more directories) appear as named net boxes.

You can convert net boxes to regular boxes, change them to file boxes, inspect or change their
associated URL using the LINKS selection from the Box Properties panel (Box Properties is in
the Other menu--or use the box type hotspot popup menu). You can also change a regular box to
a net box and assign a URL to save it to in the same way. File/Save will then save it. The OPEN
menu command (see documentation below) can also read in and thus create a new net box. We
recommend that you attach the suffix .box to Boxer files made available over the network.

To get to the "hub of the Boxer universe" the following command takes you there -- the box on
the right is the actual hub box.

Remember that the address of the net box must be saved with its superior file (or superior net
box) in order to be available from that file (net box) when it is read in later. Hence, if you change
a URL, always save the superior file (net box).

See also general information on file/net boxes in the Files section of the manual.

Boxer

195

Boxer Site Suggestions
Setting up your own Boxer site:

After you have arranged to have a site FTP accessible, here are some hints: Use the suffix .box
on Boxer files you make network accessible. It will help force the proper type of file transfer.
Transfer files from your Mac to the server using "raw" protocol, i.e., not MacBinary or other
special codings. FTP won't recognize these. (Or you can use Box Properties (Other menu) to link
a local box to its server URL, then use save.)

In making boxes for others to link to, make sure you have a “browsable layer”: that is, a set of
small boxes that do not take long to read in but give a person browsing enough information --
like file size and a brief description -- so that s/he can make an intelligent decision about whether
it is worth waiting for the net box to read in. Leave information on what kind of feedback, if any,
you are interested in and appropriate e-mail addresses. Keep binary and other non-Boxer useful
files out of any directories that you make accessible.

Linking to the Hub of the (Boxer) Universe
As long as it is feasible, we will try to coordinate interesting boxes to browse from our hub. Send
URLs and information on how you imagine your box should be categorized to: boxer-
inquiry@soe.berkeley.edu. We solicit especially: (1) descriptions of Boxer projects around the
world, (2) solicitations for Boxer subcommunities and network projects, (3) general tools and
utilities you feel people may like to have, (4) ideas on excellent things to do with Boxer,
including “great hacks,” (5) materials for learning various subject matter with Boxer, (6)
examples of especially interesting student work.

Chapter 10 Boxer Language

196

10.1 NETBOX FILE/DIRECTORY COMMANDS

open
save

save-as
save-box-as
delete-file

These are programming commands to be use with net boxes. They work
essentially identically with their use with files.

10.2 MAIL COMMANDS

mail
getmail

These are commands that allow a Boxer user to send and receive mail over the
network. Before using mail, you must initialize the user-mail-address and the
mail-relay-host in your Boxer Preferences (Other pulldown menu). We
recommend getting a Boxer mailer (e.g., in the Boxer release demo files) to ease
mail use.

Chapter 10 10.1 Net Box File/Directory Commands

197

10.1 NET BOX FILE/DIRECTORY COMMANDS

open
Syntax

open <URL>
Description

Open, in addition to reading in ordinary files, will also read in files and directories over
the network, creating "net boxes". See the overview, above, and Boxer Structures
document for an explanation of net boxes. Open may actually be more convenient in
most cases compared to using the File menu. The format for the input (Universal
Resource Locator--URL) is as follows: (Place the URL in a data box.)
<protocol>://<login-name>:<password>@<internet-machine-address>/<file path>/<file>

• <protocol> currently is "ftp", probably the most general protocol
 (using TCP/IP resources). Other protocols may be added.
• <login-name>:<password>@ is optional. The default is "anonymous". This makes
connecting to an anonymous FTP site simple.
• /<file-path> optional.
• /<file> is optional. Without it, a directory will be read.

FTP standards specify text as the default type of files read. If you save a Boxer file, open
will recognize that it is NOT text if you put a .box suffix on the file name. Files should be
in raw binary (not Mac binary, or other format) on Unix machines.

Examples

Chapter 10 10.1 Net Box File/Directory Commands

198

Chapter 10 10.1 Net Box File/Directory Commands

199

save
Syntax

save
Description

save saves the first superior net or file box to its corresponding file. It may be handy to
use it with tell, as in tell <box> save. save, in addition to reading in ordinary files, will
save files over the network. It may be handy to use it with TELL
as in tell <box> save.

Examples

Chapter 10 10.1 Net Box File/Directory Commands

200

save-as
Syntax

save-as <URL>
Description

Save-as <URL>, in addition to saving ordinary files, will save files over the network. It
saves the first superior net (file) box from where it is executed. The format for the input
(Universal Resource Locator--URL) is as follows: (Place the URL in a data box.)
<protocol>://<login-name>:<password>@<internet-machine-address>/<file path>/<file>

• <protocol> currently is "ftp", probably the most general protocol
 (using TCP/IP resources). Other protocols may be added at a later date.
• <login-name>:<password>@ is optional. The default is "anonymous". This makes
 connecting to an anonymous FTP site simple.
• /<file-path> optional.

Examples

Chapter 10 10.1 Net Box File/Directory Commands

201

save-box-as
Syntax

save-box-as <URL>
Description

Save-box-as <URL>, in addition to saving ordinary files, will save files over the
network. It saves the box where it is executed.

The format for the input (Universal Resource Locator--URL) is as
follows: (Place the URL in a data box.)

<protocol>://<login-name>:<password>@<internet-machine-address>/<file path>/<file>

• <protocol> currently is "ftp", probably the most general protocol (using TCP/IP
resources). Other protocols may be added at a later date.

• <login-name>:<password>@ is optional. The default is "anonymous". This makes
connecting to an anonymous FTP site simple.

• /<file-path> optional.
Example

Chapter 10 10.2 Mail

202

10.2 MAIL

mail
Syntax

mail <address> <text>
Description

mail takes an <address> and a <text> and sends the <text> as a message to <address>. If
<text> contains subboxes or links to non-Boxer files, these will be encoded in MIME
compatible format. Any Boxer structure can be transparently mailed and received by
another Boxer user in this way. (Non-Boxer users will get subboxes as files.) Boxer users
will get enclosed non-Boxer files (sent from Boxer or from other MIME-compatible mail
programs) as links to files (which will be placed in a "mail" folder in the same folder as
your Boxer application). Before using mail, you must initialize the user-mail-address
and the mail-relay-host in your Boxer Preferences.

Examples

Chapter 10 10.2 Mail

203

get-mail
Syntax

get-mail <mailbox> <delete-messages?>
Description

get-mail <mailbox> <deleted?> fetches mail from your mail host machine. It returns a
box containing a series of messages, each in a box. The second input is true or false and
specifies whether the messages should also be deleted from host machine mailbox. For
safety, consider using FALSE as second input. Enclosed files will appear as "links to
Mac
files", which you can double-click to open. The closet of each message contains several
variables that can be used in sorting or other processing of messages: To, From, Subject
(optional), Date, Header. get-mail uses the stadard POP protocol, like such mail readers
as Eudora. Currently (9-99), get-mail recognizes base64 and binhex mime protocols.
Check the boxer hub or newer demos for a full-featured mail reader that uses get-mail.

Examples

Chapter 10 10.2 Mail

204

send
Syntax

send <address> <text>
Description

Sends a box to networked colleagues for communication or real-time interaction. send is
not currently (9-99) configured to work on non-Unix machine.

Examples
No examples YET

205

CHAPTER 11

Environment: Miscellaneous
The commands in this chapter have to do with various aspects of the Boxer environment, such as
setting preferences and handling errors when they cannot be returned to the screen for various
reasons. Other facilities are for help, defining icons, saving a user's interaction ("dribble"), Boxer
extensions and serial port connections. Use Edit menu, Preferences selection as a "by-hand"
alternative.

Chapter 11 System Commands

206

11.1 SYSTEM-PREFERENCES

system-preferences You may change settings by editing and executing the lines in the system
preference box that have preferences commands in them. This command
appears in the closet of the top level box of your world. A Mac interface to
preferences is available in the Edit menu, Preferences… option.

11.2 RESULT APPEARANCE

printing-precision
print-fractions

preserve-empty-lines-in-build

These commands affect how various sorts of returned values appear: i.e., the
number of decimal places that are printed in a number, whether rational
numbers should appear as decimals or not, and whether build should preserve
or delete empty lines. See Arithmetic-and-logic, under Printing-control.

11. 3 EVALUATOR SETTINGS

step-wait-for-key-press
step-time

evaluator-help
primitive-shadow-warnings

These control settings on various forms of help Boxer can supply, or
adjustments to the way Boxer runs.

11.4 GRAPHICS SETTINGS

make-transparent-graphics-
boxes

include-sprite-in-new-graphics
name-new-sprites
make-diet-sprites

These adjust details about what happens when you create a new turtle, graphics
or sprite box.

11.5 EDITOR SETTINGS

zoom-pause
show-border-type-labels

smooth-scrolling
global-hotspot-controls

input-device-names
fullscreen-window

These control some options in the way the Boxer editor works. Most inputs are
true or false; some are numbers.

11.6 FILE SYSTEM SETTINGS

terse-file-status
backup-file-suffix

warn-about-outlink-ports

Sets parameters relevant to files.

11.7 NETWORK SETTINGS

user-mail-address
mail-relay-host

max-viewable-message-size

Sets parameters relevant to network operations.

11.8 COMMUNICATIONS SETTINGS

newline-after-serial-writes
serial-read-base

These preferences determine how Boxer reads and writes to (from) external
devices over the serial line.

Chapter 11 System Commands

207

11.9 MISCELLANEOUS SYSTEM COMMANDS

name-help This command gives some brief information about all primitive commands in
Boxer that contain the sequence of letters in the input.

invisible-error If Boxer cannot find a place to print an error message, it notifies you. Then,
invisible-error , when executed, will return the error. A typical place where you
get such errors is from interface messages, like sprite- or graphics-mouse-
commands.

invisible-value If Boxer cannot find a place to print a returned value it notifies you. Then,
invisible-value, when executed, will return the value. A typical place where you
get such errors is from clicks in nametabs that execute something that returns a
value. (You can't put a box in a name-tab.).

date-and-time This command returns the data and time according to the systems clock

boxtop If Boxer finds a graphics box called boxtop in a box, the graphics in that box
become the box's shrunken shape, in place of the usual small gray box. The size
of the graphics box will be the size of the boxtop. The best place for a boxtop
box is usually in the box's closet. Sprites don't show up in the boxtop.

dribble-on
dribble-off

playback-dribble-file

Boxer can create and run "dribble files", which are records in a file of every
mouse click and keystroke done by a user. Then those files may be played back
at another time. These are useful to take data from subjects doing an experiment
in Boxer, or for storing an active demonstration, or for automating a test
procedure, etc.

mark-for-saving Mark-for-saving forces the File pulldown menu to show that saving is allowed.

choose-file This command pops up a Mac dialog box to allow you to select a file. Then,
choose-file returns the complete file path to that file. Typical use is with read.
That is, you ask for a file to read: read choose-file.

11.10 EXTENSIONS

extension-info
load-extension
add-extension

remove-extension

Boxer extensions are files that add extra features to Boxer. Boxer automatically
loads any extensions placed in a folder called "Extensions" when it starts up.
(The Extensions folder must be placed in the same folder as the Boxer
application.) Extensions may be placed in a folder "Extensions(off)" when you
don't want them loaded at startup. Extension-info allows you to see (1) what
extensions are available, (2) which ones are loaded automatically at startup, and
(3) which ones are currently loaded. In addition, commands allow you to move
extensions between Extensions and Extensions(off).

11.11 SERIAL PORT: SETUP NOTE: Serial Port commands are minimally documented

open-serial-line
close-serial-line

configure-serial-line
set-default-line-parameters

serial-line-parameters

These are commands to configure and open a serial port for communications
with external devices (such as computer-controlled video machines, or science
laboratory sensing devices). They provide many relatively standard ways of
reading from and writing to a serial line. These are designed for "hackers" so
our documentation is very brief.

11.12 SERIAL PORT: READING

Chapter 11 System Commands

208

serial-listen
serial-read-line

serial-read-line-with-timeout
serial-read-line-no-hang

serial-read-char
serial-read-char-with-timeout

serial-read-char-no-hang
serial-read-byte

11.13 SERIAL PORT: WRITING

serial-write
serial-write-byte

11.4 SERIAL PORT: PREFERENCES

serial-read-base
newline-after-serial-writes

Chapter 11 11.1 System Preference

209

11.1 SYSTEM-PREFERENCES

system-preferences
Syntax

system-preferences
Description
System-preferences causes a box to appear that has all Boxer's adjustable system parameters
in it. You may change settings by editing and executing the lines in the system preferences
box that have preferences commands in them. This command appears in the closet of the top
level box of your world. Alternatively, use Edit menu, Preferences selection.
Examples

Chapter 11 11.2 Result Appearance

210

11.2 RESULT APPEARANCE

preserve-empty-lines-in-build
Syntax

preserve-empty-lines-in-build <true-or-false>
Description

This tells Boxer whether or not to preserve empty lines in builds. These refer only to
empty lines in evaluated parts of build (@ or ! parts). Empty lines typed into the build
template directly are always preserved.

Example

Chapter 11 11.3 Evaluator Settings

211

11. 3 EVALUATOR-SETTINGS

step-wait-for-key-press
Syntax

step-wait-for-key-press <true-or-false>
Description

This determines whether Boxer waits for a keypress when showing the "stepper"
execution before going from step to the next step. (As of 9-99, the stepper is disabled.)

Examples

Chapter 11 11.3 Evaluator Settings

212

step-time
Syntax

step-time <seconds>
Description

Step-time <seconds> determines how long the Boxer stepper waits before moving to the
next step. It is in effect only when step-wait-for-key-press is set to false. (As of 9-99,
the stepper is disabled.)

Examples

Chapter 11 11.3 Evaluator Settings

213

evaluator-help
Syntax

evaluator-help <True or False>
Description

Evaluator-help determines whether Boxer supplies "helpful" messages when it detects
stylistic oddities. For example, making a port to the result of a Boxer primitive is an odd
thing to do. Evaluator-help set to false also suppresses some other information that
Boxer otherwise prints out about its internal state (e.g., when it is expanding internal
space reserved for various activities).

Examples

Chapter 11 11.3 Evaluator Settings

214

primitive-shadow-warning
Syntax

primitive-shadow-warning <True or False>
Description

Primitive-shadow-warning controls whether Boxer should print out a warning when
you create a box that has the same name as a primitive, and will "shadow" the primitive
so that it cannot be used in the current or inferior boxes. See Boxer Structures
documentation concerning shadowing.

Examples

Chapter 11 11.4 Graphics Sett ings

215

11.4 GRAPHICS SETTINGS

make-transparent-graphics-boxes
Syntax

make-transparent-graphics-boxes <true or false>
Description

This command controls whether Boxer makes transparent graphics boxes, or non-
transparent ones. Graphics boxes that are not transparent will not "export" the names of
sprites (or anything else) that are inside them. If you want to address sprites inside, you
need to talk first to the graphics box (usually first giving it a name). Make a graphics box
below with make-transparent-... set to true, then false.

Examples

Chapter 11 11.4 Graphics Sett ings

216

include-sprite-in-new-graphics
Syntax

include-sprite-in-new-graphics < true or false >
Description

This command determines whether Boxer includes a sprite when you create a new
graphics box.

Examples

name-new-sprites
Syntax

name-new-sprites <true-or-false> >
Description

Name-new-sprites determines whether you are automatically left in the name-tab of a
sprite when you make one.

Example

Chapter 11 11.4 Graphics Sett ings

217

make-diet-sprites
Syntax

make-diet-sprites < true or false >
Description

This command determines whether sprites are created in their diet configuration (where
most sprite attributes are not shown unless needed), or with all attributes included (some
in the closet).

Examples

Chapter 11 11. 5 Editor Settings

218

11.5 EDITOR SETTINGS

zoom-pause
Syntax

zoom-pause <seconds>
Description

This command controls the wait time between steps of the animation during zooming.
Examples

Chapter 11 11. 5 Editor Settings

219

show-border-type-labels
Syntax

show-border-type-labels <true or false>
Description

This command causes type labels to appear or disappear from the bottom line of boxes.
Examples

smooth-scrolling
Syntax

smooth-scrolling <true or false>
Description

When executed with true, scrolls a pixel at a time. When false, scrolls a line at a time.
Examples

Chapter 11 11. 5 Editor Settings

220

global-hotspot-controls
Syntax

global-hotspot-controls <true or false>
Description

This command causes turning off or on a hotspot (like graphics flip--lower left) to affect
all boxes. Otherwise, turning on or off hotspot sensitivity affects only the box changed.

Examples

Chapter 11 11. 5 Editor Settings

221

input-device-names
Syntax

input-device-names <SUN-TYPE-4 or Mac>
Description

Determines the set of names used for keyboard keys, shifts, and mouse clicks interface
messages. This command will allow you to run programs written for the Mac or Sun on
the other platform without changing all the messages.

DON’T KNOW IF THESE ARE CORRECT
Mac: Sun:
 sprite mouse click sprite-mouse-middle
 mouse-double-click-on-graphics graphics-mouse-middle-twice
 mouse-double-click-on-name name-mouse-middle
 command-mouse-click mouse-right
 option-mouse-click mouse-left

Examples

Chapter 11 11. 5 Editor Settings

222

fullscreen-window
Syntax

fullscreen-window <true or false>
Description

Determines whether Boxer starts up with its window filling the full screen, or a smaller
(more typical) size. The former is better if someone is using only Boxer; the latter is
better if you are moving back and forth among applications.

Examples

Chapter 11 11.6 File System Settings

223

11.6 FILE SYSTEM SETTINGS

terse-file-status
Syntax

terse-file-status <true or false>
Description

With input true, abbreviates information in the Boxer window title bar.
Examples

backup-file-suffix
Syntax

backup-file-suffix <symbol>
Description

Its input determines the suffix that marks backup files. The default symbol is ~.
Examples

warn-about-outlink-ports
Syntax

Warn-about-outlink-ports <true or false>
Description

Should Boxer provide a warning when saving a file that has ports to boxes outside that
file? (Such links will NOT be preserved through the file-saving file-reading process.).

Examples

Chapter 8 11.7 Network Settings

224

11.7 NETWORK SETTINGS

user-mail-address
Syntax

user-mail-address <address>
Description

Sets the "return address" for network operations like sending mail.
Examples

mail-relay-host
Syntax

mail-relay-host <machine>
Description

Sets the name of the computer responsible for relaying mail to the Internet.
Examples

max-viewable-message-size
Syntax

max-viewable-message-size<size-in-bytes>
Description

Sets the maximum size of a message that will be read directly into Boxer with read-mail.
larger messages will be read to a file..

Examples

Chapter 11 11.8 Communication Settings

225

11.8 COMMUNICATIONS SETTINGS

newline-after-serial-writes
Syntax

newline-after-serial-writes <true-or-false>
Description

This command determines if a carriage return should be added at the end of each Serial-
Write. This command is only useful if you are communicating with an external device
through the serial port on your computer.

Examples

serial-read-base
Syntax

serial-read-base <interger>
Description

This command sets the radix that will be used when the serial line reads in numbers.
Examples

Chapter 11 11.9 Other Commands

226

11.9 MISCELLANEOUS SYSTEM COMMANDS

name-help
Syntax

name-help <word-or-part-of-word>
Description

name-help <word-or-part-of-word> gives some brief information about all primitive
commands in Boxer that contain the sequence of letters in the input.

Examples

Chapter 11 11.9 Other Commands

227

invisible-error
Syntax

invisible-error
Description

If Boxer cannot find a place to print an error message, it notifies you. Then, invisible-
error , when executed, will return the error. A typical place where you get such errors is
from interface messages, like sprite- or graphics-mouse- commands.

Examples

Chapter 11 11.9 Other Commands

228

invisible-value
Syntax

invisible-value
Description

If Boxer cannot find a place to print a returned value it notifies you. Then invisible-
value, when executed, will return the value. A typical place where you get such errors is
from clicks in nametabs that execute something that returns a value. (You can't put a box
in a name-tab.).

Examples

date-and-time
Syntax

date-and-time
Description

Date-and-time returns the date and time according to the system clock.
Examples

Chapter 11 11.9 Other Commands

229

boxtop
Syntax

boxtop
Description

If Boxer finds a graphics box called boxtop in a box, the graphics in that box become the
box's shrunken shape, in place of the usual small gray box. The size of the graphics box
will be the size of the boxtop. The best place for a boxtop box is usually in the box's
closet. Sprites don't show up in the boxtop.

Example

Chapter 11 11.9 Other Commands

230

dribble-on
Syntax

dribble-on <file>
Description

Dribble-on <file> causes each mouse click and keystroke to be stored in a file called
<file>. As usual, the file name should be put in a box. dribble-off halts saving and
playback-dribble-file <file> replays it. Note: For playback, in order to have click
positions and typing placement appear properly, you must have the screen showing
exactly what it was when dribble-on was executed. A good convention is to start with a
blank screen or some fixed file, then start dribble or replay with key bindings (e.g.,
option-command-s-key (Start) bound to dribble-on, option-command-r-key (Replay)
bound to playback-dribble-file.

Example

Chapter 11 11.9 Other Commands

231

dribble-off
Syntax

dribble-off
Description

dribble-off halts saving of a dribble file. See also dribble-on.
Example

See dribble-on example

playback-dribble-file
Syntax

playback-dribble-file <file>
Description

This command causes the dribble file called <file> to be run, thus executing all the
keystrokes and mouse clicks stored there. See dribble-on for another example and other
details. <file> must be in a data box. Note: See dribble-on.

Example
See dribble-on example

mark-for-saving
Syntax

mark-for-saving
Description

Mark-for-saving forces the file pulldown menu to show that saving is allowed. Boxer
notes when a box has been changed by the editor, and it then shows this status with an
up-arrow in the Boxer window title bar and by the fact that SAVE is an available option
in the FILE pulldown. However, Boxer does NOT note if a file box has been changed by
the action of a command. mark-for-saving lets you compensate in a program if you
know the file has been changed or you want saving to be available for some other reason

Example
mark-for-savings

Chapter 11 11.9 Other Commands

232

choose-file
Syntax

choose-file
Description

This command pops up a Mac dialog box to allow you to select a file. Then, choose-file
returns the complete file path to that file. Typical use is with read. That is, you ask for a
file to read: read choose-file.

Example

Chapter 11 11.10 Extensions

233

11.10 EXTENSIONS

extension-info
Syntax

extension-info
Description

This command provides information on which extensions are loaded, which are
automatically loaded at startup, and which are available for loading. It also lists
commands to load extensions and move them between Extensions folder (load on startup)
and Extensions(off) folder (not automatically loaded).

Example

load-extension
Syntax

load-extension <box containing an extension name>
Description

Loads into Boxer facilities from the Boxer extension file name in its input. It will almost
always load from Extensions(off) folder.

Example

Chapter 11 11.10 Extensions

234

add-extension
Syntax

add-extension <box containing an extension name>
Description

This command moves a Boxer extension from the folder Extensions(off) to the folder
Extensions. (Both folders must be in the same folder as Boxer.) This causes the extension
to be loaded automatically the next time you start Boxer. See load-extension to load an
extension without restarting Boxer.

Example

remove-extension
Syntax

remove-extension <box containing an extension name>
Description

This command moves a Boxer extension from the folder Extensions to the folder
Extensions(off). Both these folders must be in the same folder as Boxer. This means the
extension will not be loaded automatically the next time you start Boxer. Remove-
extension does not remove the extension resources from the running Boxer.

Example

Chapter 11 11.11 Serial Port: Setup

235

11.11 SERIAL PORT: SETUP

open-serial-line
Syntax

open-serial-line <line>
Description

Opens a serial line per input spec.
Example

close-serial-line
Syntax

close-serial-line<line>
Description

Closes a serial line.

configure-serial-line
Syntax

configure-serial-line <baud> <charsize> <stopbits> <parity>
 <echo> <canonical> <flowcontrol>

Description
Sets up the parameters of the serial line. See serial-line-parameters and set-default-line-
parameters. A typical setup is:
Speed: 1200
Character Size: 8
Stop Bits: 1
Parity: 0 (None)
No Echo
Canonical Processing Off
Flow Control Disabled

Chapter 11 11.11 Serial Port: Setup

236

set-default-line-parameters
Syntax

set-default-line-parameters <box containing an extension name>
Description

This sets parameters to:
Speed: 9600
Character Size: 7
Stop Bits: 1
Parity: 2 (Even)
Echo On
Canonical Processing On
Flow Control Enabled

serial-line-parameters
Syntax

serial-line-parameters
Description

Returns a list of current settings of the serial line. See configure-serial-line.

Chapter 11 11.12 Serial Port: Reading

237

11.12 SERIAL PORT: READING

serial-listen
Syntax

serial-listen
Description

Returns true if something is in the serial buffer.

serial-read-line
Syntax

serial-read-line
Description

Read a line from serial buffer. Hangs until a full line is there.

serial-read-line-with-timeout
Syntax

serial-read-line-with-timeout <seconds>
Description

Reads a line, waiting <seconds> before returning nothing if a full line is not available.

serial-read-line-no-hang
Syntax

serial-read-line-no-hang
Description

Returns instantly. Returns nothing if a full line is not in the buffer.

serial-read-char
Syntax

serial-read-char
Description

Read a character from serial buffer. Hangs until a character is there.

serial-read-char-with-timeout
Syntax

serial-read-char-with-timeout <seconds>
Description

Reads a character, waiting <seconds> before returning nothing if a character is not
available.

serial-read-char-no-hang
Syntax

serial-read-char-no-hang
Description

Returns instantly. Returns nothing if a character is not in the buffer.

Chapter 11 11.12 Serial Port: Reading

238

serial-read-byte
Syntax

serial-read-byte
Description

Reads a byte, waiting <seconds> before returning nothing if a byte is not available.

Chapter 11 11.13 Serial Port: Writing

239

11.13 SERIAL PORT: WRITING

serial-write
Syntax

serial-write <box>
Description

Sends text to the serial line.
Example

serial-write-byte
Syntax

serial-write-byte <byte>
Description

Sends one byte of information to the serial line.

Chapter 11 11.14 Serial Port: Preferences

240

11.14 SERIAL PORT: PREFERENCES

serial-read-base
Syntax

serial-read-base <radix>
Description

See System-preferences.

newline-after-serial-writes
Syntax

newline-after-serial-writes <True or False>
Description

See System-preferences

241

INDEX

A

abs, 134
acos, 139
add-extension, 234
alpha<, 18
alpha>, 17
and, 144
append-column, 50
append-item, 44
append-row, 47
asin, 139
ask, 9, 34
atan, 139

B

back, 65
backup-file-suffix, 223
beep, 154
bg-color-at, 99
bg-color-at?, 100
bg-color-at=, 99
bg-color-under, 96
bg-color-under?, 98
bg-color-under=, 97
boxify, 38, 52
boxtop, 229
build, 37
butcolumn, 32
butfirst, 26
butfirst-column, 32
butfirst-row, 29
butitem, 27
butlast, 27
butlast-column, 32
butlast-row, 30
but-row, 30

C

ceiling, 140
change, 40
change-column, 48
change-graphics, 88
change-item, 42
change-last-column, 48
change-last-item, 43
change-last-row, 45
change-rc, 51
change-row, 45
choose-file, 179, 232

clean, 84
clear-background, 94
cleargraphics, 84
clearscreen, 84
click-sound, 154
close-serial-line, 235
color=, 89
color-at, 92
color-at=, 92
color-under, 90
color-under=, 91
column, 31
column-numbers, 24
columns, 32
command-', 187
command-"-key, 161
command-/, 187
command-@, 187
command-<number, 187
command-c, 186
command-delete, 186
command-f, 187
command-Help, 187
command-k, 186
command-'-key, 161
command-left-arrow, 184
command-mouse-click, 162
command-mouse-double-click, 162
command-option-delete, 186
command-option-left-arrow, 184
command-option-p, 185
command-option-right-arrow, 184
command-option-v, 187
command-option-v-key, 161
command-r, 187
command-space, 187
command-t, 187
command-tab, 184
command-v, 186
command-x, 186
command-y, 186
command-z, 187
configure-serial-line, 235
copy, 53
cos, 138
count, 19
ctype, 82
current-directory, 180
cursor-column-number, 193
cursor-row-number, 193

242

D

datafy, 39, 52
date-and-time, 228
Delete, 186
delete-column, 49
delete-columns, 49
delete-file, 179
delete-item, 42
delete-items, 43
delete-last-column, 49
delete-last-item, 43
delete-last-row, 46
delete-rc, 51
delete-row, 46
delete-rows, 46
denominator, 142
directory, 180
distance, 110
divide, 125
down-arrow, 184
dribble-off, 231
dribble-on, 230

E

edit-box, 173
empty?, 21
enclosing-rectangle, 110
end, 184
enter, 187
entry-trigger, 148
equal?, 17
evaluator-help, 213
even?, 132
exit-trigger, 149
exp, 136
expand-box, 194
extension-info, 233

F

false, 144
first, 25
first-column, 31
first-row, 28
float?, 129
floor, 141
follow-mouse, 69
for-each-item, 7
for-each-row, 7
forward, 65
freeze, 95
fullscreen-box, 195
fullscreen-window, 222

G

get-mail, 203
global-hotspot-controls, 220
graphics-mode, 86
graphics-size, 85
greater?, 128
greater-or-equal?, 128

H

handle-input, 171
heading, 103
height, 20
Help, 187
hide-subsprites, 71
hideturtle, 70
home, 67, 184
home-position, 108

I

if, 3
ifs, 4
include-sprite-in-new-graphics, 216
input?, 172
input-device-names, 221
insert-column, 50
insert-item, 44
insert-rc, 51
insert-row, 47
integer?, 130
invisible-error, 227
invisible-value, 228
item, 25
item-numbers, 23
items, 27

J

join-bottom, 37
join-right, 38

K

-key, 160

L

last, 26
last-column, 31
last-row, 29
left, 66
left-arrow, 184
length, 20
less?, 127
less-or-equal?, 128
letters, 55

243

ln, 137
load-extension, 233
local-name?, 57
log, 137
loop, 6
ltype, 82

M

mail, 202
mail-relay-host, 224
make-color, 89
make-diet-sprites, 217
make-transparent-graphics-boxes, 215
mark-for-saving, 231
math & logic characters

*, 123
**, 136
/, 124
+, 123
<, 126
<=, 127
=, 16, 126
>, 126
>=, 127

max, 135
max-viewable-message-size, 224
member?, 23
min, 135
minus, 124
minus?, 131
mod, 133
modified-trigger, 150
mouse-box, 164
mouse-box-on-, 166
mouse-buttons, 164
mouse-click, 162
mouse-click-on-bottom-left, 163
mouse-click-on-bottom-right, 163
mouse-click-on-graphics, 114
mouse-click-on-name, 163
mouse-click-on-scroll-bar, 163
mouse-click-on-sprite, 115
mouse-click-on-top-left, 163
mouse-click-on-top-right, 163
mouse-click-on-type, 163
mouse-double-click, 162
mouse-double-click-on-, 163
mouse-double-click-on-graphics, 114
mouse-double-click-on-sprite, 115
mouse-position, 116
mouse-position-on-click, 116
mouse-position-on-release, 116
mouse-rc, 169
mouse-rc-box, 167
mouse-rc-box-on-, 168

mouse-rc-on-, 170
mouse-x-position, 117
mouse-x-position-on-click, 117
mouse-x-position-on-release, 117
mouse-y-position, 118
mouse-y-position-on-click, 118
mouse-y-position-on-release, 118
move-cursor, 193

N

name?, 56
name-help, 56, 226
name-in-box?, 57
name-new-sprites, 216
names, 58
newline-after-serial-writes, 225, 240
not, 145
number?, 21, 129
number-of-columns, 19
number-of-items, 19
number-of-rows, 19
numerator, 141

O

odd?, 132
open, 175, 197
open-serial-line, 235
option left-arrow (command-a), 184
option-/, 187
option-c, 187
option-delete, 186
option-f, 187
option-g, 185
option-Help, 187
option-l, 187
option-mouse-click, 162
option-mouse-double-click, 162
option-p, 185
option-return, 187
option-right-arrow (command-e), 184
option-s, 185
option-space, 187
option-t, 185
option-tab, 184
option-u, 187
option-x, 187
or, 145

P

pen, 105
pen-color, 107
pendown, 72
penerase, 73
penreverse, 73

244

penup, 72
pen-width, 106
PgDn, 184
PgUp, 184
playback-dribble-file, 231
plus, 124
plus?, 131
port-to, 53
position, 103
power, 136
preserve-empty-lines-in-build, 210
primitive-shadow-warning, 214
print-fractions, 143
printing-precision, 143
PrSc, 187

R

random, 135
rational?, 130
rationalize, 142
rc, 33
read-text-file, 181
redisplay, 158
remainder, 133
remove-extension, 234
repeat, 6
retarget, 41
right, 66
right-arrow, 184
round, 140
row, 28
row-numbers, 23
rows, 30
rtype, 83
run, 10

S

save, 177, 199
save-as, 178, 200
save-box-as, 178, 201
save-text-file, 181
self, 35
send, 204
serial-line-parameters, 236
serial-listen, 237
serial-read-base, 225, 240
serial-read-byte, 238
serial-read-char, 237
serial-read-char-no-hang, 237
serial-read-char-with-timeout, 237
serial-read-line, 237
serial-read-line-no-hang, 237
serial-read-line-with-timeout, 237
serial-write, 239

serial-write-byte, 239
set-background, 94
set-color-at, 93
set-current-directory, 180
set-default-line-parameters, 236
set-graphics-mode, 86
set-graphics-size, 85
setheading, 67
set-home-position, 113
set-pen-color, 75
set-pen-width, 74
setposition, 68
setshape, 112
set-sprite-size, 112
set-type-font, 75
setxy, 68
shape, 104
show-border-type-labels, 219
shown?, 105
show-sprite-properties, 109
show-subsprites, 71
showturtle, 70
shrink-box, 194
signum, 134
sin, 138
sleep, 155
smooth-scrolling, 219
snap, 87
snip, 87
Special Character

!, 190
. (dot), 34, 76, 191
:, 192
;, 192
@, 190
[, 185
^, 11, 191
{, 185
|, 187

special characters
@, 10
], 184
}, 184

sprite-size, 107
sqrt, 134
stamp, 76
stamp-arc, 80
stamp-circle, 77
stamp-ellipse, 78
stamp-hollow-circle, 77
stamp-hollow-ellipse, 78
stamp-hollow-rectangle, 79
stamp-rectangle, 79
stamp-self, 81
stamp-wedge, 80
status-line-message, 158

245

status-line-y-or-n, 159
step-time, 212
step-wait-for-key-press, 211
stop, 8
stop-loop, 8
superior, 36
supershrink-box, 195
system-preferences, 209

T

tab, 184
tan, 138
target-name, 58
tell, 9
terse-file-status, 223
times, 125
top-level-name?, 58
touching?, 111
towards, 111
true, 144
truncate, 141
turtle-shape, 113
type, 81
type-font, 106

U

unbox, 54

unboxable?, 22
unique-symbol, 155
unless, 4
up-arrow, 184, 187
update-, 109
update-color-box, 93
user-mail-address, 224

W

warn-about-outlink-ports, 223
when, 5
width, 20
without-recording, 101
word, 55
word?, 22

X

x-position, 102

Y

y-position, 102

Z

zero?, 131
zoom-pause, 218

